
ISG D-PHYSASCW – System aspects

Advanced Scientific
Computing Workshop

System aspects

Christian Herzog
Head of IT, D-PHYS

herzog@phys.ethz.ch

https://indico.phys.ethz.ch/conferenceDisplay.py?confId=5

ISG D-PHYSASCW – System aspects

Contents

● Lingo
● Why are we here? What IS scientific computing?
● Scientific computing problems – why are they hard?
● 1st aspect: hardware
● 2nd aspect: type of SC problem
● Hardware architectures
● Implications for your code
● Some words about storage
● Limits revisited
● Programming languages
● Optimizations
● Tips, tricks and anecdotes
● Questions / discussion

ISG D-PHYSASCW – System aspects

Glossary

CPU: Central Processing Unit → processor, as in
'hardware'

Core: individual execution unit within a CPU
Thread: sequence of instructions that may execute in

parallel with others, within one process
Cache: small + fast memory in or close to CPU
Interconnect: data bus between two units
Throughput: amount of data transferred per time unit
Latency: packet delay time
GPGPU: General-purpose graphics processing units
NUMA: non-uniform memory access
IPC: inter-process communication

ISG D-PHYSASCW – System aspects

What is Scientific Computing?

Scientific
computing
problem

Science
problem

Computing
problem

often “easier” you'll probably spend
most of your time here

Data
analysis

.. and here

ISG D-PHYSASCW – System aspects

The computing problem

Computing problem

easy hard

you're
very lucky

you missed
something

implementation
/ algorithm

computational
limits

you can still
mess up, so
don't leave
just yet

we don't
do easy!

software
engineering

● CPU
● Memory
● Interconnect
● Storage

rest of the
workshop

system
aspects:
our focus

ISG D-PHYSASCW – System aspects

1st aspect: hardware

One of your first tasks when addressing a computing
problem is to determine the limiting factors you're going
to encounter.

First aspect: hardware you're going to use

free choice of hardware given hardware

you're lucky again!

make sure to
pick the right one

identify the limits this
hardware will impose
on your problem and
work around them

ISG D-PHYSASCW – System aspects

limit: CPU
or memory

node
NUMA
cluster
cloud G

P
G

P
U

2nd aspect: type of SC problem
Does an easy implementation of your scientific computing
problem fit on one machine in terms of CPU and memory?

 node

optimize

boy you're
so lucky!

yes

can you partition the problem
into N independent small parts?

no

yes

use multithreading
or parameter sweeping

no

expect heavy
IPC/ITC costs
(interconnect)

limit: CPU
or memory

node
NUMA
cluster
cloud G

P
G

P
U

sp
e
e
d

co
st

 I
P
C

limit: usually mem,
partitioning → IPC

ISG D-PHYSASCW – System aspects

Architectures
node NUMA

M=2..12 *
N=1

M=2..12 *
N=2..16

CPU

M=2..12

M cores, N CPUs, O nodes

cluster

M=2..12 *
N=2..16 *
O=2..104

cloud

M=2..12 *
N=2..16 *
O=2..103

Memory bus

>30 Gb/s
10s ns lat.

QuickPath,
HyperTransp.
~20 Gb/s
100s ns lat.

Myrinet,
Infiniband,
>1 Gb/s
µs lat.

10GBase

1 Gb/s
> 10 µs lat.

Cache bus

100s Gb/s
ns latency

Limit

multithread multithread multithread multithread
multiprocess
MPI, TIPC...

multithread
multiprocess
REST, SOAP..

ISG D-PHYSASCW – System aspects

Implications and specialities

● Everything > your laptop is NUMA, so you'll have to use
multithreading to get any reasonable performance out of
recent (and decent) machines

● You'll have to find the right level of granularity (parallelism
vs. IPC costs)

● Additionally, almost all architectures can be enhanced by
GPGPU cards (CUDA, OpenCL)

● Another potential 'cheap'
performance boost:
SIMD (SSE5/AVX)

NVIDIA Kepler

Source: Intel

ISG D-PHYSASCW – System aspects

Storage
● Two types of storage:

● Local storage: per node, temporary space (“scratch”),
limited, used for intermediate data dumping and processing

● Network storage: cross-node, usually much bigger, NFS or
cluster file system, used for data processing and archival

● Storage usually is less of a limit, separate from CPU, memory
and interconnect

● “But Christian, what about LHC??” - yes, the amount of data
was a problem there, but also for CPU and RAM, not only
storage

● We'll look at some storage-related optimizations later

local
storage

network
storage

LAN

ISG D-PHYSASCW – System aspects

Limits revisited

What have we learned so far?

do you have independent or well-partitioned
problems with little overlap?

yes

does the problem
(code + data) fit
into the L1/L2 cache?

yes

probably
CPU bound

no

probably
memory
bound

no

strong interaction → high IPC costs

limit will probably
be the interconnect

(1)

(2)

sp
e
e
d

cores

(1)

(2)

ISG D-PHYSASCW – System aspects

Time to take a deep breath

● Hardware bottlenecks ✔
● SC problem types ✔
● Architectures ✔

Likely limits of your problem ✔

Let's go!

But....
● which programming language should I use?
● how do I get my code to run realllllly fast?

Optimization

ISG D-PHYSASCW – System aspects

Programming languages for SC

● What may you use?
● not everything might be available on the target machine
● there might be libraries or existing code you want or have
to use

● you might need to collaborate with others
● What should you use?

● which language would be the fastest in terms of
● development time
● execution speed

● What can you use?
● Which language(s) are you familiar with?
● How fast can you learn (and master) another one?

Interpreter language vs Compiler language
eg. Perl, Python, PHP eg. C/C++, Java, Fortran
Code → interpreter → memory Code → compiler → disk
“fast coding, slow code” “slow coding, fast code”

ISG D-PHYSASCW – System aspects

Optimization

Software
● Pick the right compiler (gcc, llvm, Intel, PGI..)
● Use optimized libraries (BLAS, LAPACK, BOOST, NumPy..)
● Use the right data types (bit fields, SP/DP..)
● Memory / cache alignment
● Call C / Fortran libraries from scripting languages
● Use a profiler
● Meshing: adaptive, geometry...

Hardware
● Hardware / OS tuning
● Thread pinning

Storage
● File formats (HDF, XML, binary)...
● Mem:disk 100:1

ISG D-PHYSASCW – System aspects

Tips, hints and anecdotes

● Use checkpointing to prevent data loss in case of a crash
● Random numbers – important esp. for Monte Carlo
● Use job queuing systems if available
● Never ever swap, never (mem:disk 100:1)
● Make sure you're using all cores
● Local v. network storage: Don't write 100k files every 2 min
● If you use network storage for long-running jobs, be aware
of network interruptions

● Bullshit bingo: MapReduce – just a fancy name for our
'many independent jobs' problem

● On ISG's behalf: please don't move / rename a 4T folder
without telling us...

ISG D-PHYSASCW – System aspects

?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

