
Agostino Patella, 20.01.2024

openQ*D code
Thoughts on future releases and development

úRC

CRú

Public repository

• 1. June 2017: Version 0.9a1: Initial public release (alpha).

• 22. June 2017: 2nd public release (alpha).

• 30. April 2019: Version 1.0: 3rd public release.

• 02. March 2021: Version 1.1: 4th public release.

• 22. March 2023: Add README.md, CONTRIBUTING,
CODE_OF_CONDUCT.md (no new version, no
CHANGELOG)

Working repository

• 41 branches, many experimental, some dead

• Roughly, 5 categories:

• Structural changes

• Observables

• Exploration of particular techniques (e.g. noise reduction)

• GPU porting

• CI/CD

0 12 24 36 48 60 72 84

months from initial commit

0

40

80

120

160

n
o
.
o
f
c
o
m

m
it
s

Working repository ===> Public repository
Core code vs. observables

• Priorities for core code:

• Long-term maintenance 
The permanent members of the collaboration must understand the code deeply at all times (for long-
term planning and newcomers training).

• Keep some level of compatibility with openQCD 
Keep open the possibility to import new features of openQCD with a relatively minimal efforts. However,
it is not clear this is still possible.

• Result: changes to the core code are very slow. Still, there are many things that could be improved 
e.g. refactor event and parameter database, reduce module interdependence, increase safety, design
general interfaces (e.g. for solvers), refactor input file parsing and validation, design a strategy for
automating testing...

• Refactoring of the core code must be done in a holistic way and it would take the focus away from
physics. Not for now...

Working repository ===> Public repository
Core code vs. observables

• Next release should include:

• Fix of various compiler warnings (e.g. concerning string length)

• Add autoappend feature to ms* programs (i.e. infer the initial configuration from *.log and *.dat files)

• Add calculation of the Pfaffian sign (ms7)

• Add calculation of mass reweighting factor

Working repository ===> Public repository
Core code vs. observables

• So far, no observables have been published. This will change in the future...

• More flexibility, we can explore code structures that depart from the core code. We can allow for C99,
linking with external libraries...

• Still, observables should be fully tested (this is difficult!) and thoroughly documented.

• Coordination is needed: some features are needed in several observables and they should be agreed upon.

• Write observable code in such a way that it is easy to use GPU solvers. We need to agree on the
interface!

• This is something we should invest on.

Working repository ===> Public repository
Core code vs. observables

• Short term

• RM123 insertions with frequency splitting, hopping expansion and, perhaps, low-mode averaging

• Electromagnetic current 2pt function (connected and disconnected)

• π0 two-point functions

• Medium term

• Baryons (with all Wick contractions) with smeared sources

• Long term

• ...

Keep observables separated and organized
openQxD/

➡ devel/
➡ doc/
➡ extras/

➡ devel/
➡ lowrnk/
➡ msrw/

➡ doc/
➡ include/
➡ main/

➡ lowrnk/
➡ msrw/

➡ modules/
➡ invdir/
➡ lowrnk/
➡ msrw/

➡ include/
➡ main/
➡ minmax/
➡ modules/

invdir

Generic functions to read and write solver-related parameters, apply
solvers and collect statistics. QUDA interface should be buried here.

lowrnk

Abstract interface for various noise-reduction techniques based on
low-rank approximations of the inverse of the Dirac operator. Currently
implemented: frequency-splitting, hopping expansion, rough-solver
approximation. Low-mode averaging should be added here.

msrw

Calculation of mass-reweighting factor.

Using solvers (e.g. ms6)
• Executed once: Read input parameters (for solvers, SAP, deflation).

Using solvers (e.g. ms6)
• Executed once: Calculate and allocate the needed workspaces.

Using solvers (e.g. ms6)
• Executed every time a gauge configuration is read: Calculate deflation subspaces.

Using solvers (e.g. ms6)
• Executed every time we need to invert the Dirac operator: Call solvers.

Using solvers (just an example)
• Executed once: Read input parameters (for solvers, SAP, deflation).

Introduce function which reads all relevant parameters, if they have not been read yet. 
void read_solver_sap_dfl_parms(int isp);

• Executed once: Calculate and allocate the needed workspaces.

Introduce function that calculates workspace needed for all solvers 
void solver_and_dfl_wsize(int *nwud,int *nwad,int *nws,  
 int *nwsd,int *nwv,int *nwvd);

• Executed every time a gauge configuration is read: Calculate deflation subspaces.

Remove this, and decide whether to calculate the deflation subspace based on event database.

• Executed every time we need to invert the Dirac operator: Call solvers.

Introduce function that calculates deflation subspace if necessary, initialize in vector to zero if required,
invert Dirac operator with given solver, return solver and deflation status array if status!=NULL, check
result and returns residue. 
double Dinv(int isp,spinor_dble *in,spinor_dble *out,int init,int *status);

Low rank approximation of inv(D)
A large class of noise-reduction techniques can be represented as

OA = 1
NAsrc

NA
src

∑
n=1

NA
dlt

∑
k=1

ψA,n,kη
†
A,n,kD−1 = ∑

A
⟨⟨OA⟩⟩

Calculation of tr(inv(D))

op [pointer to an instance of a derived class
of lowrnk_t (which is virtual)]

Represents the particular noise-reduction technique.

lowrnk_prep [polymorphic function]

Calculates the psi and eta pseudofermions.

lowrnk_copy [polymorphic function]

Copies the psi and eta pseudofermions for use.

Low rank approximation of inv(D)
In this case, the low-rank approximation is defined in the input file:

Low rank approximation of inv(D)

openQxD/
➡ [...]
➡ extras/

➡ [...]
➡ include/

➡ lowrnk.h
➡ modules/

➡ lowrnk/
➡ lowrnk.c
➡ lowrnk_database.c
➡ lowrnk_frqspl.c
➡ lowrnk_frqspl2.c
➡ lowrnk_hopexp.c
➡ lowrnk_hoprmd.c
➡ lowrnk_invdop.c
➡ lowrnk_invdop2.c

Expandable by adding independent pieces of
code, without meddling with existing code!

• Add 4 lines to lowrnk.h

• Add one file in modules/lowrnk
(following the same structure of all others)

• Add the new file to the Makefile

• When a new noise-reduction technique is
added, nothing needs to be changed in
main programs!

