# Isospin breaking corrections to the muon's g - 2: an update

Paola Tavella ETH Zürich

 $\mathrm{RC}^\star$  collaboration meeting

January 30th, 2024



Paola Tavella

January 30th, 2024 1/23

# Outline



2 Definition of QCD+QED



4 IB corrections to the HVP

# Isospin breaking in lattice calculations

- lattice calculations usually done in the isosymmetric limit
- sources of isospin breaking effects (IBE)
  - strong IBE ~  $\mathcal{O}((m_d m_u)/\Lambda_{QCD})$
  - QED effects  $\sim \mathcal{O}(\alpha_{EM})$

 $\implies$  IBE effects are important for calculations with precision  $\leq 1~\%$ 

**RC\* program:** focus on the IB corrections (masses of mesons, HVP, etc.):

- non-isosymmetric configurations at several unphysical values of  $\alpha_{EM}$  and  $m_u m_d$  + extrapolation to the physical point
- isosymmetric configurations + RM123 method

# Outline



2 Definition of QCD+QED



4 IB corrections to the HVP

- theory: QCD+QED with four quarks
- bare parameters:  $\beta, \alpha, m_{f=u,d,s,c}$
- six conditions define the **renormalization scheme**:
  - ▶ needed to ensure a well-defined continuum limit
  - ▶ six observables that can be evaluated precisely on the lattice
  - ▶ six inputs (either theoretical estimates or exp. quantities)

Note: the choice of the scheme is arbitrary  $\implies$  no effects on the observable quantities at the continuum limit

Following the hadronic scheme in 1608.08900, 2108.11989

### **Observables**

### Targets

 $\begin{array}{ll} (8t_0/a^2)^{1/2} \cdot a & \stackrel{!}{=} & (8t_0)^{1/2, \mathrm{phys}} = 0.415 \ \mathrm{fm} \ \text{[Bruno et al., 1608.08900]} \\ \alpha_R & \stackrel{!}{=} & \alpha^{\mathrm{phys}} = 0.007297 \\ \phi_0 = 8t_0(m_{K^\pm}^2 - m_{\pi^\pm}^2) & \stackrel{!}{=} & \phi_0^{\mathrm{phys}} = 0.992 \\ \phi_1 = 8t_0(m_{K^\pm}^2 + m_{\pi^\pm}^2 + m_{K^0}^2) & \stackrel{!}{=} & \phi_1^{\mathrm{phys}} = 2.26 \\ \phi_2 = 8t_0(m_{K^0}^2 - m_{K^\pm}^2)/\alpha_R & \stackrel{!}{=} & \phi_2^{\mathrm{phys}} = 2.36 \\ \phi_3 = \sqrt{8t_0}(m_{D_S^\pm}^\pm + m_{D^\pm}^2 + m_{D^0}) & \stackrel{!}{=} & \phi_3^{\mathrm{phys}} = 12.0 \end{array} \right) \ \text{PDG values}$ 

- $t_0$ : sets the SU(3) bare coupling
- $\alpha_R$ : sets the U(1) bare coupling
- $\phi_0$ : sets  $m_s m_d$

- $\phi_1$ : sets  $m_s + m_d + m_u$
- $\phi_2$ : sets  $\delta m_{ud}/\delta_{EM}$
- $\phi_3$ : sets  $m_c$

# Definition of isoQCD

- isosymmetric QCD has four parameters:  $\beta, m_{f=l,s,c}$
- same scheme as QCD+QED along  $\phi_2 = \text{const}, \alpha_R \to 0$

# Observables Targets $(8t_0/a^2)^{1/2} \cdot a$ $\stackrel{!}{=}$ $(8t_0)^{1/2, \text{phys}} = 0.415$ fm [Bruno et al., 1608.08900] $\phi_0 = 8t_0(m_{K^{\pm}}^2 - m_{\pi^{\pm}}^2)$ $\stackrel{!}{=}$ $\phi_0^{\text{phys}} = 0.992$ $\phi_1 = 8t_0(m_{K^{\pm}}^2 + m_{\pi^{\pm}}^2 + m_{K^0}^2)$ $\stackrel{!}{=}$ $\phi_1^{\text{phys}} = 2.26$ $\phi_3 = \sqrt{8t_0}(m_{D_S^{\pm}}^2 + m_{D^{\pm}} + m_{D^0})$ $\stackrel{!}{=}$ $\phi_3^{\text{phys}} = 12.0$

Note: the separation of isosymmetric and IB contributions to the observarbles is scheme-dependent!

# Our line of constant physics

- we use the hadronic scheme for tuning:  $(8t_0)^{1/2}$ ,  $\alpha_R(t_0)$ ,  $\phi_0$ ,  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$
- unphysical choice of the targets as starting point

 $(8t_0/a^2)^{1/2} \cdot a \stackrel{!}{=} 0.415 \text{ fm [Bruno et al., 1608.08900]}$  $\alpha_R \in [0, 0.04]$ 

- $$\begin{split} \phi_0 &= 8t_0(m_{K^{\pm}}^2 m_{\pi^{\pm}}^2) & \stackrel{!}{=} 0 \quad [\phi_0^{\text{phys}} = 0.992] \\ \phi_1 &= 8t_0(m_{K^{\pm}}^2 + m_{\pi^{\pm}}^2 + m_{K^0}^2) & \stackrel{!}{=} 2.11 \quad [\phi_1^{\text{phys}} = 2.26] \\ \phi_2 &= 8t_0(m_{K^0}^2 m_{K^{\pm}}^2)/\alpha_R & \stackrel{!}{=} 2.36 \quad [\phi_2^{\text{phys}} = 2.36] \\ \phi_3 &= \sqrt{8t_0}(m_{D^{\pm}_{S}}^2 + m_{D^{\pm}} + m_{D^0}) & \stackrel{!}{=} 12.1 \quad [\phi_3^{\text{phys}} = 12.0] \end{split}$$
- same inputs for QCD+QED and (3+1) isoQCD simulations ( $\phi_2 = 0$ )

# Outline









### RM123 method

• idea: perturbative expansion in  $\alpha_{em}=e^2/4\pi$  and  $\delta m_{ud}=m_u-m_d$ [De Divitiis et al, 1303.4896 ]

 $\left\langle \mathcal{O}\right\rangle \left(\vec{\varepsilon}\right) = \left\langle \mathcal{O}\right\rangle \left(m_{l}, m_{s}, m_{c}, \beta, e^{2} = 0, \delta m_{ud} = 0\right) + \delta m_{ud} \partial_{m_{l}} \left\langle \mathcal{O}\right\rangle |_{\delta m_{ud} = 0} + e^{2} \partial_{e^{2}} \left\langle \mathcal{O}\right\rangle |_{e^{2} = 0}$ 

• expansion around the isosymmetric point

 $\left\langle \mathcal{O} \right\rangle \left( \vec{\varepsilon} \right) = \left\langle \mathcal{O} \right\rangle_{(0)} \left( m'_l, m'_s, m'_c, \beta' \right) + \sum_f \delta m_f \partial_{m_f} \left\langle \mathcal{O} \right\rangle |_{(0)} + e^2 \partial_{e^2} \left\langle \mathcal{O} \right\rangle |_{(0)} + \delta \beta \partial_\beta \left\langle \mathcal{O} \right\rangle |_{(0)}$ 

• need to find six IB parameters  $\delta m_i \equiv (m_i - m_i'), \delta \beta \equiv (\beta - \beta'), e^2$ 





Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.

$$\begin{split} \phi_{0}^{QCD+QED}(am_{i},\beta,e^{2}) &= \phi_{0}^{isoQCD}(am_{i}',\beta') \\ & \downarrow \text{RM123} \\ \phi_{0}^{isoQCD}(am_{i}',\beta') + \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{0}|_{am_{i}',\beta'} &= \phi_{0}^{isoQCD}(am_{i}',\beta') \end{split}$$

Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.:

$$\begin{split} \phi_0^{QCD+QED}(am_i,\beta,e^2) &= \phi_0^{isoQCD}(am'_i,\beta') \\ & \downarrow \text{RM123} \\ \phi_0^{isoQCD}(am'_i,\beta') + \sum_i \delta\varepsilon_i \frac{\partial}{\partial\varepsilon_i} \phi_0|_{am'_i,\beta'} &= \phi_0^{isoQCD}(am'_i,\beta') \end{split}$$

$$1) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} t_{0} = 0$$
  

$$2) \alpha_{R}(t_{0}) = \alpha_{em}$$
  

$$3) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{0} = 0$$
  

$$4) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{1} = 0$$
  

$$5) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{2} = \phi_{2}^{phys}$$
  

$$6) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{3} = 0$$

Paola Tavella

Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.

$$\phi_0^{QCD+QED}(am_i,\beta,e^2) = \phi_0^{isoQCD}(am'_i,\beta')$$

$$RM123$$

$$\phi_0^{isoQCD}(am'_i,\beta') + \sum_i \delta \varepsilon_i \frac{\partial}{\partial \varepsilon_i} \phi_0|_{am'_i,\beta'} = \phi_0^{isoQCD}(am'_i,\beta')$$

1)  $\sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} t_{0} = 0$ 2)  $\alpha = \alpha_{em}$ 3)  $\sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{0} = 0$ 4)  $\sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{1} = 0$ 5)  $\sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{2} = \phi_{2}^{phys}$ 6)  $\sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{3} = 0$ 

Paola Tavella

Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.

$$\phi_0^{QCD+QED}(am_i,\beta,e^2) = \phi_0^{isoQCD}(am'_i,\beta')$$
RM123

$$\phi_0^{isoQCD}(am'_i,\beta') + \sum_i \delta \varepsilon_i \frac{\partial}{\partial \varepsilon_i} \phi_0|_{am'_i,\beta'} = \phi_0^{isoQCD}(am'_i,\beta')$$

 $1)\delta\beta = 0$   $2) \alpha = \alpha_{em}$   $3) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{0} = 0$   $4) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{1} = 0$   $5) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{2} = \phi_{2}^{phys}$  $6) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{3} = 0$ 

- $\alpha_R \to \alpha$  (bare param.)
- electro-quenched approximation  $\implies$  no corrections from sea quarks

Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.

$$\phi_0^{QCD+QED}(am_i,\beta,e^2) = \phi_0^{isoQCD}(am'_i,\beta')$$
RM123

$$\phi_0^{isoQCD}(am'_i,\beta') + \sum_i \delta \varepsilon_i \frac{\partial}{\partial \varepsilon_i} \phi_0|_{am'_i,\beta'} = \phi_0^{isoQCD}(am'_i,\beta')$$

$$\begin{split} 1)\delta\beta &= 0\\ 2) &\alpha = \alpha_{em}\\ 3) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{0} &= 0\\ 4) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{1} &= 0\\ 5) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{2} &= \phi_{2}^{phys}\\ 6) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{3} &= 0 \end{split}$$

- $\alpha_R \to \alpha$  (bare param.)
- electro-quenched approximation
- $\implies$  no corrections from sea quarks
- $\implies \delta m_c$  appears only in 6)

Each renormalization condition is expanded in  $\delta \vec{\varepsilon} \equiv (a \delta m_i, \delta \beta, e^2)$ , e.g.

$$\phi_0^{QCD+QED}(am_i,\beta,e^2) = \phi_0^{isoQCD}(am'_i,\beta')$$
RM123

$$\phi_0^{isoQCD}(am'_i,\beta') + \sum_i \delta \varepsilon_i \frac{\partial}{\partial \varepsilon_i} \phi_0|_{am'_i,\beta'} = \phi_0^{isoQCD}(am'_i,\beta')$$

$$1)\delta\beta = 0$$
  

$$2) \alpha = \alpha_{em}$$
  

$$3) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{0} = 0$$
  

$$4) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{1} = 0$$
  

$$5) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{2} = \phi_{2}^{phys}$$
  

$$6) \sum_{i} \delta\varepsilon_{i} \frac{\partial}{\partial\varepsilon_{i}} \phi_{3} = 0$$

•  $\alpha_R \to \alpha$  (bare param.)

- electro-quenched approximation
- $\implies$  no corrections from sea quarks
- $\implies \delta m_c$  appears only in 6)

### Steps:

- **()** Computation of derivatives of pseudoscalar correlator
- Solution of the renormalization conditions system to derive the quark mass shifts (u and d/s)
- **③** Computation of derivatives of the vector-vector correlator
- ( Analysis of  $\delta a_{\mu}^{HVP}$

### Corrections to mesons' masses

Computation of derivatives of pseudoscalar correlator on 200/250 configurations, 10 point sources per conf.



- Sequential propagators: further inversions with a modified source
- Photon field (Feynman gauge) estimated stochastically (1 source per point source)

$$\hat{A}_{\mu}(x) = \frac{1}{\sqrt{N}} \sum_{k} \frac{e^{-ikx}}{\sqrt{\hat{k}^{2}}} \tilde{B}_{\mu}(k), \qquad P(B) \propto \exp\left(-B_{\mu}^{2}(k)\right)$$
$$\Lambda_{\mu\nu}(x-y) = \frac{\delta_{\mu\nu}}{N} \sum_{k} \frac{e^{ik(x-y)}}{\hat{k}^{2}} \simeq \frac{1}{n_{src}} \sum_{i=1}^{n_{src}} \hat{A}_{\mu}^{i}(x) \hat{A}_{\nu}^{i}(y)$$

### Corrections to mesons' masses

• Each diagram gives a contribution to  $a\delta m_M = \sum_i \frac{\partial a m_M}{\partial \varepsilon_i} \delta \varepsilon_i$ 

$$\begin{split} \partial_{\varepsilon_i}(am_M)(t) = & \left[ \frac{\partial_{\varepsilon_i} G(t)}{G^{(0)}(t)} - \frac{\partial_{\varepsilon_i} G(t+1)}{G^{(0)}(t+1)} \right] \times \\ & \times \frac{1}{(T/2 - t) \tanh\left(am_M^{(0)}(T/2 - t)\right) - (T/2 - (t+1)) \tanh\left(am_M^{(0)}(T/2 - (t+1))\right)} \end{split}$$



Paola Tavella

| Ensemble | V                  | n.cnfg | $\phi_1(\text{meas})$ | $a[\mathrm{fm}]$ | $m_{\pi}[\text{MeV}]$ |
|----------|--------------------|--------|-----------------------|------------------|-----------------------|
| A400     | $64 \times 32^3$   | 200    | 2.110(32)             | 0.05394(27)      | 398.9(3.7)            |
| B400     | $80 \times 48^{3}$ | 250    | 2.172(20)             | 0.05404(14)      | 404.5(1.9)            |

### **Derivatives:**

| Quantity         | Mass der. | Tad.      | Ph. ex      | Ph. self     | Tot QED   |
|------------------|-----------|-----------|-------------|--------------|-----------|
| $am_{\pi^{\pm}}$ | 5.21(8)   | 0.638(10) | 0.00219(5)  | -0.03003(46) | 0.611(10) |
| $am_{K^{\pm}}$   | 5.21(8)   | 0.638(10) | 0.00219(5)  | -0.03003(46) | 0.611(10) |
| $am_{K^0}$       | 5.21(8)   | 0.255(4)  | -0.00109(2) | -0.01201(18) | 0.242(4)  |

| Quantity         | Mass der. | Tad.     | Ph. ex      | Ph. self     | Tot QED  |
|------------------|-----------|----------|-------------|--------------|----------|
| $am_{\pi^{\pm}}$ | 5.19(5)   | 0.639(6) | 0.00274(5)  | -0.02944(31) | 0.612(6) |
| $am_{K^{\pm}}$   | 5.19(5)   | 0.639(6) | 0.00274(5)  | -0.02944(31) | 0.612(6) |
| $am_{K^0}$       | 5.19(5)   | 0.255(2) | -0.00137(3) | -0.01178(13) | 0.243(2) |

Solution of the system:

$$3) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{0} = 0$$
  

$$4) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{1} = 0$$
  

$$5) \sum_{i} \delta \varepsilon_{i} \frac{\partial}{\partial \varepsilon_{i}} \phi_{2} = \phi_{2}^{phys}$$

A400a00b324

$$\begin{split} \delta\beta &= 0 \\ e^2 &= 0.091701237 \\ a\delta m_u &= -0.008781(14) \\ a\delta m_d &= -0.002046(5) \\ a\delta m_s &= -0.002046(5) \end{split}$$

B400a00b324

$$\begin{split} \delta\beta &= 0\\ e^2 &= 0.091701237\\ a\delta m_u &= -0.008837(3)\\ a\delta m_d &= -0.002055(1)\\ a\delta m_s &= -0.002055(1) \end{split}$$

### **IB** parameters

### Expansion of the meson masses :

- A400:  $am_{\pi^{\pm}} = 0.109(1) + 5.22(8)(a\delta m_u + a\delta m_d) + 0.612(9)e^2 = 0.1086(10)$  [397.3(3.5) Mev]
- A400:  $am_{K^0} = 0.109(1) + 5.22(8)(a\delta m_d + a\delta m_s) + 0.243(4)e^2 = 0.1099(9)$  [402.2(3.5) Mev]
- B400:  $am_{\pi^{\pm}} = 0.1108(7) + 5.19(5)(a\delta m_u + a\delta m_d) + 0.612(6)e^2 = 0.1103(7)$  [403(2) MeV]
- B400:  $am_{K^0} = 0.1108(7) + 5.19(5)(a\delta m_d + a\delta m_s) + 0.242(2)e^2 = 0.1117(7)$  [407(2) MeV]
- A400/B400:  $am_{K^{\pm}} = am_{\pi^{\pm}}$

### (Half-)Prediction:

• pion-splitting  $am_{\pi^{\pm}} - am_{\pi^{0}} \propto e^{2} \frac{(q_{u} - q_{d})^{2}}{2} \left\{ \begin{array}{c} \ddots \\ \ddots \\ \ddots \\ \ddots \\ \end{array} \right\}$ 

> A400: 0.00045(1) [1.65(4) MeV] B400: 0.00056(1) [2.06(3) MeV]

# Outline



- 2 Definition of QCD+QED
- 3 RM123 method



# HVP calculation

• time-momentum representation

$$\begin{split} G(t) &= -\frac{1}{3} \sum_{k=1,2,3} \sum_{\vec{x}} \left\langle V_k^{em}(x) V_k^{em}(0) \right\rangle \\ a_{\mu}^{HVP} &= \left(\frac{\alpha}{\pi}\right)^2 \sum_t G(t) \tilde{K}(t;m_{\mu}) \end{split}$$

- two discretizations of the correlator (local-local,conserved-local)
- two types of contributions



### IB corrections to the HVP

For instance, we consider the local local discretization

$$a_{\mu}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \sum_{t} Z_V^2 G^{ll}(t) \tilde{K}(t; m_{\mu})$$

1) corrections to the correlator

$$\begin{split} \delta a_{\mu,(1)}^{HVP} &= \left(\frac{\alpha}{\pi}\right)^2 \sum_t (Z_V^{(0)})^2 \delta G^{ll}(t) \tilde{K}(t;m_\mu) \\ G^{ll}(t) &= G^{ll}(t)^{(0)} + \delta G^{ll}(t) = G^{ll}(t)^{(0)} + \sum_f \delta m_f \frac{\partial G^{ll}(t)}{\partial m_f} \Big|_{(0)} + \frac{1}{2} e^2 \frac{\partial^2 G^{ll}(t)}{\partial e^2} \Big|_{(0)} \end{split}$$

2) corrections to the renormalization constant

$$\delta a_{\mu,(2)}^{HVP} = \left(\frac{\alpha}{\pi}\right)^2 \sum_t 2Z_V^{(0)} \delta Z_V G^{ll}(t)^{(0)} \tilde{K}(t;m_\mu)$$
$$Z_V = Z_V^{(0)} + \delta Z_V = Z_V^{(0)} + \sum_f \delta m_f \frac{\partial Z_V}{\partial m_f}\Big|_{(0)} + \frac{1}{2} e^2 \frac{\partial^2 Z_V}{\partial e^2}\Big|_{(0)}$$

Paola Tavella

### Corrections to the correlator

• leading IB effects in the electro-quenched approximation



• if conserved current at the sink (no additional propagators needed)



### Corrections to the correlator

### • reconstruction of the vector correlator derivatives



$$\begin{aligned} G(t) &\simeq (A^{(0)} + \delta A) e^{-(m^{(0)} + \delta m)t} \\ G^{(1)}(t) &\simeq A^{(0)} e^{-m^{(0)}t} (1 + \delta A/A^{(0)} - \delta mt) \\ &\frac{G^{(1)}(t) - G^{(0)}(t)}{G^{(0)}(t)} &\simeq \delta A/A^{(0)} - \delta mt \end{aligned}$$

### Preliminary results (Ensemble A400a00b324)



After the  $x_0$ -integration:

$$\delta a_{\mu,(1)}^{\text{HVP}} = -4.8(7) \times 10^{-7} a \delta m_u + -1.20(17) \times 10^{-7} (a \delta m_d \times 2) +$$

$$-(4.3(6) + 0.24(7) \times 2) \times 10^{-8}e^2$$

• Inserting the quark mass shifts:

$$\delta a_{\mu,(1)}^{\text{HVP}} = 2.88(24) \times 10^{-10}$$

$$_{\mu,(u+d+s)}^{\text{HVP,LO}} = 284.5(7.8) \times 10^{-10}$$

### Corrections to $Z_V$

• Renormalization condition

$$Z_{V_RV_l} = \lim_{x_0 \to \infty} G^{cl}(x_0) (G^{ll}(x_0))^{-1} \to \begin{pmatrix} 0.6578(9) & 0.0(0) & 0.0(0) & 0.0220(6) \\ 0.0(0) & 0.6766(12) & 0.0(0) & 0.000 \\ 0.0(0) & 0.0(0) & 0.6766(12) & 0.0(0) \\ 0.0439(12) & 0.0(0) & 0.0(0) & 0.6224(11) \end{pmatrix}$$
  
Taking derivatives

$$\frac{\partial Z_{V_R V_l}}{\partial \varepsilon_i} = \lim_{x_0 \to \infty} \left[ \frac{\partial G^{cl}}{\partial \varepsilon_i}(x_0) - G^{cl}(x_0) \left( G^{ll}(x_0) \right)^{-1} \frac{\partial G^{ll}}{\partial \varepsilon_i}(x_0) \right] \cdot \left( G^{ll}(x_0) \right)^{-1}$$



Paola Tavella

January 30th, 2024 20 / 23

### Preliminary results (Ensemble A400a00b324)

$$\begin{split} (\delta Z_{V_R V_l})_{m_u} &= \begin{pmatrix} -0.076(33) & -0.152(65) & -0.088(38) & -0.031(13) \\ -0.076(33) & -0.152(65) & -0.088(38) & -0.031(13) \\ -0.044(19) & -0.088(38) & -0.051(22) & -0.018(8) \\ -0.062(27) & -0.124(53) & -0.072(31) & -0.025(11) \end{pmatrix} \cdot a \delta m_u \\ (\delta Z_{V_R V_l})_{m_d} &= \begin{pmatrix} -0.076(33) & 0.152(65) & -0.088(38) & -0.031(13) \\ -0.076(33) & -0.152(65) & 0.088(38) & -0.031(13) \\ -0.044(19) & 0.088(38) & -0.051(22) & -0.018(8) \\ -0.062(27) & 0.124(53) & -0.072(31) & -0.025(11) \end{pmatrix} \cdot a \delta m_d \\ (\delta Z_{V_R V_l})_{m_s} &= \begin{pmatrix} -0.076(33) & 0.0(0) & 0.175(74) & -0.031(13) \\ 0.0(0) & 0.0(0) & 0.0(0) & 0.0(0) \\ 0.088(38) & 0.0(0) & -0.202(87) & 0.039(15) \\ -0.062(27) & 0.0(0) & 0.143(62) & -0.025(11) \end{pmatrix} \cdot a \delta m_s \\ (\delta Z_{V_R V_l})_{e^2} &= \begin{pmatrix} -0.0423(65) & -0.0423(65) & -0.0244(37) & -0.0173(26) \\ -0.0212(32) & -0.071(11) & -0.0244(37) & -0.0086(13) \\ -0.0346(53) & -0.0346(53) & -0.0199(30) & -0.0141(22) \end{pmatrix} \cdot e^2 \end{split}$$

To summarize:

- Possible strategy for defining the isospin-breaking effects to the HVP
- Computation of the derivatives (valence contributions) of the light quark pseudoscalar correlator and corrections to meson masses on A400 and B400
- Corrections to the vector correlator and the renormalization constant (in progress)

Next steps:

- Finalize the analysis (AIC for combining models)
- Estimate finite-volume corrections

### Conclusions

### • Write-up: paper on the isospin-breaking corrections to the HVP

### 1 PREPARED FOR SUBMISSION TO JHEP

- 2 Isospin breaking corrections to the hadronic vacuum
- polarisation from lattice simulations with C\* boundary
- conditions

### 5 Authors

E-mail;

7 ABSTRACT: Abstract...

### a Contents

- 1 Introduction
- 10 2 Isospin-breaking effects in lattice QCD simulations
- 11 2.1 Renormalization of QCD+QED
- 12 2.2 Definition of isospin-symmetric QCD
- 13 2.3 Perturbative method

### 14 3 Computational setup

- 15 3.1 Lattice action
- 16 3.2 C<sup>\*</sup> boundary conditions
- 17 3.3 Ensembles
- 18 4 Isospin-breaking corrections to a<sup>HVP</sup><sub>µ</sub>
- 4.1 Hadronic vacuum polarisation from the lattice
- 20 4.2 Derivation of IBE with C<sup>\*</sup> boundaries
- 21 4.3 Renormalization constant
- 22 5 Analysis methods
- 23 6 Results
- 24 7 Conclusions
- 25 A Appendix