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g-2

Calculation of hardonic contribution to anomalous magnetic moment requires

⟨jµ(x)jν(0)⟩

with (continuum) electromagnetic current

jµ(x) =

Nf∑
f=1

qf ψf (x)γµψf (x)

and single-flavor quark ψf (x).
In order to obtain well-defined quantities when removing the lattice cutoff a → 0, we
need to renormalize our operators.



Concepts



Renormalization principles

1. Let A be a composite operator. The renormalized operator AR can be written as

AR =
∑
B

ZABB,

where the sum is over operators B with
• the same symmetry properties as A and [Collins1984 (Section 9.1)]

• lower or equal mass dimension than A. [Collins1984 (Section 6.4)]

2. A set of operators that is invariant under a symmetry transformation renormalizes
with the same multiplicative renormalization constant.

https://www.cambridge.org/core/product/identifier/9781009401807/type/book
https://www.cambridge.org/core/product/identifier/9781009401807/type/book


Flavor symmetries

Consider Nf mass-degenerate quarks Ψ = (u, d , . . .)T and the Wilson discretization of
QCD. The transformation

Ψ′(x) = e iα(x)t
a
Ψ(x)

is a symmetry of the theory for ta ∈ u(Nf ) and a = 0, . . . ,N2
f − 1.

Example: Nf = 2, Pauli matrices

t0 = 1, t1 =

(
0 1
1 0

)
, t2 =

(
0 −i
i 0

)
, t3 =

(
1 0
0 −1

)
Example: Nf = 3 Gell-Mann matrices



Conserved current

The corresponding Noether current is

V (con),a
µ (x) =

1

2

(
Ψ(x + aµ̂)(1 + γµ)U

†
µ(x)t

aΨ(x)−Ψ(x)(1− γµ)Uµ(x)t
aΨ(x + aµ̂)

)
.

with flavor spinor Ψ(x) flavor matrix ta ∈ u(Nf ), a = 0, . . . ,N2
f − 1. Alternatively, the

local current is
V (loc),a
µ (x) = Ψ(x)γµt

aΨ(x),

• {V a
µ (x)}a=1,...,N2

f −1 transforms in the adjoint representation.

• {V 0
µ (x)} transforms in the trivial representation.



Renormalization (chiral limit)

Consider Nf massless quarks. Renormalization is captured in a multiplicative constant
for each operator. There are no operators that mix with the current.

V a
µ,R(x) = ZV (g0)V

a
µ (x) a = 1, . . . ,N2

f − 1,

V 0
µ,R(x) = ZV (g0)rV (g0)V

0
µ (x).

We neglect O(a)-improvement terms. See [Bhattacharya et al., arXiv:hep-lat/0511014] for details.

https://arxiv.org/abs/hep-lat/0511014


No-renormalization of currents

The conserved current arising from the flavor symmetry in QCD does not renormalize,
i.e. ZV = 1 and [Collins1984 (Eq. 6.6.32)]

V
(con),a
µ,R (x) = V (con),a

µ (x)

Remark: This does not hold for QED. [Collins et al., arXiv:hep-th/0512187]

https://www.cambridge.org/core/product/identifier/9781009401807/type/book
https://arxiv.org/abs/hep-th/0512187


Finite renormalization of currents

The local current arising from the flavor symmetry in QCD is finite

V
(loc),a
µ,R (x) = ZV (g0)V

(loc),a
µ (x)

with renormalization constant

ZV (g0) = 1 + O(g2
0 ).

[Vladikas, arXiv:1103.1323]

http://arxiv.org/abs/1103.1323


Renormalization (massive quarks)

Consider Nf massive quarks. There are operators of same mass dimension that mix
with the current.

V a
µ,R = ZV (g0)

[
(1 + abV (g0)tr[M])V a

µ + 1
2abV (g0)tr[{t

a,M}Vµ] + afV (g0)tr[t
aM]V 0

µ

]
,

V 0
µ,R = ZV (g0)rV (g0)

[
(1 + adV (g0)tr[M])V 0

µ + adV (g0)tr[MVµ]
]
,

M is the (subtraced) bare quark mass matrix. [Bhattacharya2005 Eq. (15),(23)]

https://arxiv.org/abs/hep-lat/0511014


Nf = 3 + 1
We restrict to flavor-neutral currents V a

µ (x) with a = 0, 3, 8, 15:

t3 =


1

−1
0

0

 , t8 =


1

1
−2

0

 , t15 =


1

1
1

−3

 , t0 = 1.

M = diag(ml ,ml ,ml ,mc).


V 3
µ,R

V 8
µ,R

V 15
µ,R

V 0
µ,R

 =


Z3,3 Z3,8 Z3,15 Z3,0

Z8,3 Z8,8 Z8,15 Z8,0

Z15,3 Z15,8 Z15,15 Z15,0

Z0,3 Z0,8 Z0,15 Z0,0




V 3
µ

V 8
µ

V 15
µ

V 0
µ


Gray components vanish due to flavour degeneracy.



Renormalization (massive quarks)

Example: Nf = 3 + 1 and M = diag(ml ,ml ,ml ,mc):

Z3,3 = Z8,8 = ZV (1 + abV (3ml +mc) + abVml), (1)

Z15,15 = ZV (1 + abV (3ml +mc) + abV
ml+3mc

4 ), (2)

Z0,0 = ZV rV (1 + adV (3ml +mc) + adV
3ml+mc

4 ), (3)

Z15,0 = ZV (abV
3
4(ml −mc) + afV 3(ml −mc)), (4)

Z0,15 = ZV rV adV
1
4(ml −mc). (5)



Mass-dependent renormalization

• Once we have determined all constants, we know the renormalization at a fixed g0
for arbitary quark masses (mass-independent renormalization)

• All additive contribution are O(a) and can be considered improvement terms.

• However, for Nf = 3 + 1, we have amc ≈ 0.3 −→ Consider mass-dependent
renormalization scheme: [Andreas Risch, PhD thesis (2021)]

V a
µ,R(x) =

N2
f −1∑
b=0

Za,b(g0, aM)V b
µ (x), a = 0, . . . ,N2

f − 1

http://doi.org/10.25358/openscience-6314


Implementation



Two-point function

Renormalization condition: Choose k = 1, 2, 3 and impose for a = 3, 8, 15, 0 [Martinelli

(1994) doi:10.1016/0920-5632(94)90431-6]∑
x⃗

⟨V (con),a
k (x)V

(loc),c
k (0)⟩ !

=
∑

b=3,8,15,0

Za,b(g0, aM)
∑
x⃗

⟨V (loc),b
k (x)V

(loc),c
k (0)⟩.

at some x0 = xren.

+ no extra calculation (since related to g − 2)

– signal-to-noise problem

– improvement term contributes ⇒ O(a) ambiguity

https://doi.org/10.1016/0920-5632(94)90431-6
https://doi.org/10.1016/0920-5632(94)90431-6


Results

• A400a00b324: mπ = 400 MeV, α = 0.00, β = 3.24.

• C⋆ boundary conditions

• Nf = 3 + 1



Plots

diagonal components off-diagonal components



Plots

diagonal components off-diagonal components



Results

renormalization condition at xren = 8a

ZV (g0, aM) =


0.6813(7) 0 0 0

0 0.6813(8) 0 0
0 0 0.585(22) 0.101(28)
0 0 0.0012(35) 0.675(46)



renormalization condition at xren = 10a

ZV (g0, aM) =


0.6792(8) 0 0 0

0 0.6792(8) 0 0
0 0 0.65(16) 0.043(17)
0 0 0.14(24) 0.55(27)

 .

aHVP−LO
µ u d/s c disconnected total

xren = 8a 121.7±1.1 30.39±0.36 5.01±0.24 0.39±0.69 187.9±1.7

xren = 10a 121.3±1.4 30.34±0.54 4.4±1.5 0.34±0.62 186.7±2.4



Perturbative QCD
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Gérardin et al. (Nf = 3)
Dalla Brida et al. (Nf = 3)
Z3,3
V = ZV +O(am)

Z15,15
V = ZV +O(am)

Z0,0
V = ZVrV +O(am)

O(a) improved Wilson fermions + LW gauge

[Dalla Brida et al. arXiV:2203.14754] [Gérardin, et al., arXiv:1811.08209]

https://arxiv.org/abs/2203.14754
https://arxiv.org/abs/1811.08209


Ward identity

⟨O⟩ :=
∫

DΨDΨDU Oe−S[Ψ,Ψ,U]

is invariant under flavor transformations Ψ′(y) = e iα(y)t
a
Ψ(y) with ta ∈ u(Nf ).

〈
∂O

∂α(y)

〉
=

〈
∂S

∂α(y)
O

〉



Ward identity

For the Wilson-Dirac action and [M, ta] = 0∑
y⃗

〈
tr
[
(ta)TV

(con)
0 (y)

]
O
〉
= const for y0 ̸∈ supp(O).

Idea: Use Ward identities for conserved current V
(con)
0 and impose them to hold for

ZVV
(loc)
0 . (for Nf = 2 + 1: [Gérardin, Harris, Meyer, arXiv:1811.08209])

https://arxiv.org/abs/1811.08209


Implementation

Consider for simplicity

• QCD Wilson action

• periodic boundary conditions

• Nf = 3 massless quarks

• non-singlet renormalization constant ZV (g0)



Three-point function

Use pseudoscalar operator P(x) := u(x)γ5d(x) in Ward identity:∑
y⃗

〈
P†(x)V

(con)
0 (y)P(z)

〉
=

〈
P†(x)P(z)

〉
for y0 ∈ [z0, x0)

Renormalization condition:

ZV (g0)
∑
y⃗

〈
P(x)V

(loc)
0 (y)P(z)

〉
!
=

〈
P†(x)P(z)

〉

+ related to conserved charge

+ improvement term does not contribute ⇒ O(a) improved

– not straightforward to generalize for Nf = 3 + 1

– elaborate calculations (baryon correlator required for singlet rV (g0))

[Gérardin2018]

https://arxiv.org/abs/1811.08209


Two-point function

Susceptibility as renormalization condition:∑
x⃗

⟨V (con),3
0 (x)V

(loc),3
0 (0)⟩ !

= ZV (g0)
∑
x⃗

⟨V (loc),3
0 (x)V

(loc),3
0 (0)⟩.

+ related to conserved charge

+ improvement term does not contribute ⇒ O(a) improved

+ can be generalized to Nf = 3 + 1

– susceptibility χ ∼ T 2 = L−2
0 (in free theory) is small in the vacuum



One-point function

• finite temperature

• phase periodic boundary conditions (BC) : Ψ(x + L00̂) ∼ −e iθ0Ψ(x).

• ⟨V (con),0
0 (x)⟩ relates to derivative of free energy density and is independent of x .

Renormalization condition:

⟨V (con),0
0 ⟩ !

= ZV (g0)rV (g0) ⟨V
(loc),0
0 ⟩.

+ related to conserved charge

+ small error

– special boundary conditions/vanishes for periodic BC.

[Bresciani et al. (2022) arXiV:2203.14754]

https://arxiv.org/abs/2203.14754


Outlook

• many renormalization conditions

• mass-independent scheme not precise when charm is included.

• hard to find non-zero conserved charge with current lattices.

How to proceed?

1. brute-force increase statistics for disconnected contributions.

2. treat charm in quenched approximation [Mainz, arXiv:1904.03120]

3. generate dedicated lattices (finite temperature, phase-shifts)

https://arxiv.org/abs/1904.03120




Improvement terms

We can add operators with the same symmetry properties and higher mass dimension
to obtain an improved operator V a

µ,I(x).

V a
µ,I(x) = V a

µ (x) + acV ∂νT
a
µν(x)

with Tµν(x) =
i
2ψ(x)[γµ, γν ]t

aψ(x). We then renormalize the improved operator

V a
µ,R(x) = ZV (g0)V

a
µ,I(x).

[Bhattacharya2005] [Lüscher et al., arXiv:hep-lat/9605038]

https://arxiv.org/abs/hep-lat/0511014
https://arxiv.org/abs/hep-lat/9605038


Perturbative renormalization

L =
1

2
(∂ϕ)2 − m2

2
ϕ2 − g

3!
ϕ3

• Scalar ϕ3-theory in d = 6.
• Dimensional regularization.
• Minimal subtraction: Put divergences
in loop integral into renormalization
constants.

mR = Zmm =

(
1 +

g2

64π3
m2

d − 6
+O(g4)

)
m.

Figure: Loop correction to mass [Collins,

Renormalization (1984)]

https://www.cambridge.org/core/product/identifier/9781009401807/type/book
https://www.cambridge.org/core/product/identifier/9781009401807/type/book


Composite operators

In perturbative continuum field theory:

• After renormalizing fields, masses and
couplings, there might still be
divergent graphs for composite
operators.

• Example: Scalar ϕ3-theory in d = 6
with operator ϕ2(z).

[ϕ2]R = Za[ϕ
2] + Zbm

2ϕ+ Zc∂
2ϕ.

Figure: Lowest-order contributions to〈
ϕ(x)ϕ(y)ϕ2(z)

〉
. Cross denotes insertion of [ϕ2].

[Collins1984 (Section 6.2)]

https://www.cambridge.org/core/product/identifier/9781009401807/type/book
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