One-quark connected contributions to baryon masses

With C* boundary conditions

Sara Rosso - RC* collaboration meeting - 29.01.24

Summary

- Quark propagators with C* boundary conditions
- Baryon octet and decuplet, where to find one-quark connected contributions
- Three-quark connected contributions: current state of the measurements
- One-quark connected contributions:
- Strategy of computation
- Upper bound
- Outlook

Baryons with C* boundary conditions

Due to C* boundary conditions baryonic two-point correlation functions have additional contributions.

They can be understood looking at quark propagators in the orbifold construction

Baryons with C* boundary conditions

[1]: I. Campos et al. "openQ*D code: a versatile tool for QCD+QED simulations". In: The European Physical Journal C (Mar. 2020).

Baryons with C* boundary conditions

Quark propagators in the orbifold construction have additional contributions: (x, y belonging to the physical lattice):

$$
\begin{align*}
\left\langle\bar{q}_{a}^{A}(x)\right. & \left.\bar{q}_{b}^{B}(y)\right\rangle \tag{1}
\end{align*}=D^{-1}(x, y)_{a b}^{A B},{\left.\overline{q_{a}^{A}}(x) q_{b}^{B, T}(y)\right\rangle}=-D^{-1}(x, y+L \hat{1})_{a d}^{A B} C_{d b} .
$$

These additional contributions give additional contributions to baryon correlation functions

Baryons: octet and decuplet

Baryon decuplet

Baryon correlators

Octet

- Interpolating operators:

$$
\begin{align*}
v_{c}(x)= & \sum_{a b c} \epsilon_{A B C} \Gamma_{a b}\left[\chi_{a}^{A}(x) \eta_{b}^{B}(x) \chi_{c}^{C}(x)\right] \tag{1}\\
\bar{v}_{c}(x)= & \sum_{a b c}^{A B C} \epsilon_{A B C} \Gamma_{b a}\left[\bar{\chi}_{c}^{C}(x) \bar{\eta}_{b}^{B}(x) \bar{\chi}_{a}^{A, T}(x)\right] \tag{2}\\
& =10 C
\end{align*}
$$

- Two-point correlation function

$$
\begin{equation*}
C\left(x_{0}\right)=\sum_{\mathrm{X}} \sum_{c c^{\prime}} P_{c c^{\prime}}^{+} v^{c}(x) \bar{v}^{c^{\prime}}(0) \tag{3}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\Gamma=C \gamma^{5} \quad P^{+}=\frac{I d+\gamma^{0}}{2} \tag{4}
\end{equation*}
$$

Baryon correlators: decuplet vertices

Interpolating operators:

$$
\begin{align*}
v^{m ; d}(x) & =\sum_{a b c} W_{a b c ; A B C}^{d ; m} \psi_{c}^{C}(x) \psi_{a}^{A}(x) \psi_{b}^{B}(x) \tag{1}\\
\bar{v}^{m ; d}(x) & =\sum_{a b c} \bar{W}_{a b c ; A B C}^{d ; m} \bar{\psi}_{b}^{B}(x) \bar{\psi}_{a}^{A}(x) \bar{\psi}_{c}^{C}(x) \tag{2}
\end{align*}
$$

$$
\begin{align*}
W_{a b c ; A B C}^{d ; m} & =\epsilon^{A B C}\left[P_{d c}^{m l} \Gamma_{a b}^{l}+P_{d b}^{m l} \Gamma_{a c}^{l}+P_{d a}^{m l} \Gamma_{c b}^{l}\right] \tag{3}\\
\bar{W}_{a b c ; A B C}^{d ; m} & =\epsilon^{A B C}\left[P_{c d}^{m l} \Gamma_{a b}^{l}+P_{b d}^{m l} \Gamma_{a c}^{l}+P_{a d}^{m l} \Gamma_{c b}^{l}\right] \tag{4}
\end{align*}
$$

$$
\begin{align*}
& P^{m l}=\left[\delta^{m l} I d_{4 \times 4}-\frac{1}{3} \gamma^{m} \gamma^{l}\right] \tag{5}\\
& \Gamma^{l}=C \gamma^{l}
\end{align*}
$$

$A B C$ are colour indices, $a b c d$ are a Dirac indices and $m l$ are space indices

Baryon correlators: decuplet vertices

Two point correlation function:

$$
\begin{equation*}
C\left(x_{0}\right)=\sum_{\mathrm{x}} \sum_{\substack{d d^{\prime} \\ m}} P_{d d^{\prime}}^{+} \nu^{m ; d}(x) \overline{\bar{v}}^{m ; d^{\prime}}(0) \tag{1}
\end{equation*}
$$

$=\sum_{\mathrm{X}} \sum_{\substack{d^{\prime} d \\ m}} \sum_{\substack{a b c \\ a^{\prime} b^{\prime} c^{\prime} A^{\prime} B^{\prime} C^{\prime}}} \sum_{\substack{ \\a^{\prime}}} \bar{W}_{a b b^{\prime} ; A^{\prime} A^{\prime} B^{\prime} C^{\prime}}^{d_{d d}} P_{d d^{\prime}}^{+} W_{a b c ; A B C}^{d ; m} \psi_{c}^{C}(x) \psi_{a}^{A}(x) \psi_{b}^{B}(x) \bar{\psi}_{b^{\prime}}^{B^{\prime}}(0) \bar{\psi}_{a^{\prime}}^{A^{\prime}}(0) \bar{\psi}_{c^{\prime}}^{C^{\prime}}(0)$
$A B C$ are colour indices, $a b c d$ are a Dirac indices and $m l$ are space indices

Baryon correlators: decuplet vertices

Three-quark connected

$$
\begin{equation*}
C (x _ { 0 }) = \sum _ { \mathrm { X } } \sum _ { \substack { d ^ { \prime } d \\ m } } \sum _ { \substack { \alpha b c \\ \alpha ^ { \prime } b ^ { \prime } c ^ { \prime } A ^ { \prime } B ^ { \prime } C ^ { \prime } } } \sum _ { A B C } \overline { W } _ { a ^ { \prime } b ^ { \prime } c ^ { \prime } ; A ^ { \prime } B ^ { \prime } C ^ { \prime } } ^ { d ^ { \prime } ; m } P _ { d d ^ { \prime } } ^ { + } W _ { a b c ; A B C } ^ { d ; m } \overline { \psi } _ { a } ^ { A } (x) \overline { \psi } _ { a ^ { \prime } } ^ { A ^ { \prime } } (0) \longdiv { \psi _ { b } ^ { B } (x) } \overline { \psi } _ { b ^ { \prime } } ^ { B ^ { \prime } } (0) \psi _ { c } ^ { C } (x) \overline { \psi } _ { c ^ { \prime } } ^ { C ^ { \prime } } (0) \tag{1}
\end{equation*}
$$

$A B C$ are colour indices, $a b c d$ are a Dirac indices and $m l$ are space indices

Baryon correlators: decuplet vertices

Three-quark connected

Ensemble	N. configurations	N. point sources/12
A500a50b324	1993	4
A360a50b324+RW2	2001	4
A380a07b324	2000	8
A380a07b324+RW1	2000	8
A450a07b324	2000	8

Baryon correlators: decuplet vertices

Three-quark connected

Baryon effective masses for the ensemble A380a07b324+RW1, with the selected plateaux and the fits to a constant.
[2]: L. Bushnaq et al. "First results on QCD+QED with C^{*} boundary conditions". In Journal of high energy physics (Mar. 2023)

Baryon correlators: decuplet vertices

Three-quark connected

Baryon effective masses for the ensemble A360a50b324+RW2, with the selected plateaux and the fits to a constant.
[2]: L. Bushnaq et al. "First results on QCD+QED with C^{*} boundary conditions". In Journal of high energy physics (Mar. 2023)

Baryon correlators: decuplet vertices

One-quark connected

Baryon correlators: decuplet vertices

 One-quark connected

Baryon correlators: decuplet vertices

One-quark connected

We can rewrite the two point correlation function as

$$
\begin{equation*}
C\left(x_{0}\right)=-\sum_{\mathrm{X}} \sum_{\alpha b c} \sum_{A B C} T_{\alpha^{\prime} b^{\prime} c^{\prime}, \alpha b c}^{A^{\prime} B^{\prime} C^{\prime}, A B C} D^{-1}(L \hat{1}, 0)_{\alpha^{\prime} b^{\prime}}^{A^{\prime} b^{\prime} c^{\prime} A^{\prime} A^{\prime} B^{\prime} C^{\prime}}, D^{-1}(x, 0)_{c c^{\prime}}^{C C^{\prime}} D^{-1}(x, x+L \hat{1})_{b \alpha}^{B A} \tag{2}
\end{equation*}
$$

L is the extension of the physical lattice in the first C^{*} direction

One-quark connected contributions

Strategy of computation

We can rewrite $C\left(x_{0}\right)$ using one point source located at $(0, \overline{0})$ for each colour and Dirac index:

$$
\begin{equation*}
\eta(z)_{V v}^{(A \alpha)}=\delta_{V A} \delta_{v \alpha} \delta_{0, z} \tag{1}
\end{equation*}
$$

Instead of the two inverses of the Dirac operator with the second point in 0 we can then place the two spinors ψ resulting from the inversions

$$
\begin{equation*}
C\left(x_{0}\right)=-\sum_{\mathrm{X}} \sum_{\alpha b c} \sum_{A B C} T_{\alpha^{\prime} b^{\prime} c^{\prime}, \alpha b c}^{A^{\prime} B^{\prime} C^{\prime}, A B C} \psi(L \hat{1})_{A^{\prime} \alpha^{\prime}}^{\left(B^{\prime} b^{\prime}\right)} \psi(x)_{C c}^{\left(C^{\prime} c^{\prime}\right)} D^{-1}(x, x+L \hat{1})_{b \alpha}^{B A} \tag{2}
\end{equation*}
$$

One-quark connected contributions

Strategy of computation

For the last inversion we can use stochastic sources $\chi^{(n)}$ and in particular the relation:

$$
\begin{equation*}
\frac{1}{N_{s}} \sum_{n} \chi(x)_{a}^{(n) \dagger A} \chi(y)_{b}^{(n) B}=\delta_{A B} \delta_{a b} \delta_{x y} \tag{1}
\end{equation*}
$$

To get:

$$
\begin{equation*}
D^{-1}(x ; x+L \hat{1})_{\alpha b}^{A B}=\frac{1}{N_{s}} \sum_{n}\left[D^{-1} \chi^{(n)}\right]_{\alpha}^{A}(x) \chi^{\dagger(n)}(x+L \hat{1})_{b}^{B} \tag{2}
\end{equation*}
$$

One-quark connected contributions

Strategy of computation

Finally we have:

One-quark connected contributions

Upper bound

Using the following definition of the norm of a matrix: $\quad\|M\|=\sqrt{\operatorname{Tr}\left[M^{\dagger} M\right]}$
That for the Dirac operator translates to the Π two-point correlation function

$$
\begin{equation*}
\left\|D^{-1}(x, y)\right\| \|^{2}=\operatorname{Tr}\left[D^{-1}(x, y)^{\dagger} D^{-1}(x, y)\right]=\operatorname{Tr}\left[\gamma^{5} D^{-1}(y, x) \gamma^{5} D^{-1}(x, y)\right] \tag{2}
\end{equation*}
$$

It is observed that not only on average but also separately on each configuration it is translationally invariant and has the behaviour:

$$
\begin{equation*}
C(x, y) \propto e^{-M_{\pi}|y-x|} \tag{3}
\end{equation*}
$$

One-quark connected contributions

Upper bound

We can use translational invariance:

$$
\begin{equation*}
\left\|D^{-1}(0, L \hat{1})\right\|=\left\|D^{-1}(x, x+L \hat{1})\right\| \tag{1}
\end{equation*}
$$

Then factorize the suppressing factors and obtain the upper bound.

$$
\begin{equation*}
\left|C\left(x_{0}\right)\right| \leq\left\|D^{-1}(0, L \hat{1})\left|\|^{2} \sum_{\mathrm{x}}\right|\left|D^{-1}(x, 0)\right| \mid \sqrt{\sum_{A B ; \alpha b} \sum_{B^{\prime} A^{\prime} ; \alpha^{\prime} b^{\prime}} \sum_{C C^{\prime} ; c c^{\prime}}\left|T_{\alpha^{\prime} b^{\prime} c^{\prime}, \alpha b c}^{A^{\prime} B^{\prime} C^{\prime}, A B C}\right|^{2}}\right. \tag{2}
\end{equation*}
$$

We can compare it with the measurements of the three-quark connected contributions

One-quark connected contributions

Upper bound of the onequark connected contribution to the Ω^{-} correlator in comparison with the result for the threequark connected piece for the ensemble A380a07b324

Outlook

- Other ways to compute upper bound
- Computation of the one-quark connected contributions
- Increase the statistics on three-quark connected contributions.

Pion correlator with C* boundary conditions

Two point correlation function of the down/strange quark (degenerate) on the ensemble A380a07b324 for 38 configurations (taken every 50 updates) as a function of the first spatial coordinate

One-quark connected contributions

Upper bound

Upper bound of the onequark connected contribution to the Ω^{-} correlator for the coefficient equal to 1 in comparison with the result for the threequark connected piece for the ensemble A380a07b324

