One-quark connected contributions to baryon masses With C* boundary conditions

Sara Rosso - RC* collaboration meeting - 29.01.24

Summary

- Quark propagators with C* boundary conditions
- Baryon octet and decuplet, where to find one-quark connected contributions
- Three-quark connected contributions: current state of the measurements
- One-quark connected contributions:
 - Strategy of computation
 - Upper bound

Outlook

Baryons with C* boundary conditions

Due to C* boundary conditions baryonic two-point correlation functions have additional contributions.

They can be understood looking at quark propagators in the orbifold construction

Baryons with C* boundary conditions

The European Physical Journal C (Mar. 2020).

[1]: I. Campos et al. "openQ*D code: a versatile tool for QCD+QED simulations". In:

Baryons with C* boundary conditions

Quark propagators in the orbifold construction have additional contributions: (x, y belonging to the physical lattice):

 $\langle q_a^{\dagger}(x) \ \overline{q}_b^{\dagger}(y) \rangle = D^{-1}(x)$

 $\langle q_a^A(x)q_b^{B,T}(y)\rangle = -D$

 $\langle \overline{q}_{a}^{A,T}(x)\overline{q}_{b}^{B}(y)\rangle = C_{ad}D$

These additional contributions give additional contributions to baryon correlation functions

$$(x, y)_{ab}^{AB}$$
(1)
$$^{-1}(x, y + L\hat{1})_{ad}^{AB}C_{db}$$
(2)
$$^{-1}(x, y + L\hat{1})_{ad}^{AB}C_{db}$$
(2)

$$J^{-1}(x + L1, y)_{db}^{AB}$$
 (3)

Baryons: octet and decuplet

Baryon decuplet

Baryon correlators Octet

Interpolating operators:

Two-point correlation function:

Vhere:
$$\Gamma = C\gamma^5$$
 $P^+ = \frac{Id + \gamma^0}{2}$

$$v_{c}(x) = \sum_{abc} \epsilon_{ABC} \Gamma_{ab} [\chi_{a}^{A}(x)\eta_{b}^{B}(x)\chi_{c}^{C}(x)] \qquad (1)$$

$$\overline{v}_{c}(x) = \sum_{abc} \epsilon_{ABC} \Gamma_{ba} [\overline{\chi}_{c}^{C}(x)\overline{\eta}_{b}^{B}(x)\overline{\chi}_{a}^{A,T}(x)] \qquad (2)$$

$$C(x_{0}) = \sum_{abc} \sum_{cc'} P_{cc'}^{+} v^{c}(x)\overline{v}^{c'}(0) \qquad (3)$$

(4)

 \mathbf{X} cc'

2)

Baryon correlators: decuplet vertices

Interpolating operators:

$$v^{m;d}(x) = \sum_{abc} W^{d;m}_{abc;ABC} \psi^C_c(x) \psi^A_a(x) \psi^B_b(x) \quad (1)$$

$$\overline{v}^{m;d}(x) = \sum_{\substack{ABC\\ abc}} \overline{W}^{d;m}_{abc;ABC} \overline{\psi}^B_b(x) \overline{\psi}^A_a(x) \overline{\psi}^C_c(x) \quad (2)$$

$$W_{abc;ABC}^{d;m} = \epsilon^{ABC} \left[P_{dc}^{ml} \Gamma_{ab}^{l} + P_{db}^{ml} \Gamma_{ac}^{l} + P_{da}^{ml} \Gamma_{cb}^{l} \right]$$
(3)

$$\overline{W}_{abc;ABC}^{d;m} = \epsilon^{ABC} \left[P_{cd}^{ml} \Gamma_{ab}^{l} + P_{bd}^{ml} \Gamma_{ac}^{l} + P_{ad}^{ml} \Gamma_{cb}^{l} \right]$$
(4)

$$P^{ml} = \left[\delta^{ml} I d_{4\times 4} - \frac{1}{3} \gamma^{m} \gamma^{l} \right]$$
(5)

A B C are colour indices, a b c d are a Dirac indices and m l are space indices

Baryon correlators: decuplet vertices

Two point correlation function:

A B C are colour indices, a b c d are a Dirac indices and m l are space indices

 $\left| \begin{array}{c} C(x_0) = \sum_{\mathbf{X}} \sum_{dd'} P^+_{dd'} v^{m;d}(x) \overline{v}^{m;d'}(0) \right| \quad (1)$

$= \sum' \sum' \sum' \overline{W}_{a'b'c':A'B'C'}^{d';m} P_{dd'}^{+} W_{abc:ABC}^{d;m} \psi_{c}^{C}(x) \psi_{a}^{A}(x) \psi_{b}^{B}(x) \overline{\psi}_{b'}^{B'}(0) \overline{\psi}_{a'}^{A'}(0) \overline{\psi}_{c'}^{C'}(0) \quad (2)$

Baryon correlators: decuplet vertices Three-quark connected

ABC are colour indices, a b c d are a Dirac indices and m l are space indices

 $C(x_{0}) = \sum \sum \sum \overline{W} \sum \overline{W}_{a'b'c';A'B'C'}^{d';m} P_{dd'}^{+} W_{abc;ABC}^{d;m} \psi_{a}^{+}(x) \overline{\psi}_{a'}^{A'}(0) \psi_{b}^{B}(x) \overline{\psi}_{b'}^{B'}(0) \psi_{c}^{+}(x) \overline{\psi}_{c'}^{C'}(0) \quad (1)$

Baryon correlators: decuplet vertices Three-quark connected

Ensemble	N. configurations	N. point sources/12
A500a50b324	1993	4
A360a50b324+RW2	2001	4
A380a07b324	2000	8
A380a07b324+RW1	2000	8
A450a07b324	2000	8

Baryon correlators: decuplet vertices

Three-quark connected

Baryon effective masses for the ensemble A380a07b324+RW1, with the selected plateaux and the fits to a constant.

[2]: L. Bushnaq et al. "First results on QCD+QED with C* boundary conditions". In Journal of high energy physics (Mar. 2023)

Baryon correlators: decuplet vertices Three-quark connected

Baryon effective masses for the ensemble A360a50b324+RW2, with the selected plateaux and the fits to a constant.

[2]: L. Bushnaq et al. "First results on QCD+QED with C* boundary conditions". In Journal of high energy physics (Mar. <u>2023)</u>

Baryon correlators: decuplet vertices One-quark connected

X $d'd \alpha bc ABC$ $m \alpha' b' c' A' B' C'$

 $C(x_0) = -\sum \sum \sum \overline{W} \sum \overline{W}_{a'b'c':A'B'C'}^{d';m} P_{dd'}^+ W_{abc:ABC}^{d;m} \overline{\psi}_{a'}^{A'}(0) \overline{\psi}_{b'}^B(0) \psi_c^C(x) \overline{\psi}_{c'}^C(0) \psi_b^B(x) \psi_a^A(x)$ (1)

Baryon correlators: decuplet vertices One-quark connected

Baryon correlators: decuplet vertices One-quark connected

 \mathcal{M}

We can rewrite the two point correlation function as

 $C(x_0) = -\sum \sum T_{\alpha'b'c',\alpha bc}^{A'B'C',ABC} D^{-1}$ **X** αbc ABC $\alpha'b'c'A'B'C'$

L is the extension of the physical lattice in the first C^{*} direction

Defining the tensor: $T^{A'B'C',ABC}_{\alpha'b'c',\alpha bc} = \sum \overline{W}^{d';m}_{a'b'c';A'B'C'} P^+_{dd'} W^{d;m}_{abc;ABC} C_{a'\alpha'} C_{\alpha a}$ (1)

$${}^{1}(L\hat{1},0)^{A'B'}_{\alpha'b'}D^{-1}(x,0)^{CC'}_{cc'}D^{-1}(x,x+L\hat{1})^{BA}_{b\alpha}$$
(2)

One-quark connected contributions Strategy of computation

Dirac index:

 $\eta(z)_{V_{\mathcal{V}}}^{(A\alpha)} =$

can then place the two spinors ψ resulting from the inversions

$$C(x_{0}) = -\sum_{\mathsf{X}} \sum_{\substack{abc \\ a'b'c' A'B'C'}} \sum_{\substack{ABC \\ a'b'c' A'B'C'}} T^{A'B'C',ABC}_{a'b'c',abc} \psi(L\hat{1})^{(B'b')}_{A'a'} \psi(x)^{(C'c')}_{Cc} D^{-1}(x, x + L\hat{1})^{BA}_{ba}$$
(2)

We can rewrite $C(x_0)$ using one point source located at $(0,\overline{0})$ for each colour and

$$\delta_{VA}\delta_{v\alpha}\delta_{0,z}$$
 (1)

Instead of the two inverses of the Dirac operator with the second point in 0 we

One-quark connected contributions Strategy of computation

relation:

To get:

 $D^{-1}(x; x + L\hat{1})^{AB}_{\alpha b} = \frac{1}{N_s} \sum \left[D^{-1} \chi^{(n)} \right]^A_{\alpha}(x) \ \chi^{\dagger(n)}(x + L\hat{1})^B_b \quad (2)$

For the last inversion we can use stochastic sources $\chi^{(n)}$ and in particular the

 $\frac{1}{N_{c}} \sum \chi(x)_{a}^{(n)\dagger A} \chi(y)_{b}^{(n)B} = \delta_{AB} \delta_{ab} \delta_{xy} \qquad (1)$

One-quark connected contributions Strategy of computation

Finally we have:

 $C(x_0) = -\sum \sum T_{a'b'c',abc}^{A'B'C',ABC} \psi(L\hat{1})_{A'a}^{(B'D)}$ \mathbf{X} abc ABC a'b'c'A'B'C'

$$\psi^{(b')}_{a'}\psi^{(x)}_{Cc} \frac{1}{N_s} \sum_{n} \left[D^{-1}\chi^{(n)} \right] (x)^A_a \ \chi^{\dagger(n)} (x+L\hat{1})^B_b$$

One-quark connected contributions Upper bound

$$||D^{-1}(x,y)||^{2} = Tr\left[D^{-1}(x,y)^{\dagger}D^{-1}(x,y)\right] = Tr\left[\gamma^{5}D^{-1}(y,x)\gamma^{5}D^{-1}(x,y)\right]$$

It is observed that not only on average but also separately on each configuration it is translationally invariant and has the behaviour:

 $C(x, y) \propto$

- Using the following definition of the norm of a matrix: $||M|| = \sqrt{Tr[M^{\dagger}M]}$ (1)
- That for the Dirac operator translates to the Π two-point correlation function

$$e^{-M_{\pi}|y-x|} \qquad (3)$$

One-quark connected contributions Upper bound

- We can use translational invariance: $||D^{-1}(0,L\hat{1})|| =$
- Then factorize the suppressing factors and obtain the upper bound.

$$|C(x_{0})| \leq ||D^{-1}(0,L\hat{1})||^{2} \sum_{\mathbf{X}} ||D^{-1}(x,0)|| \sqrt{\sum_{AB;\alpha b} \sum_{B'A';\alpha' b'} \sum_{CC';cc'} |T^{A'B'C',ABC}_{\alpha' b' c',\alpha bc}|^{2}}$$
(2)

We can compare it with the measurements of the three-quark connected contributions

$$= ||D^{-1}(x, x + L\hat{1})|| \qquad (1)$$

One-quark connected contributions

Upper bound of the onequark connected contribution to the Ω^- correlator in comparison with the result for the threequark connected piece for the ensemble A380a07b324

Outlook

- <u>Other ways</u> to compute upper bound
- Computation of the one-quark connected contributions
- Increase the statistics on three-quark connected contributions.

Pion correlator with C* boundary conditions

Two point correlation function of the down/strange quark (degenerate) on the ensemble A380a07b324 for 38 configurations (taken every 50 updates) as a function of the first spatial coordinate

V	
	+ +++++++++++++++++++++++++++++++++++++
40	+ + + + + + + + + + + + + + + + + + + +
	+ ++ ++ #8#####+#+++
50	
	++19804448++ +
60	
	+ +++++++++++++++++++++++++++++++++++++
	L - 22 - 33 - 35 - 35 - 35 - 35 - 35 - 35
	* * * * * * * * * * * * * * * * * * * *
ב 70	

X₁

One-quark connected contributions

Upper bound of the onequark connected contribution to the Ω^- correlator for the coefficient equal to 1 in comparison with the result for the threequark connected piece for the ensemble A380a07b324

