Collaboration meeting at Zurich ETH

January 29, 2024

Alessandro De Santis

Tuning QCD+QED ensembles via reweighting

Introduction

From First results on QCD+QED with C^* boundary conditions, JHEP 03 (2023) 012

ensemble	lattice	β	α	κ_u	$\kappa_d = \kappa_s$	κ_c
A400a00b324	64×32^3	3.24	0	0.13440733	0.13440733	0.12784
B400a00b324	80×48^3	3.24	0	0.13440733	0.13440733	0.12784
A450a07b324	64×32^3	3.24	0.007299	0.13454999	0.13441323	0.12798662
A380a07b324	64×32^3	3.24	0.007299	0.13459164	0.13444333	0.12806355
A500a50b324	64×32^3	3.24	0.05	0.135479	0.134524	0.12965
A360a50b324	64×32^3	3.24	0.05	0.135560	0.134617	0.129583
C380a50b324	96×48^3	3.24	0.05	0.1355368	0.134596	0.12959326

$N_f = 1 + 2 + 1$	QCD+QED ensembles with C [*]	⁶ boundary conditions
-------------------	---------------------------------------	----------------------------------

Tuned according to the following scheme

$$\begin{split} \phi_0^{\text{phys}} &= 8t_0 \left(M_{K_{\pm}}^2 - M_{\pi_{\pm}}^2 \right) = 0.992 & \phi_0 = 0 \quad \rightarrow \quad m_d = m_s \\ \phi_1^{\text{phys}} &= 8t_0 \left(M_{\pi_{\pm}}^2 + M_{K_{\pm}}^2 + M_{K_0}^2 \right) = 2.26 & \phi_1 = 2.11 \\ \phi_2^{\text{phys}} &= 8t_0 \left(M_{K_0}^2 - M_{K_{\pm}}^2 \right) \alpha_{\text{R}}^{-1} = 2.36 & \phi_2 = 2.36 \\ \phi_3^{\text{phys}} &= \sqrt{8t_0} \left(M_{D_{\pm}^{\pm}}^2 + M_{D_0} + M_{D_{\pm}} \right) = 12.0 & \phi_3 = 12.1 \end{split}$$

Goal

- ▷ Use **reweighting factors to tune** ϕ_0 close to the physical value while keeping fixed $\phi_{1,2,3}$
- Reweighting factors allow to recycle simulated configurations to calculate the path integral wrt a different target probability distribution

$$\langle \mathcal{O} \rangle_{\text{target}} = \frac{\langle \mathcal{O} W \rangle_{\text{sim}}}{\langle W \rangle_{\text{sim}}} \qquad \qquad W \sim \frac{\rho_{\text{target}}(U)}{\rho_{\text{sim}}(U)}$$

price: noise

Outline of the strategy

 $\triangleright~$ Choose a new set of bare masses $\vec{\kappa}_{guess} \neq \vec{\kappa}_{sim}$

$$\kappa = \frac{1}{2(m+4)}$$

- $\triangleright~$ Consider $\vec{\kappa}_{\rm sim}$ + 4 new sets by shifting one flavour at a time
- ▷ Use linear interpolation to get $\vec{\kappa}_{\text{interp}}$ for ϕ_0^{target}
- \triangleright Compute the reweighting factors for $\vec{\kappa}_{interp}$

Imagine this in 5 dimensions!

flavour f	$\kappa_{ m sim}$	$\kappa_{ m guess}$	$m_{ m sim}$	$m_{\rm guess}$	δm
u	0.13459164	0.13464294	-0.28505901	-0.286474434	-0.001415424
d	0.13444333	0.13454895	-0.28096090	-0.283880328	-0.002919428
s	0.13444333	0.13428372	-0.28096090	-0.276540447	0.004420453
c	0.12806355	0.12801713	-0.09568842	-0.094273001	0.001415419

RHMC

The probability distribution generated in a HMC simulation reads

$$\rho_{\rm sim}(U) \sim \mathrm{d}U e^{-S_g[U]} |\mathrm{det}(\hat{D})|^{2\alpha} \qquad \qquad \hat{D} = D_{ee} - D_{eo} D_{oo}^{-1} D_{oe}$$

Better work with the γ_5 -hermitian operator $\hat{Q} = \gamma_5 \hat{D}$

 $|\det(\hat{D})|^{2\alpha} = \det(\hat{Q}^2)^{\alpha} \qquad \qquad \hat{Q}^2 = \hat{D}^{\dagger}\hat{D}$

RHMC

In Rational HMC $(\hat{Q}^2)^{\alpha}$ is replaced by a rational approximation $R_{\alpha}(x) \sim x^{-\alpha}$

 $|\det(\hat{D})|^{2\alpha} = \det(\hat{Q}^2)^{\alpha} = \det\left[(\hat{Q}^2)^{\alpha} R_{\alpha}(\hat{Q}^2)\right] \det\left[R_{\alpha}(\hat{Q}^2)^{-1}\right]$

and the distribution actually simulated is

 $\rho_{\rm sim}^{\rm RHMC}(U) \sim \mathrm{d}U e^{-S_g[U]} \mathrm{det} \left[R_{\alpha} (\hat{Q}^2)^{-1} \right]$

 $W_{\rm rat} \equiv \det \left[(\hat{Q}^2)^{\alpha} R_{\alpha} (\hat{Q}^2) \right]$ is a correction to the rational approximation \rightarrow reweighting factor

In $N_f = 1 + 2 + 1$ ensemble

$$\rho_{\rm sim}^{\rm RHMC}(U) \sim e^{-S_g[U]} \det \left[R_{\frac{1}{4}}(\hat{Q}_u^2)^{-1} \right] \cdot \det \left[R_{\frac{1}{2}}(\hat{Q}_{ds}^2)^{-1} \right] \cdot \det \left[R_{\frac{1}{4}}(\hat{Q}_c^2)^{-1} \right]$$

Mass reweighting factors: shift one non-degenerate flavour (f = u, c) $\alpha = \frac{1}{4}$

$$\rho_{\rm sim}(U) \sim e^{-S_g[U]} \det \left[R_{\frac{1}{4}} (\hat{Q}_f^2)^{-1} \right] \qquad \qquad \rho_{\rm target}(U) \sim e^{-S_g[U]} \det \left[(\hat{Q}_{f'}^2)^{\frac{1}{4}} \right]$$

Assuming the same rational approximation for the new mass

$$W_{\text{MSRW}}^{f \to f'} = \frac{\rho_{\text{target}}}{\rho_{\text{sim}}} = \frac{\det\left[(\hat{Q}_{f'}^{2})^{\frac{1}{4}}\right]}{\det\left[R_{\frac{1}{4}}(\hat{Q}_{f}^{2})^{-1}\right]} \cdot \frac{\det\left[R_{\frac{1}{4}}(\hat{Q}_{f'}^{2})\right]}{\det\left[R_{\frac{1}{4}}(\hat{Q}_{f'}^{2})\right]} = \underbrace{\det\left[(\hat{Q}_{f'}^{2})^{\frac{1}{4}}R_{\frac{1}{4}}(\hat{Q}_{f'}^{2})\right]}_{W_{\text{rat}}^{f'}} \cdot \underbrace{\frac{\det\left[R_{\frac{1}{4}}(\hat{Q}_{f}^{2})\right]}{\det\left[R_{\frac{1}{4}}(\hat{Q}_{f'}^{2})\right]}}_{W_{Q_{f} \to Q_{f'}}}$$

Shift two degenerate flavours $(ds \rightarrow d's')$

$$\rho_{\rm sim}(U) \sim e^{-S_g[U]} \det \left[R_{\frac{1}{2}}(\hat{Q}_{ds}^2)^{-1} \right] \qquad \qquad \rho_{\rm target}(U) \sim e^{-S_g[U]} \det \left[(\hat{Q}_{d'}^2)^{\frac{1}{4}} \right] \det \left[(\hat{Q}_{s'}^2)^{\frac{1}{4}} \right]$$

In this case we need an extra factor to compensate for the mismatch in the power of the rational approximations

$$W = \frac{\rho_{\text{target}}}{\rho_{\text{sim}}} = W_{\text{MSRW}}^{ds \to d'} \cdot W_{\text{MSRW}}^{ds \to s'} \cdot \underbrace{\frac{\det \left[R_{\frac{1}{2}}(\hat{Q}_{ds}^2)^{-1}\right]}{\det \left[R_{\frac{1}{4}}(\hat{Q}_{ds}^2)^2\right]}}_{W_{\text{SPLIT}}}$$

Shift one of the two degenerate flavours ($ds \rightarrow d's$ or $ds \rightarrow ds'$)

$$\rho_{\rm sim}(U) \sim e^{-S_g[U]} \det \left[R_{\frac{1}{2}} (\hat{Q}_{ds}^2)^{-1} \right] \qquad \qquad \rho_{\rm target}(U) \sim e^{-S_g[U]} \det \left[(\hat{Q}_{d'}^2)^{\frac{1}{4}} \right] \det \left[(\hat{Q}_{ds}^2)^{\frac{1}{4}} \right]$$

We need an extra correction to the rational approximation of power $\frac{1}{4}$

$$W = \frac{\rho_{\text{target}}}{\rho_{\text{sim}}} = W_{\text{MSRW}}^{ds \to d'} \cdot W_{\text{SPLIT}} \cdot \underbrace{\det\left[(\hat{Q}_{ds}^2)^{\frac{1}{4}} R_{\frac{1}{4}} (\hat{Q}_{ds}^2) \right]}_{W_{\text{rat}}^{ds}}$$

Codes

- Reweighting factors openQxD-devel/18-msrw/extras/msrw rw2.c
- ▷ Correction to rational approximations main/ms1.c or rw2.c
- Rational approximations minmax/minmax.c
- ▷ Meson correlators main/ms6.c

Analysis

- $\triangleright~$ Due to exceptional configurations only computation up to $\phi_0^{\rm target}\simeq 0.9~{\rm successful}$
- ▷ The analysis is done with the **JQxDAnalysis** (Gitlab) routines implementing the gamma method for the error propagation
- ▷ All the reweighting factors are calculated and included
- Universal approximation of Finite Volume Corrections subtracted to charged mesons

Results: ϕ 's (from meson masses)

ϕ_0 target	α_R	ϕ_0	ϕ_1	ϕ_2	ϕ_3
0.000	0.007091(28)	-0.004738(96)	2.111(49)	1.55(23)	12.079(51)
0.110	0.007101(31)	0.1003(54)	2.146(52)	0.95(69)	12.089(54)
0.220	0.007135(45)	0.2056(42)	2.170(79)	0.66(38)	12.120(86)
0.331	0.007147(44)	0.306(11)	2.22(11)	0.43(45)	12.12(13)
0.441	0.00724(10)	0.442(31)	2.15(13)	0.3(2.5)	12.09(12)
0.551	0.007088(58)	0.539(18)	2.14(19)	-0.4(1.2)	12.07(16)
0.661	0.007084(66)	0.654(23)	2.11(21)	0.42(71)	12.00(15)
0.772	0.007066(59)	0.766(29)	2.11(18)	0.45(92)	11.95(15)
0.882	0.007041(42)	0.896(18)	2.13(14)	0.24(99)	11.89(13)

- $\triangleright \phi_0$ close to target value
- $\triangleright \phi_1$ and ϕ_3 roughly constant

$$\triangleright \ \phi_2 = 8t_0 \left(M_{K_0}^2 - M_{K_{\pm}}^2 \right) \alpha_{\rm R}^{-1} \text{ unstable and far from } 2.36$$

▷ Strong sensitivity to the effective mass

Results: light mesons masses

Results: heavy mesons masses

Discussion and outlooks

- ▷ Is the level of precision satisfactory?
- ▶ How can we do better?
- ▷ What's next?

Backup slides

Computational cost

Simulation cost for 4096 cores on HLRN. In each row the reweighting factors include four mass reweighting factors and one splitting factor. Second and third columns refer to the average number of seconds per configuration.

ϕ_0 target	Rew. factors	Mesons	config.	
0.000	362	59.6	2000	1 #!/bin/bash
0.110	366	68.0	2000	2 #SBATCH -t 12:00:00
0.220	355	55.2	2000	3 #SBATCH -n 4096 -N 43
0.331	344	70.3	2000	4 #SBATCH -p standard96
0.441	369	64.1	2000	5 #SBATCH - A bep00102
0.551	377	68.5	2000	
0.661	361	72.4	2000	
0.772	368	72.8	2000	
0.882	400	69.3	1934	
Core-hours	$\sim 7.5 M$	$\sim 1.36 M$		

Results: pseudoscalar mesons masses

	$M_{\pi\pm}$	$M_{K\pm}$	M_{K_0}	$M_{D_{\pm}}$	M_{D_0}
ϕ_0 target	[MeV]	[MeV]	[MeV]	[MeV]	[MeV]
0.000	398.7(4.5)	397.4(4.5)	400.5(4.9)	1916.2(8.5)	1911.7(7.6)
0.110	382.3(4.8)	410.9(4.9)	412.7(4.9)	1913.7(8.8)	1910.5(8.8)
0.220	363.6(7.8)	422.7(7.3)	424.0(7.3)	1916(14)	1912(16)
0.331	347(12)	435.8(9.3)	436.6(9.0)	1915(23)	1906(25)
0.441	308(16)	441(11)	442(15)	1908(20)	1897(31)
0.551	283(28)	449(15)	449(16)	1902(24)	1892(43)
0.661	245(38)	456(15)	457(17)	1898(29)	1871(41)
0.772	207(41)	465(12)	466(13)	1887(28)	1856(39)
0.882	158(40)	477.0(9.3)	477(11)	1873(27)	1838(35)

Results: difference in pseudoscalar meson masses

Interpolated hopping parameters

ϕ_0 target	$\kappa_u^{ m interp}$	$\kappa_d^{ m interp}$	$\kappa_s^{ m interp}$	$\kappa_c^{ m interp}$	config.
0.000	0.134578	0.134436	0.134438	0.128090	2000
0.110	0.134592	0.134452	0.134399	0.128126	2000
0.220	0.134606	0.134469	0.134359	0.128162	2000
0.331	0.134618	0.134485	0.134320	0.128199	2000
0.441	0.134633	0.134502	0.134281	0.128238	2000
0.551	0.134647	0.134517	0.134242	0.128271	2000
0.661	0.134662	0.134535	0.134202	0.128304	2000
0.772	0.134677	0.134550	0.134163	0.128337	2000
0.882	0.134691	0.134568	0.134123	0.128370	1934
0.992	0.134706	0.134582	0.134085	0.128403	0