

Profile of a compuntion

Before anything let's start by defining what is the problem we are facing. We can split the whole computation in few key steps :
Generation Simplification \Rightarrow Computation $>$ Assamble

Define the problem:

- Model we want to study
- Level of precision (e.g. \# of loops, \# of final states)
- Use Feynman rules (UFO: link)

Generation of all diagrams:

- FeynArt (link)
- QGraf (link)
- MadGraph (link)
- many more...

Cast into topologies:

- Contract external indices to obtain scalar integrals
- Tensor reduction with projectors
- Define container topologies of linearly idependent propagators

Reduce number of integrals:

- Collect by symmetry/algebra factors to resolve cancellation early on
- Use Integration by Part (IBP) identities
- Reduce to master integrals (e.g. FIRE, Kira, ...)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \\
& \quad=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
\end{aligned}
$$

Look up for known masters:

- Loopedia

Compute the master integrals

- Create system of DEs
- Obtain expressions for boundary conditions
- Solve analytically/numerically

Combine all the final expressions together in order to produce prediction for physical observables

Profile of a compuntion

Before anything let's start by defining what is the problem we are facing. We can split the whole computation in few key steps :
Generation Simplification $>$ Assamble Computation $>$ A

Define the problem:

- Model we want to study
- Level of precision (e.g. \# of loops, \# of final states)
- Use Feynman rules (UFO: link)

Generation of all diagrams:

- FeynArt (link)
- QGraf (link)
- MadGraph (link)
- many more...

Cast into topologies:

- Contract external indices to obtain scalar integrals
- Tensor reduction with projectors
- Define container topologies of linearly idependent propagators

Reduce number of integrals:

- Collect by symmetry/algebra factors to resolve cancellation early on
- Use Integration by Part (IBP) identities
- Reduce to master integrals (e.g. FIRE, Kira, ...)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \\
& \quad=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
\end{aligned}
$$

Look up for known masters:

- Loopedia

Compute the master integrals

- Create system of DEs
- Obtain expressions for boundary conditions
- Solve analytically/numerically

Combine all the final expressions together in order to produce prediction for physical observables

PEFFNNG A TOPOLOCGY

A general Feynman integral doesn't need to be scalar or have linearly independent propagators

$$
\int\left[\prod_{i}^{\#} \frac{\prod^{\#} \text { of loops }}{d^{D} k_{i}}(2 \pi)^{D}\right] \frac{[\text { Color }]^{a, b} \cdot[\text { Spinor }]^{\mu \nu}}{\text { \# of propagators }}\left(\left(\sum_{j}^{\# \text { of loops }} a_{i j} k_{i}+\sum_{j}^{\# \text { of externals }} b_{i j} D_{i}\right)^{2}+m_{j}^{2}\right)
$$

To set our machinery into motion we need scalar integrals

- Cross section with average/sum over external polarization will result in fully contracted indices
- We can isolate color factors outside of the integrand
- Open Lorentz indices can either be contracted with a projection or use tensor reduction to write the tensor structure using only loop-independent elements.

A topology is defined as

$$
I_{\nu_{1}, \ldots, \nu_{n}}=\int \mathrm{d}^{D} k_{i} \frac{1}{D_{1}^{\nu^{1}} \ldots D_{n}^{\nu_{n}}}
$$

- $\left\{D_{i}\right\}$ are a set of linearly idependent propagators
$\Rightarrow D_{i}$ can be any linear function of $k_{i} \cdot k_{j}$ and $k_{i} \cdot p_{j}$
\rightarrow The topology is complete in the sense that any scalar product involving loop momenta can be written as

$$
k_{i} \cdot v=\sum_{i} c_{i} D_{i}+(\text { scalars })
$$

RENUGTUNTO MASTERINTESDAIS

reduction

- One of the standard tools to be used to resize the magnitude of the problem is to identify, by means of Integration By Part (IBP) identities, a set of Master integrals to span the space of the scalar integrals that appear in the computation:
\downarrow Within each topology we perform a reduction to master integrals :

Δc_{i} : Coefficient that depends on the external kinematics together with the dimensional regulator ϵ.

Rational Functions

M_{i} : Master integrals (i.e. scalar integrals) that depend on the external kinematics together with the dimensional regulator.

> Special Functions (Multiple Polylogarithms, Elliptic Functions, ...)

There are many publicly available programs that perform reductions to master integrals (AIR, FIRE, Reduze, Kira, LiteRed) each one with their strengths and weaknesses.

REDUTTON TO, MALTTER NITEERILS: HOW?

The reduction coefficients are built through Integration By Part (IBP) relations to simplify the structure of the final integrals (lower powers) The set of IBP identities can be spawn from the condition that in dim-reg the integrand vanished at infinity:

$$
0=\int\left[\prod_{i}^{L} \frac{d^{D} k_{i}}{(2 \pi)^{D}}\right] \frac{\partial}{\partial q^{\mu}}\left(v^{\mu}[\text { topology Integrand }]\right)
$$

Example: Kite feynman integral

$$
D_{1}=k_{1}^{2}, \quad D_{2}=k_{2}^{2}, \quad D_{3}=\left(k_{1}+k_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-p\right)^{2}, \quad, D_{5}=\left(k_{2}+p\right)^{2}
$$

We can then write a relation with $q=k_{1}$ and $v=k_{1}+k_{2}$

Within this topology, after combining all the IBP identities we find that we can write the integrals in terms of just two master integrals :

Note: The choice of a set of master integrals is not unique, the choice of one basis over another can greatly effect the computation

REDUTTON TO, MASTTER NTEEPRIS: HOW?

The reduction coefficients are built through Integration By Part (IBP) relations to simplify the structure of the final integrals (lower powers) The set of IBP identities can be spawn from the condition that in dim-reg the integrand vanished at infinity:

$$
0=\int\left[\prod_{i}^{\mathrm{L}} \frac{\mathrm{~d}^{D} k_{i}}{(2 \pi)^{D}}\right] \frac{\partial}{\partial \boldsymbol{q}^{\mu}}\left(\frac{\boldsymbol{v}^{\mu}}{\prod_{j} \mathrm{D}_{j}^{\alpha_{j}}}\right)
$$

Example: Kite feynman integral

$$
D_{1}=k_{1}^{2}, \quad D_{2}=k_{2}^{2}, \quad D_{3}=\left(k_{1}+k_{2}\right)^{2}, \quad D_{4}=\left(k_{1}-p\right)^{2}, \quad, D_{5}=\left(k_{2}+p\right)^{2}
$$

We can then write a relation with $q=k_{1}$ and $v=k_{1}+k_{2}$

Within this topology, after combining all the IBP identities we find that we can write the integrals in terms of just two master integrals :

Note: The choice of a set of master integrals is not unique, the choice of one basis over another can greatly effect the computation

REDUCTION TO MASTER INTEGRALS: HOW?
 A topology that will look more like the one in EFTofLSS is of the form:

$$
\int \mathrm{d}^{D} k_{1} \mathrm{D}^{D} k_{2} \frac{1}{D_{1} D_{2} D_{3} D_{4} D_{5}}
$$

with

$$
D_{1}=k_{1}^{2}+m_{1}^{2}, \quad D_{2}=k_{2}^{2},
$$

$D_{3}=\left(k_{1}+k_{2}\right)^{2}+m_{2}^{2}$,
$D_{4}=\left(k_{1}-p\right)^{2}$,
, $D_{5}=\left(k_{2}+p\right)^{2}+m_{3}^{2}$

- LiteRed gives us a parametric reduction in 4 h (single core)
- The master integrals look like (reduction using above rules in 10s)

Profile of a compunaton

Before anything let's start by defining what is the problem we are facing. We can split the whole computation in few key steps :
Generation Simplification $>$ Computation $>$ Assamble

Define the problem:

- Model we want to study
- Level of precision (e.g. \# of loops, \# of final states)
- Use Feynman rules (UFO: link)

Generation of all diagrams:

- FeynArt (link)
- QGraf (link)
- MadGraph (link)
- many more...

Cast into topologies:

- Contract external indices to obtain scalar integrals
- Tensor reduction with projectors
- Define container topologies of linearly idependent propagators

Reduce number of integrals:

- Collect by symmetry/algebra factors to resolve cancellation early on
- Use Integration by Part (IBP) identities
- Reduce to master integrals (e.g. FIRE, Kira, ...)

$$
\begin{aligned}
& G\left(a_{1}, \ldots, a_{n} ; x\right) \\
& \quad=\int_{0}^{x} \frac{d t}{t-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t\right)
\end{aligned}
$$

Look up for known masters:

- Loopedia

Compute the master integrals

- Create system of DEs
- Obtain expressions for boundary conditions
- Solve analytically/numerically

Combine all the final expressions together in order to produce prediction for physical observables

MASTER INTEEPRLS: COMPUTATION

The advantages of the reduction to master integrals is first of all

- Order of magnitude fewer integrals to compute
- Allow to relate any integrals within the same topology and across computations
- The finite size of the basis allows to build a system of differential equations (see next slide)

Rich array of techniques related to them:

- Syzygys and Groebner basis for doped reduction
\Rightarrow Description of the solution in terms of a known basis of integrals (e.g. pentagon functions for 2-loop 1-mass expressions)
- Differential equations
- Deep learning to build a function that interpolates the solution (2312.02067)

The master integrals can also be computed numerically, for example by using

- Sector decomposition: (py)SecDec, FIESTA
- Two-point massless integrals (up to 4 loops): FORCER
- Direct numerical integration: LTD
- Tropical sampling: Feyntrop
- ...

More about numerical methods for loop integrals this afternoon (Valentin Hirshi)

SYSTTM OF QIFFRRNTIL EQuMTONS

Differential Eqs

$G\left(a_{1}, \ldots, a_{n} ; x\right)$

In order to find the expressions that describe our master integrals, and by extension all of our integrals, we can set up a system of differential equations (DE).

- The master integrals allow to construct a closed system of differential equations:

$$
\frac{\partial}{\partial t} \vec{M}(t, \epsilon)=F(t, \epsilon)
$$

SYSTTM OF QIfFrrentil EquMTONS

Differential Eqs

$G\left(a_{1}, \ldots, a_{n} ; x\right)$

In order to find the expressions that describe our master integrals, and by extension all of our integrals, we can set up a system of differential equations (DE).

- The master integrals allow to construct a closed system of differential equations:

$$
\frac{\partial}{\partial t} \vec{M}(t, \epsilon)=\begin{array}{r}
\text { Reduce } \\
F(t, \epsilon)
\end{array}
$$

SYSTTM OF Qiffernnili EquMTONS

Differential Eqs

$G\left(a_{1}, \ldots, a_{n} ; x\right)$

In order to find the expressions that describe our master integrals, and by extension all of our integrals, we can set up a system of differential equations (DE).

- The master integrals allow to construct a closed system of differential equations:

$$
\frac{\partial}{\partial t} \vec{M}(t, \epsilon)=\begin{aligned}
& \text { Difierential Matrix } \\
& A(t, \epsilon)
\end{aligned} \vec{M}(t, \epsilon)
$$

- The differentiation variable t can be any lorentz invariant of the system or a combination of them
(e.g. $\left.\gamma(t)=\left\{s_{11}(t), s_{12}(t), \ldots\right\}\right)$
- We can have as many DEs as we have independent variables
- The differential matrix $A(x, \epsilon)$ has rational function coefficients in the kinematics, the same as the reduction coefficients

It is possible to modify the form of the Differential Matrix by a change of basis with a liner transformation $\mathrm{T}(t, \epsilon)$:

$$
\begin{aligned}
\vec{M}(t, \epsilon) & \longrightarrow \mathrm{T}(t, \epsilon) \cdot \vec{M}(t, \epsilon) \\
A(t, \epsilon) & \longrightarrow \partial_{x} \mathrm{~T}(t, \epsilon) \cdot \mathrm{T}^{-1}(t, \epsilon)+\mathrm{T}(x, \epsilon) \cdot A(t, \epsilon) \cdot \mathrm{T}^{-1}(t, \epsilon)
\end{aligned}
$$

C'monccal Basis

The differential equation we are studing can be written in the following form (see Moser (1959) and Barkatou (1995))

$$
\frac{\partial}{\partial t} M(t, \epsilon)=\left[\sum_{k} \frac{A_{k}(\epsilon)}{\alpha_{k}}\right] \cdot M(t, \epsilon), \quad\left\{\alpha_{k}\right\}=\left\{t-a_{k}\right\} \text { is the alphabet of the problem }
$$

This expression still has rational function coefficients but it also has a non-trivial dependence in the dimensional regulator ϵ This is what is called a Fuchsian form , and there are public tools that implement algorithmic ways to obtain it:
\downarrow Epsilon [1701.00725], Fuchsia [1701.04269], Libra [2012.00279]
The holy grail is the canonical form, where a basis is found such that the ϵ dependence is completely factored out

Canonical Form

$$
\mathrm{d} M(t, \epsilon)=\epsilon \mathrm{d} \tilde{A} \cdot M(t, \epsilon) \quad, \quad \tilde{A}=\sum_{k} A_{k} \log \alpha_{k}(t)
$$

Then the solution can be written in terms of Chen's iterated integrals

$$
M(t, \epsilon)=\mathbb{P} \exp \left[\epsilon \int_{\gamma} \mathrm{d} A\right] M_{0}
$$

\boldsymbol{M}_{0} is the boundary term at $\gamma\left(\boldsymbol{t}_{0}\right)$.
When the coefficients of the differential matrix are rational functions we then we are looking at multiple polylogarithms (MPL)

$$
G\left(a_{1}, \ldots, a_{n} ; x\right)=\int_{0}^{x} \frac{\mathrm{~d} t_{1}}{t_{1}-a_{1}} \int_{0}^{t_{1}} \frac{\mathrm{~d} t_{2}}{t_{2}-a_{2}} \cdots \int_{0}^{t_{n-1}} \frac{\mathrm{~d} t_{n}}{t_{n}-a_{n}}
$$

Well studied family of functions (see [1411.7538]), with efficient numerical evaluations (e.g. GiNaC)

CMoNCal Bajsis

Let's have a closer look at the general solution for

Canonical Form

$$
\mathrm{d} M(t, \epsilon)=\epsilon \mathrm{d} \tilde{A} \cdot M(t, \epsilon)
$$

$$
\tilde{A}=\sum_{k} A_{k} \log \alpha_{k}(t)
$$

We can see that the depth of the iteration (trascendentality) is connected to the power in ϵ

$$
M(t, \epsilon)=\text { const. }+\epsilon \int_{0}^{t} \mathrm{~d} t_{1} \frac{\mathrm{~d} \tilde{A}}{\mathrm{~d} t_{1}}+\epsilon^{2} \int_{0}^{t} \mathrm{~d} t_{1} \frac{\mathrm{~d} A}{\mathrm{~d} t_{1}} \int_{0}^{t_{1}} \mathrm{~d} t_{2} \frac{\mathrm{~d} A}{\mathrm{~d} t_{2}}+\ldots
$$

Some example of trasendental weights:
\Rightarrow trascendental weight -1: ϵ
$>$ trascendental weight 1: π, log

- trascendental weight $\mathbf{n}: \mathcal{G}\left(a_{1}, \ldots, a_{n} ; x\right)$

$$
G\left(a_{1}, \ldots, a_{n} ; x\right)=\int_{0}^{x} \frac{\mathrm{~d} t_{1}}{t_{1}-a_{1}} \int_{0}^{t_{1}} \frac{\mathrm{~d} t_{2}}{t_{2}-a_{2}} \cdots \int_{0}^{t_{n-1}} \frac{\mathrm{~d} t_{n}}{t_{n}-a_{n}}
$$

There are ways to find a suitable basis of integrals by looking for the property above:

- Unitarity cuts will fulfill the same canonical condition
- Use generalized cuts to find integrals of uniform trascendentality for our basis

ExhMPIE: MASSSVE BUBBLE

$$
\text { Topology Propagators: } \quad D_{1}=k^{2}-m^{2}, \quad D_{2}=(k+p)^{2}-m^{2}
$$

The topology is already complete, all scalar product with internal momenta can be expressed in terms of D_{i} 's:

$$
k^{2}=D_{1}+m^{2}, \quad 2 k \cdot p=D_{2}-D_{1}-p^{2}+m^{2}
$$

STEP 1 :

$$
\frac{\partial}{\partial x}\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right]=\left(\begin{array}{cc}
0 & 0 \\
\frac{\epsilon}{4-x} & \frac{2+\epsilon X}{x(4-x)}
\end{array}\right) \cdot\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right], \quad x=\frac{s}{m^{2}}
$$

The two 1master integrals are: $M_{1}=I_{2,0}$ and $M_{2}=I_{2,1}$.

- We can remove the ϵ^{0} coefficient from the differential matrix with a change of basis

STEP 2 :

$$
\left[\begin{array}{l}
M_{1} \\
M_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
M_{1} \\
\sqrt{1-\frac{4}{x}} M_{2}
\end{array}\right]=\left[\begin{array}{c}
\tilde{M}_{1} \\
\tilde{M}_{2}
\end{array}\right] \quad \text { the new DE } \quad \frac{\partial}{\partial x}\left[\begin{array}{c}
\tilde{M}_{1} \\
\tilde{M}_{2}
\end{array}\right]=\epsilon\left(\begin{array}{cc}
0 & 0 \\
\frac{-1}{\sqrt{x(4-x)}} & \frac{1}{4-x}
\end{array}\right) \cdot\left[\begin{array}{l}
\tilde{M}_{1} \\
\tilde{M}_{2}
\end{array}\right]
$$

Square roots appearing in the matrix. This could mean the end of hoping to describe the master integrals in terms of MPL

- In some cases we can remove square roots by rationalize them

STEP 3

$$
x=\frac{(y+1)^{2}}{y} \quad \text { the new DE w.r.t. the variable } y \text { reads }
$$

$$
\frac{\partial}{\partial y}\left[\begin{array}{c}
\tilde{M}_{1} \\
\tilde{M}_{2}
\end{array}\right]=\epsilon\left(\begin{array}{cc}
0 & 0 \\
\frac{-1}{y} & \frac{1}{y}+\frac{2}{1-y}
\end{array}\right) \cdot\left[\begin{array}{c}
\tilde{M}_{1} \\
\tilde{M}_{2}
\end{array}\right]
$$

The system can be solved as a series in ϵ in terms of MPLs
Also once we manage to find the canonical basis it could be that the system has some irreducible square roots:

- We end with special function such as Elliptic function (talk by Sebastian Pögel)

Expansion

The construction of a canonical basis is not always simple, and can become one very demanding task. We may simplify the problem with other approximations like expanding in one of the variables

- For example looking at the threshold exapansion for the Higgs cross-section (inclusive and differential)

The master formula for the expansion is given by

$$
M(z, \ldots ; \epsilon)=\sum_{a, n} z^{n-a \epsilon} m_{s, n}(z, \ldots ; \epsilon)
$$

- \mathbf{n} : index of the Laurent series with bounded lower index
- s: sector of the expansion. Do not mix under DEs!

Only simple poles in z

$$
\vec{m}_{k+1}=B_{k}^{-1} \cdot\left(\sum_{j=0}^{k} A_{j} \vec{m}_{k-j}\right) \quad \text { Required by a finite number of } k
$$

Expansion

The master formula for the expansion is given by

$$
M(z, \ldots ; \epsilon)=\sum_{a, n} z^{n-a \epsilon} m_{s, n}(z, \ldots ; \epsilon)
$$

\mathbf{n} : index of the Laurent series with bounded lower index
\mathbf{s} : sector of the expansion. Do not mix under DEs!
The starting point of the series expansion and the sectors are fully fixed by the boundary conditions.

Example:

$$
\begin{array}{lr}
D_{1}=k^{2} & p_{1}^{2}=0 \\
D_{2}=(k+z q)^{2} & p_{2}^{2}=0 \\
D_{3}=\left(k+z q+p_{2}\right)^{2} & q=0 \\
D_{4}=\left(k-p_{1}\right)^{2} & p_{h}^{2}=m_{h}^{2}
\end{array}
$$

Naive expansion only converges for large values of the loop momentum (Hard sector):

$$
\frac{1}{D_{2}}=\frac{1}{(k+z 2 k \cdot q)^{2}}=\frac{1}{k^{2}} \sum_{n=0}^{\infty}\left(\frac{z 2 k \cdot q}{k^{2}}\right)^{n}
$$

By Looking at the asymptotic behaviour around $z=0(\square \sim>)$ we can see that there are three independent sectors parametrized by z

large loop momentum: $k>z$

$$
k \sim 1
$$

loop momentum colliner to $p_{1,2}$:

$$
k^{2} \sim k \cdot p_{1,2} \sim z, \quad k \cdot p_{2,1} \sim 1
$$

phase space: $d^{D} \Phi \sim z^{D / 2}$

loop momentum soft:

$$
k \sim z
$$

phase space: $\mathrm{d}^{D} \Phi \sim z^{D}$

SEMI-NMERCAL

An alternative approach to the a fully analytic computation is a semi-numerical one.
There are several programs publicly available that provide provide a numerical result for the master integrals by using the DEs to evolve the solution from some boundary point $\gamma\left(t_{0}\right)$, to another region at $\gamma(t)$

- DiffExp [Hidding 2020],
- SeaSyde [Armadillo et al. 2022],
- AMFlow [Ma, Liu 2022]

Example:

compute in euclidean region at $\left(s, m_{W}, m_{t}\right)=(-2,4,16)$ and evolve to physical phase space point such as $\left(s, m_{W}, m_{t}\right)=\left(1, \frac{401925}{455938}, \frac{433000}{227969}\right)$

The computation of the boundary condition in the euclidean region can be performed with

- (py)SecDec
- FIESTA
- Feyntrop

The evolution to the physical region is performed with high precision so the main source of uncertainty in many cases comes from the computed boundary terms.

SEMHMMERCOLL

An alternative approach to the a fully analytic computation is a semi-numerical one.
There are several programs publicly available that provide provide a numerical result for the master integrals by using the DEs to evolve the solution from some boundary point $\gamma\left(t_{0}\right)$, to another region at $\gamma(\boldsymbol{t})$

- DiffExp [Hidding 2020],
- SeaSyde [Armadillo et al. 2022],
- AMFlow [Ma, Liu 2022]

This hybrid approach allows to tackle problems that would be otherwise prohibitive, taking advantage of the knowledge of DEs

Key aspects :

- No need for casting the system in canonical form
- Agnostic on the type and complexity of the expressions in the solution.
- Elliptic functions can be computed by looking at a pre-canonical form with rational coefficients in the DE
- Expansion in the regulator ϵ to allow for possible cancellations once recombined in the original expression
- Possible to create interpolation grids if necessary for the computation

CONCLUSIONS

Differential equations are a powerful tool for the compuation of master integrals and a well established method in QCD

- Use IBP identities for a reduction to master integrals and build a system of differential equations
- Seek for a canonical basis with integrals ofhomogeneous transcendental weight
\rightarrow MPL may not be sufficient for the problem at hand and require special functions
- Rich array of dedicated tools

The integrals appearing in EFTofLSS have euclidean metric and $D=3$
> The DEs and the reductions are written in terms of scalars and independent of the type of matrix used

- Usually working in dim-reg having D as a variable

