Amplitude Bootstrap Methods

Andrew McLeod
Galaxies Meet QCD
February 23, 2024

THE
ROYAL
SOCIETY

Amplitude Bootstrap Methods
 Building Special Functions

Andrew McLeod
Galaxies Meet QCD
February 23, 2024

THE
ROYAL
SOCIETY

Outline

1) Perturbative bootstrap methods
\Rightarrow (a historical) motivation and introduction
\Rightarrow bootstrap calculations at large particle multiplicities and high loop orders
\Rightarrow distilling key lessons from these bootstrap calculations
2) The analytic properties of polylogarithmic Feynman integrals
\Rightarrow singular points and how to characterize them
\Rightarrow algebraic versus logarithmic branch cuts
\Rightarrow building single-valued functions
3) Hermeneutical lessons from amplitude calculations

The Integration Bottleneck

- The technology for reducing the computation of scattering amplitudes (and related quantities) to the evaluation of a small basis of master integrals has advanced enormously in recent years
- Even so, our ability to evaluate these integrals analytically remains limited

[Henn, Peraro, Xu, Zhang (2022)]

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia (2023)]

The Integration Bottleneck

- The technology for reducing the computation of scattering amplitudes (and related quantities) to the evaluation of a small basis of master integrals has advanced enormously in recent years
- Even so, our ability to evaluate these integrals analytically remains limited

[Henn, Peraro, Xu, Zhang (2022)]

[Abreu, Chicherin, Ita, Page, Sotnikov, Tschernow, Zoia (2023)]
[Badger, Becchetti, Chaubey, Marzucca (2023)]
[Henn, Lim, Bobadilla (2023)]
- Perturbative bootstrap methods ask the following question:

Do we know enough about the mathematical properties of amplitudes (or similar quantities) to avoid integration and construct them directly?

The Surprising Simplicity of Amplitudes

This is a natural question to ask-despite their computational difficulty, amplitudes are often found to evaluate to strikingly simple expressions

- The paradigmatic (loop-level) example is given by the first two-loop six-particle amplitude calculated in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory

The Surprising Simplicity of Amplitudes

This is a natural question to ask-despite their computational difficulty, amplitudes are often found to evaluate to strikingly simple expressions

- The paradigmatic (loop-level) example is given by the first two-loop six-particle amplitude calculated in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory

first computed as a 17 page expression
[Del Duca, Duhr, Smirnov (2009)]

The Surprising Simplicity of Amplitudes

This is a natural question to ask-despite their computational difficulty, amplitudes are often found to evaluate to strikingly simple expressions

- The paradigmatic (loop-level) example is given by the first two-loop six-particle amplitude calculated in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory

first computed as a 17 page expression, later simplified to a two-line expression

The Surprising Simplicity of Amplitudes

This is a natural question to ask-despite their computational difficulty, amplitudes are often found to evaluate to strikingly simple expressions
(once the right theoretical language is found)

- The paradigmatic (loop-level) example is given by the first two-loop six-particle amplitude calculated in planar $\mathcal{N}=4$ supersymmetric Yang-Mills theory

first computed as a 17 page expression, later simplified to a two-line expression

Analytic Properties

Several striking features were made clear in this example by the simplified formula:

- the special functions that appear are all drawn from a highly restricted class of generalized polylogarithms (or, iterated integrals over the punctured Riemann sphere)

$$
\int_{0}^{t} \frac{d t_{1}}{t_{1}-c_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-c_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{t_{3}-c_{3}} \int \cdots
$$

where the integration endpoint t and punctures $c_{i} \in\left\{0,1, \sigma_{3}, \ldots\right\}$ are algebraic functions of Mandelstam variables

- logarithmic branch points only appear at nine locations
- each term also involves precisely four logarithmic integrals

Analytic Properties

Several striking features were made clear in this example by the simplified formula:

- the special functions that appear are all drawn from a highly restricted class of generalized polylogarithms (or, iterated integrals over the punctured Riemann sphere)

$$
\int_{0}^{t} \frac{d t_{1}}{t_{1}-c_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-c_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{t_{3}-c_{3}} \int \cdots
$$

where the integration endpoint t and punctures
$c_{i} \in\left\{0,1, \sigma_{3}, \ldots\right\}$ are algebraic functions of Mandelstam variables

- logarithmic branch points only appear at nine locations
- each term also involves precisely four logarithmic integrals

Analytic Properties

Several striking features were made clear in this example by the simplified formula:

- the special functions that appear are all drawn from a highly restricted class of generalized polylogarithms (or, iterated integrals over the punctured Riemann sphere)

$$
\int_{0}^{t} \frac{d t_{1}}{t_{1}-c_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-c_{2}} \int_{0}^{t_{2}} \frac{d t_{3}}{t_{3}-c_{3}} \int \cdots
$$

where the integration endpoint t and punctures
$c_{i} \in\left\{0,1, \sigma_{3}, \ldots\right\}$ are algebraic functions of Mandelstam variables

- logarithmic branch points only appear at nine locations
- each term also involves precisely four logarithmic integrals $2 L$

Bootstrap Methods

Starting from the conjecture that the L-loop amplitude 'lives' in this space, we can try to bootstrap it directly by looking for a function that exhibits all the expected properties

Bootstrap Methods

Starting from the conjecture that the L-loop amplitude 'lives' in this space, we can try to bootstrap it directly by looking for a function that exhibits all the expected properties

MHV
[Del Duca, Duhr, Smirnov (2009)] [Dixon, Drummond, Henn (2011)] [Dixon, Drummond, von Hippel, Pennington (2013)] [Dixon, Drummond, Duhr, Pennington (2014)] [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

NHMV
[Dixon, Drummond, Henn (2012)] [Dixon, von Hippel (2014)] [Dixon, von Hippel, AJM (2015)] [Caron-Huot, Dixon, AJM, von Hippel (2016)] [Caron-Huot, Dixon, Dulat, von Hippel, AJM, Papathanasiou (2019)]

- each of these results is unique, and satisfies a number of nontrivial cross-checks
- thus, for the six-particle amplitude, we can bypass integration altogether

Successful Bootstrap Examples

The same methods have been successfully now to many examples seven-particle amplitude ... all-multiplicity amplitudes special classes of integrals

∞ loops
[Caron-Huot, Dixon, von Hippel, AJM, Papathanasiou (2018)]

- Takeaway: once we learn the right theoretical language in which to formulate perturbative quantities in QFT, rapid progress can be made

Technology for Multiple Polylogarithms

Having applied bootstrap methods at such high loop orders, we have extremely well-developed technology for working with functions such as multiple polylogarithms

- As an illustration, the 'simplest' quantities that have been bootstrapped are supersymmetric three-particle form factors

[Dixon, Gürdoğan, AJM, Wilhelm (2022)]

Technology for Multiple Polylogarithms

Having applied bootstrap methods at such high loop orders, we have extremely well-developed technology for working with functions such as multiple polylogarithms

- As an illustration, the 'simplest' quantities that have been bootstrapped are supersymmetric three-particle form factors

8 loops
[Dixon, Gürdoğan, AJM, Wilhelm (2022)]

- However, even these form factors become highly nontrivial at high loop orders

Technology for Multiple Polylogarithms

Having applied bootstrap methods at such high loop orders, we have extremely well-developed technology for working with functions such as multiple polylogarithms

- As an illustration, the 'simplest' quantities that have been bootstrapped are supersymmetric three-particle form factors

- However, even these form factors become highly nontrivial at high loop orders

Building Special Functions

We can only work with such large functions because we directly build them to have the properties we want

- respect the symmetries of the problem
- expected behavior in special kinematic limits
- logarithmic and algebraic branch cuts that start in physical locations

Building Special Functions

We can only work with such large functions because we directly build them to have the properties we want

- respect the symmetries of the problem
- expected behavior in special kinematic limits
- logarithmic and algebraic branch cuts that start in physical locations

There has in particular been a resurgence of interest-and progressin understanding the analytic properties of scattering amplitudes

Building Special Functions

We can only work with such large functions because we directly build them to have the properties we want

- respect the symmetries of the problem
- expected behavior in special kinematic limits
- logarithmic and algebraic branch cuts that start in physical locations

There has in particular been a resurgence of interest-and progressin understanding the analytic properties of scattering amplitudes

- Even in single-valued functions-in which all branch cuts cancel-a great deal of information is encoded in the analytic structure

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman integrals is often referred to as Landau analysis.

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman integrals is often referred to as Landau analysis. It address questions such as:

- where in the space of masses and external momenta Feynman integrals can become singular and develop branch cuts

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman integrals is often referred to as Landau analysis. It address questions such as:

- where in the space of masses and external momenta Feynman integrals can become singular and develop branch cuts
- how Feynman integrals behave near these singular surfaces (for instance, do they develop a pole, an algebraic branch cut, or a logarithmic branch cut)

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman integrals is often referred to as Landau analysis. It address questions such as:

- where in the space of masses and external momenta Feynman integrals can become singular and develop branch cuts
- how Feynman integrals behave near these singular surfaces (for instance, do they develop a pole, an algebraic branch cut, or a logarithmic branch cut)
- where specific singularities can appear within iterated integral representations

Landau Analysis

The body of techniques that have developed for studying the analytic structure of Feynman integrals is often referred to as Landau analysis. It address questions such as:

- where in the space of masses and external momenta Feynman integrals can become singular and develop branch cuts
- how Feynman integrals behave near these singular surfaces (for instance, do they develop a pole, an algebraic branch cut, or a logarithmic branch cut)
- where specific singularities can appear within iterated integral representations
- what sequences of discontinuities are consistent with causality

The General Idea

All of the interesting analytic structure that appears in Feynman integrals can be traced back to singularities that occur along the contour of integration

- For instance, if we are interested in studying a function

$$
f(x)=\int_{\gamma} d z \frac{g(x, z)}{h(x, z)}
$$

where $g(x, z)$ and $h(x, z)=\left(z-z_{1}^{*}(x)\right) \cdots\left(z-z_{n}^{*}(x)\right)$ are polynomials, we can learn a lot from how the points $\left\{z_{i}(x)\right\}$ interact with the contour γ as we vary x

The General Idea

All of the interesting analytic structure that appears in Feynman integrals can be traced back to singularities that occur along the contour of integration

- For instance, if we are interested in studying a function

$$
f(x)=\int_{\gamma} d z \frac{g(x, z)}{h(x, z)}
$$

where $g(x, z)$ and $h(x, z)=\left(z-z_{1}^{*}(x)\right) \cdots\left(z-z_{n}^{*}(x)\right)$ are polynomials, we can learn a lot from how the points $\left\{z_{i}(x)\right\}$ interact with the contour γ as we vary x

The Bubble

To see how this technology can be used in practice, let's look at the bubble diagram in two and three dimensions:

The Bubble

To see how this technology can be used in practice, let's look at the bubble diagram in two and three dimensions:

- By solving the Landau equations, we can identify all the kinematic surfaces where interesting analytic structure can appear:

$$
\left\{m_{1}^{2}=0, \quad m_{2}^{2}=0, \quad p^{2}=\left(m_{1} \pm m_{2}\right)^{2}=r_{ \pm}, \quad p^{2}=0\right\}
$$

The Bubble

To see how this technology can be used in practice, let's look at the bubble diagram in two and three dimensions:

- By solving the Landau equations, we can identify all the kinematic surfaces where interesting analytic structure can appear:

$$
\left\{m_{1}^{2}=0, \quad m_{2}^{2}=0, \quad p^{2}=\left(m_{1} \pm m_{2}\right)^{2}=r_{ \pm}, \quad p^{2}=0\right\}
$$

- We can also show that certain (sequences of) discontinuities are not allowed

$$
\operatorname{Disc}_{p^{2}=r_{-}}(I)=0
$$

$$
\operatorname{Disc}_{m_{1}^{2}=0}\left(\operatorname{Disc}_{m_{2}^{2}=0}(I)\right)=\operatorname{Disc}_{m_{2}^{2}=0}\left(\operatorname{Disc}_{m_{1}^{2}=0}(I)\right)=0
$$

The Bubble

- Finally, we can predict how the bubble will behave near each of these singular points (using for instance the method of regions seen in Andrea's talk)

$$
\begin{gathered}
I\left(m_{i}^{2} \rightarrow 0\right) \sim\left\{\begin{array} { l l }
{ \operatorname { l o g } m _ { i } ^ { 2 } } & { \text { in } D = 2 } \\
{ \sqrt { m _ { i } ^ { 2 } } } & { \text { in } D = 3 }
\end{array} \quad I (p ^ { 2 } \rightarrow 0) \sim \left\{\begin{array}{ll}
\text { absent } & \text { in } D=2 \\
1 / \sqrt{p^{2}} & \text { in } D=3
\end{array}\right.\right. \\
I\left(p^{2} \rightarrow\left(m_{1} \pm m_{2}\right)^{2}\right) \sim \begin{cases}1 / \sqrt{p^{2}-r_{ \pm}} & \text {in } D=2 \\
\log \left(p^{2}-r_{ \pm}\right) & \text {in } D=3\end{cases}
\end{gathered}
$$

The Bubble

- Finally, we can predict how the bubble will behave near each of these singular points (using for instance the method of regions seen in Andrea's talk)

$$
\begin{gathered}
I\left(m_{i}^{2} \rightarrow 0\right) \sim\left\{\begin{array} { l l }
{ \operatorname { l o g } m _ { i } ^ { 2 } } & { \text { in } D = 2 } \\
{ \sqrt { m _ { i } ^ { 2 } } } & { \text { in } D = 3 }
\end{array} \quad I (p ^ { 2 } \rightarrow 0) \sim \left\{\begin{array}{ll}
\text { absent } & \text { in } D=2 \\
1 / \sqrt{p^{2}} & \text { in } D=3
\end{array}\right.\right. \\
I\left(p^{2} \rightarrow\left(m_{1} \pm m_{2}\right)^{2}\right) \sim \begin{cases}1 / \sqrt{p^{2}-r_{ \pm}} & \text {in } D=2 \\
\log \left(p^{2}-r_{ \pm}\right) & \text {in } D=3\end{cases}
\end{gathered}
$$

These constraints uniquely determine the functional form of the bubble integral:

$$
\begin{gathered}
I_{2 \mathrm{D}}^{\sim} \frac{1}{\sqrt{p^{2}-r_{+}} \sqrt{p^{2}-r_{-}}} \log \left(\frac{\sqrt{p^{2}-r_{+}}+\sqrt{p^{2}-r_{-}}}{\sqrt{p^{2}-r_{+}}-\sqrt{p^{2}-r_{-}}}\right) \\
I_{3 \mathrm{D}} \sim \frac{1}{\sqrt{p^{2}}} \log \left(\frac{\sqrt{m_{1}^{2}}+\sqrt{m_{2}^{2}}+\sqrt{p^{2}}}{\sqrt{m_{1}^{2}}+\sqrt{m_{2}^{2}}-\sqrt{p^{2}}}\right)
\end{gathered}
$$

Single-Valued Functions

Even in functions in single-valued functions in which all the branch cuts have been hidden, a lot of information can be learned from these techniques

- although these branch cuts have been hidden, the locations and nature of these singular points still control the behavior of this function
- the mechanism for 'hiding' different types of branch cuts are rather different
\Rightarrow logarithmic branch cuts can be hidden by adding non-holomorphic contributions

$$
\log (x) \rightarrow \frac{1}{2}\left(\log (x)+\log \left(x^{*}\right)\right)
$$

\Rightarrow square root branch cuts can be hidden by imposing a Galois symmetry

$$
f(x) \xrightarrow{\sqrt{\bullet} \rightarrow-\sqrt{\bullet}} f(x)
$$

Single-Valued Functions

In particular, the locations of where interesting things are happening in the 3D bubble and triangle integrals are dictated by the values of the masses

- the bubble exhibits logarithmic behavior near

$$
p^{2}=\left(m_{1} \pm m_{2}\right)^{2}
$$

- the triangle integral exhibits square-root-type behavior where

$$
1-y_{12}^{2}-y_{23}^{2}-y_{13}^{2}-2 y_{12} y_{23} y_{13}=0
$$

where

$$
y_{i j}=\frac{\left(p_{i}+p_{j}\right)^{2}-m_{i}^{2}-m_{j}^{2}}{2 m_{i} m_{j}}
$$

Single-Valued Functions

In particular, the locations of where interesting things are happening in the 3D bubble and triangle integrals are dictated by the values of the masses

- the bubble exhibits logarithmic behavior near

$$
p^{2}=\left(m_{1} \pm m_{2}\right)^{2}
$$

- the triangle integral exhibits square-root-type behavior where

$$
1-y_{12}^{2}-y_{23}^{2}-y_{13}^{2}-2 y_{12} y_{23} y_{13}=0
$$

where

$$
y_{i j}=\frac{\left(p_{i}+p_{j}\right)^{2}-m_{i}^{2}-m_{j}^{2}}{2 m_{i} m_{j}}
$$

Does anything identifiably special happen at these points (in terms of cosmology) in the basis of integrals that have been used to evaluate the bispectrum of galaxies using the EFTofLSS?

A Virtuous Cycle

A Virtuous Cycle

Conclusions

A great deal of mathematical and physical structure is hidden in many of the quantities we are interested in computing in perturbative QFT

- If this structure can be understood, it can sometimes be leveraged to develop highly efficient computational techniques
- One key to uncovering this structure is to identify the right theoretical language, or special functions, with which to work-and to try to build some of the known properties of the result into these functions directly

Thanks!

