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1 Notation and conventions

These are informal notes from my blackboard presentation at the Galaxies meet QCD workshop

in 2024. They are intended to remind the participants about the subjects discussed, not to be

a complete review of the subject, nor to contain a complete list of references. A much more

complete set of references to relevant and important work on this subject can be found in the

citations contained here.

Our Fourier conventions are

f(~x, t) =

∫
~k
f(~k, t) ei

~k·~x , (1.1)



and in this work, we use the following notation∫
~k1,...,~kn

≡
∫

d3k1

(2π)3
· · · d

3kn
(2π)3

,

∫ ~k

~k1,...,~kn

≡
∫
~k1,...,~kn

(2π)3δD(~k −
n∑
i=1

~ki) , (1.2)

where δD is the Dirac delta function.

For a three-dimensional vector ~k, we write k ≡ |~k| for the magnitude, and k̂ ≡ ~k/k for the unit

vector parallel to ~k. We use Latin letters like i, j, k, l to denote spatial indices, in general we do

not distinguish between upper and lower spatial indices, and repeated indices imply summation.

• background ΛCDM expansion, with metric ds2 = −dt2 + a(t)2d~x2, where a(t) is the scale

factor, a→ 0 is early times, and a = a0 = 1 is the current time

• the scale factor a is related to the observed redshift z by a = 1/(1 + z)

• the background expansion is driven by a non-relativistic, time-dependent, background mass

density ρ̄(t) which is given by

ρ̄(t) = ρ̄0

(
a(t)

a0

)−3

, (1.3)

where subscripts 0 refer to current-day values

• H(t) ≡ ȧ(t)/a(t) is the Hubble expansion rate

• MPl is the Planck mass, related to Newton’s constant GN by M2
Pl = 1/(8πGN ).

• Einstein equations give H(t)2 = 1
3M2

Pl
(ρ̄(t) + ρΛ)

• we often use a as the time variable: da = a(t)H(t)dt - prime ′ is for derivative with respect

to a, dot ˙ is derivative with respect to t

• time-dependent matter fraction: Ωm(a) ≡ ρ̄(a)/(3M2
PlH(a)2)

• in flat ΛCDM, the Hubble rate can be parameterized by H(a)2/H2
0 = Ωm,0(a/a0)−3 + (1 −

Ωm,0)

• H(a) ≡ aH(a)

• the dark-matter field is described in terms of the mass density ρ(~x, a) and the velocity field

vi(~x, a). will often use δ(~x, a) ≡ (ρ(~x, a)− ρ̄(a))/ρ̄(a) and πi(~x, a) ≡ ρ(~x, a)vi(~x, a)

• θ ≡ −∂ivi/(faH) is normalized such that θ ∼ D(a)nGn in Fourier space, where Gn are

kernels defined below

• scalar perturbations: ds2 = −(1+2Φ)dt2+a(t)2(1−2Ψ)d~x2, and Ψ = Φ for us (no anisotropic

stress)
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2 Dark-matter clustering

2.1 Equations of motion

We are in the Newtonian limit, and the dark matter is non-relativistic (i.e. cold dark matter, or

CDM). This regime is described by

v � 1 (2.1)

k

aH(a)
� 1 (2.2)

k−1
NL ∼

v

aH(a)
(2.3)

k/kNL � 1 (2.4)

One can think of the equations of motion (EOM) as coming from the Einstein equations [1–3],

or one can construct them from the bottom up from symmetries [4]. Then, the EOM are

δ̇ + a−1∂i((1 + δ)vi) = 0 ,

v̇i +Hvi + a−1∂iΦ + a−1vj∂jv
i = −a−1 ∂jτ

ij

ρ̄(1 + δ)
,

(2.5)

along with the Poisson equation

a−2∂2Φ =
3

2
ΩmH

2δ . (2.6)

Above, τ ij is the EFT of LSS stress tensor (i.e. counterterms), which we will describe in detail

soon. Importantly, the EOM are nonlinear.

This system has some important symmetries. The continuity equation implies mass conserva-

tion in the from

∂t

∫
d3x a(t)3ρ(~x, t) = 0 , (2.7)

and the Euler equation implies momentum conservation in the form

∂t

∫
d3x a(t)4πi(~x, t) = 0 , (2.8)

(which is much more obvious if the EOM are written in terms of πi instead of vi).1 Another

symmetry is Galilean invariance, which is inherited as the non-relativistic limit of diffeomorphism

invariance. In the the non-relativistic limit that we present here, a Galilean transformation takes

the form

∂i → ∂i , ∂t → ∂t − ṅi(t)∂i , vi(xj , t)→ vi(xj , t) + aṅi(t) , τ ij(xk, t)→ τ ij(xk, t)

Φ(xj , t)→ Φ(xj , t)− a2(n̈i(t) + 2Hṅi(t))xi , δ(xj , t)→ δ(xj , t) ,
(2.9)

for any time dependent vector ni(t). We will see later what this symmetry means for the solutions.

We also have the equivalence principle, which says that physical measurements can only depend on

1Note that these are dynamical statements that are true for any initial conditions. They are simply the field

version of total mass and total momentum conservation in multi-particle Newtonian mechanics.
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Figure 1: Diagram for the fluid line element showing how the composition rule works.

second spatial derivatives of the metric ∂i∂jΦ and gradients of the velocity ∂iv
j . Finally, we have

statistical homogeneity and isotropy, which is translation and rotation invariance of the correlation

functions.

A useful quantity to talk about Galilean invariance is the fluid element ~xfl, which traces the

fluid velocity, see Fig. 1. Since the velocity is a tangent, we have

d

dt
~xfl(~x, tin, t) =

1

a(t)
~v(~xfl(~x, tin, t), t) , (2.10)

which can be integrated to give the recursive solution

~xfl(~x, tin, t) = ~x+

∫ t

tin

dt′

a(t′)
~v
(
~xfl(~x, tin, t

′), t′
)
. (2.11)

2.2 EFT counterterms

Let us write the EOM for δ in a different way

a2δ′′+
(

2 +
aH′
H

)
aδ′− 3

2
Ωmδ =

∂i∂j
H2ρ̄

(
2M2

Pla
−2

(
∂iΦ∂jΦ−

1

2
δij(∂Φ)2

)
+
πiπj

ρ
+ τ ij

)
. (2.12)

From here, we obviously see that for δ, the stress tensor enters with two spatial derivatives.

The EFT of LSS is local in space, but non-local in time [3]. The most general expansion of the

stress tensor satisfying all of the symmetries above is

τ ij(~x, t) =

∫ t

dt′H(t′)
∑
α

κα(t, t′)T ijα (~xfl(~x, t, t′), t′) , (2.13)

where {T ijα (~x, t)}α are all local-in-time Galilean scalars (and tensors under rotations on the i and

j indices), and the κα(t, t′) are unknown EFT kernels describing the non-locality in time. The
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T ijα (~x, a) are then organized in a local spatial-derivative expansion of the long-wavelength fields

(∂i∂jΦ(~x, a), ∂iv
j(~x, a), etc.) and of stochastic fields εij(~x, a).

Let us quickly comment on the stochastic fields. Physically, they capture the fact that short

modes can randomly combine to produce long modes, and as we will see, they are needed for

renormalization. They are uncorrelated with the matter fields

〈εij(~x, a)δ(~y, a)〉 = 0 . (2.14)

In momentum space, we define the correlation of the stochastic fields εij...n as an expansion in

powers of ~k of all of the terms allowed by rotation invariance [5], for example

〈εija (~k)εklb (~k′)〉 =(2π)3δD(~k + ~k′)
(
c

(1)
a,bδ

ijδkl + c
(2)
a,b(δ

ikδjl + δilδjk)

+ k−2
NL

(
c

(3)
a,bδ

ijkkkl + c
(4)
a,bδ

klkikj + c
(5)
a,b(δ

ikkjkl + δilkjkk)
)

+ . . .
)
.

(2.15)

2.3 Solving the EOM

The equations of motion in the form that we will use for perturbation theory are

aδ′ −Θ = δΘ + ∂iδ
∂iΘ

∂2
,

aΘ′ +
(

1 +
aH′
H

)
Θ− 3

2
Ωmδ = ∂iΘ

∂iΘ

∂2
+
∂i∂jΘ

∂2

∂i∂jΘ

∂2
+

1

H(a)2
∂i

(
∂jτ

ij

ρ̄(1 + δ)

)
,

(2.16)

where we have introduced the rescaled velocity divergence

Θ = −∂iv
i

aH
, (2.17)

and to a high degree of accuracy, we only need the divergence of the velocity (can ignore the

vorticity).

As we saw above, the stress tensor enters the solution for δ as a higher-derivative contribution,

so it makes sense to treat it as a perturbation. So for now, we focus on the EOM with τ ij = 0,

and include that contribution later. This is sometimes called ‘standard perturbation theory,’ or

SPT. To solve perturbatively, we expand

δ(~k, a) =
∑
n

δ(n)(~k, a) , (2.18)

where δ(n) ∼ [δ(1)]n.

Linearizing the equations above, we find a scale-independent linear equation for δ, so we can

write in momentum space

a2δ(1)(~k, a)′′ +
(

2 +
aH′
H

)
aδ(1)(~k, a)′ − 3

2
Ωmδ

(1)(~k, a) = 0 . (2.19)

There are of course two independent solutions to this second-order differential equation, so we can

write

δ(1)(~k, a) = D+(a)δ̃
(1)
+ (~k) +D−(a)δ̃

(1)
− (~k) , (2.20)
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where δ̃
(1)
± (~k) are the initial conditions for the field. One can check that we can choose these

solutions to be [6]

D+(a) =
5

2
Ωm,0H2

0

H(a)

a

∫ a

0

da1

H(a1)3
, and D−(a) =

H(a)

H0Ω
1/2
m,0

, (2.21)

where we have chosen the normalizations for future convenience. It turns out that, in our expanding

universe, D+(a) grows with time, and D−(a) decays, so much so that we can ignore the decaying

mode for our purposes here (and we will now drop the + and write D(a) ≡ D+(a) and δ̃(1)(~k) ≡
δ̃

(1)
+ (~k)). Thus, we take

δ(1)(~k, a) = D(a)δ̃(1)(~k) . (2.22)

Now we can also get the linear solution for the velocity. Looking back at Eq. (2.16), this means

that the solution for the velocity divergence is

Θ(1)(~x, a) = f(a)δ(1)(~x, a) , (2.23)

where the logarithmic derivative of the growth factor D(a) is called the growth function f(a)

f(a) ≡ aD′(a)

D(a)
. (2.24)

Now let’s look for the non-linear solutions. The EOM Eq. (2.16) (with τ ij = 0) are, in Fourier

space,

aδ(~k, a)′ −Θ(~k, a) =

∫ ~k

~k1,~k2

α(~k1,~k2)Θ(~k1, a)δ(~k2, a) ,

aΘ(~k, a)′ +
(

1 +
aH′
H

)
Θ(~k, a)− 3

2
Ωmδ(~k, a) =

∫ ~k

~k1,~k2

β(~k1,~k2)Θ(~k1, a)Θ(~k2, a) ,

(2.25)

where α and β are the dark matter interaction vertices,

α(~q1, ~q2) = 1 +
~q1 · ~q2

q2
1

and β(~q1, ~q2) =
|~q1 + ~q2|2~q1 · ~q2

2q2
1q

2
2

. (2.26)

We then make the following ansatz for the non-linear solutions

δ(n)(~k, a) = D(a)n
∫ ~k

~k1,...,~kn

Fn(~k1, . . . ,~kn)δ̃(1)(~k1) · · · δ̃(1)(~kn) ,

Θ(n)(~k, a) = f(a)D(a)n
∫ ~k

~k1,...,~kn

Gn(~k1, . . . ,~kn)δ̃(1)(~k1) · · · δ̃(1)(~kn) ,

(2.27)

and also use the tilde to denote the time-independent fields

δ̃(n)(~k) ≡ δ(n)(~k, a)

D(a)n
, and Θ̃(n)(~k) ≡ Θ(n)(~k, a)

f(a)D(a)n
, (2.28)
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specifically for the ansatz in Eq. (2.27). Plugging Eq. (2.27) into Eq. (2.25) and matching pertur-

bative orders, we have

D(a)nf(a)
(
nδ̃(n)(~k)− Θ̃(n)(~k)

)
= D(a)nf(a)

∫ ~k

~k1,~k2

α(~k1,~k2)
n−1∑
m=1

Θ̃(m)(~k1)δ̃(n−m)(~k2) ,

D(a)nf(a)2

(
(n− 1)Θ̃(n)(~k) +

3

2

Ωm(a)

f(a)2

(
Θ̃(n)(~k)− δ̃(n)(~k)

))
=

D(a)nf(a)2

∫ ~k

~k1,~k2

β(~k1,~k2)

n−1∑
m=1

Θ̃(m)(~k1)Θ̃(n−m)(~k2) .

(2.29)

where we have used the linear equation Eq. (2.19) which gives

af ′(a) = −f(a)− f(a)2 +
3

2
Ωm(a)− f(a)

aH′(a)

H(a)
. (2.30)

We notice that the time dependence cancels from the equations if Ωm(a) = f(a)2, which is not

true in general, but turns out to be approximately true in our universe. Using the approximation

Ωm(a) ≈ f(a)2 (2.31)

is called the EdS approximation. This also is exactly true in the so-called Einstein de Sitter (EdS)

universe, which has

Ωm(a) = 1 , f(a) = 1 , D(a) = a , and
aH′(a)

H(a)
= −1

2
. (2.32)

So, using the EdS approximation, the time dependence cancels from Eq. (2.29), so we have the

following time-independent equations for the Fn and Gn kernels

nFn(~k1, . . . ,~kn)−Gn(~k1, . . . ,~kn) =
n−1∑
m=1

α(~k1;m,~km+1;n)

×Gm(~k1, . . . ,~km)Fn−m(~km+1, . . . ,~kn) ,

− Fn(~k1, . . . ,~kn) +

(
n+

1

2

)
Gn(~k1, . . . ,~kn) =

n−1∑
m=1

β(~k1;m,~km+1;n)

×Gm(~k1, . . . ,~km)Gn−m(~km+1, . . . ,~kn) ,

(2.33)

where ~ki;j ≡ ~ki+· · ·+~kj , which can be algebraically solved to give the famous dark-matter recursion
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Figure 2: Diagrammatic representation of solutions.

relations [7, 8]

Fn(~k1, . . . ,~kn) = sym.
~k1,...,~kn

n−1∑
m=1

Gm(~k1, . . . ,~km)

(2n+ 3)(n− 1)

(
(1 + 2n)α(~k1;m,~km+1;n)Fn−m(~km+1, . . . ,~kn)

+ 2β(~k1;m,~km+1;n)Gn−m(~km+1, . . . ,~kn)

)
,

Gn(~k1, . . . ,~kn) = sym.
~k1,...,~kn

n−1∑
m=1

Gm(~k1, . . . ,~km)

(2n+ 3)(n− 1)

(
3α(~k1;m,~km+1;n)Fn−m(~km+1, . . . ,~kn)+

+ 2nβ(~k1;m,~km+1;n)Gn−m(~km+1, . . . ,~kn)

)
,

(2.34)

where F1 = G1 = 1, and the Fn and Gn are always symmetrized over ~k1, . . . ,~kn, and we take

sym.
~k1,...,~kn

f(~k1, . . . ,~kn) ≡ 1

n!

∑
σ∈Sn

f(σ(~k1, . . . ,~kn)) . (2.35)

A diagrammatic representation of the solution is given in Fig. 2.

2.4 Observables, loops, and diagrams

The observables that we compute are correlation functions. For example, the two-point and three-

point correlation functions in Fourier space, which are called the power spectrum and bispectrum

〈δ(~k, a)δ(~k′, a)〉 = (2π)3δD(~k + ~k′)P (k) ,

〈δ(~k1, a)δ(~k2, a)δ(~k3, a)〉 = (2π)3δD(~k1 + ~k2 + ~k3)B(k1, k2, k3) .
(2.36)

The dependencies of P and B on the wavenumbers are due to imposing translation and rotation

invariance of the correlation functions.

In perturbation theory, we expand the fields as in Eq. (2.27). We then assume Gaussian initial

conditions (coming from inflation), and use Wick’s theorem to compute the connected correlations.

For example, let’s look at the one-loop power spectrum. We have

〈δ(~k, a)δ(~k′, a)〉 = 〈δ(1)(~k, a)δ(1)(~k′, a)〉+2〈δ(1)(~k, a)δ(3)(~k′, a)〉+〈δ(2)(~k, a)δ(2)(~k′, a)〉+ . . . . (2.37)
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Figure 3: Diagrammatic representation of the power spectrum.

The linear power spectrum is like the propagator

〈δ̃(1)(~k)δ̃(1)(~k′)〉 = (2π)3δD(~k + ~k′)P11(k) . (2.38)

Then, we have the 13 diagram

〈δ(1)(~k, a)δ(3)(~k′, a)〉 = D(a)4

∫ ~k′

~k1,~k2,~k3

F3(~k1,~k2,~k3)〈δ̃(1)(~k)δ̃(1)(~k1)δ̃(1)(~k2)δ̃(1)(~k3)〉

= 6D(a)4

∫ ~k′

~k1,~k2,~k3

F3(~k1,~k2,~k3)〈δ̃(1)(~k)δ̃(1)(~k1)〉〈δ̃(1)(~k2)δ̃(1)(~k3)〉

= (2π)3δD(~k + ~k′)6D(a)4P11(k)

∫
~q
F3(~q,−~q,~k)P11(q)

(2.39)

which also defines P13. For the 22 diagram, we do something similar to get

P22(k) = 2

∫
~q
F2(~q,~k − ~q)2P11(q)P11(|~k − ~q|) . (2.40)

For example, these kernels look like

F2(~k1,~k2) =
5

7
+
k̂1 · k̂2

2

(
k1

k2
+
k2

k1

)
+

2

7
(k̂1 · k̂2)2 (2.41)

and

F3(~q,−~q,~k) =− 97

1512
+
|~k − ~q|2

24k2
+

1195k2

6552|~k − ~q|2
− 19|~k − ~q|4

504q4
+
|~k − ~q|2k2

14q4
− 5k4

168q4

− k6

252|~k − ~q|2q4
+

211|~k − ~q|2
1512q2

− |
~k − ~q|4
72k2q2

− 187k2

1512q2
− k4

504|~k − ~q|2q2

− 19q2

504|~k − ~q|2
− q2

24k2
+

q4

72|~k − ~q|2k2

(2.42)

So ultimately, these are the kinds of integrals that we have to evaluate. The diagrammatic repre-

sentation is shown in Fig. 3.
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Figure 4: Diagrammatic representation of bispectrum.

There are four types of diagrams for the one-loop bispectrum, and one needs up to δ(4) to do

that. The total one-loop bispectrum is

B1-loop tot. = D(a)4B211 +D(a)6
(
B222 +B

(I)
321 +B

(II)
321 +B411

)
, (2.43)

where the tree-level bispectrum is

B211(k1, k2, k3) = 2F2(~k1,~k2)P11(k1)P11(k2) + 2 perms. , (2.44)

and the one-loop contributions are

B222(k1, k2, k3) = 8

∫
~q
P11(q)P11(|~k2 − ~q|)P11(|~k1 + ~q|)

× F2(−~q,~k1 + ~q)F2(~k1 + ~q,~k2 − ~q)F2(~k2 − ~q, ~q) ,

B
(I)
321(k1, k2, k3) = 6P11(k1)

∫
~q
P11(q)P11(|~k2 − ~q|)

× F3(−~q,−~k2 + ~q,−~k1)F2(~q,~k2 − ~q) + 5 perms. ,

B
(II)
321 (k1, k2, k3) = 6P11(k1)P11(k2)F2(~k1,~k2)

∫
~q
P11(q)F3(~k1, ~q,−~q) + 5 perms. ,

B411(k1, k2, k3) = 12P11(k1)P11(k2)

∫
~q
P11(q)F4(~q,−~q,−~k1,−~k2) + 2 perms. .

(2.45)

The diagrammatic representation is shown in Fig. 4.
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Figure 5: Plot of P11

2.5 What is P11?

We mentioned the early universe, Boltzmann codes, linear equations, the Dodelson book [6], etc.

A plot of P11(k) for a typical set of cosmological parameters As, ns, Ωm,0, and H0 is given in Fig. 5.

2.6 Counterterms

Notice that the dimensionless power spectrum becomes bigger than O(1) at quite a low scale,

but the integral in Eq. (2.39) goes all the way to infinity. This means that we are integrating

over modes where we do not have perturbative control. It turns out, however, that the integral is

convergent. But this is just an accident. There is no way that this integral will give us the right

number, since it is outside of the perturbative regime. Specifically, look at the UV limit

P13(k)→ − 61

630π2
k2P11(k)

∫ ΛUV

dq P11(q) ,

P22(k)→ 9

196π2
k4

∫ ΛUV

dq
P11(q)2

q2
,

(2.46)

The values of these integrals, even if not formally UV divergent, depend on ΛUV, and in any case

cannot be correct. This is where the counterterms come in.

Let’s go back to the stress tensor Eq. (2.13). To find the most general expression up to the

desired order, we first start by listing all of the T ijα that we can construct from ∂i∂jΦ, ∂iv
j , and
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εij . Then, we expand the ~xfl in terms of the velocity, and since all of the time dependencies of the

solutions are simply powers of D(a), the time integrals over the kernels κα can be done. Then,

one can find the minimal basis of operators. We will detail this procedure later.

At first order (again using tilde to mean that we stripped away all of the time dependent

factors), we have
1

ρ̄H2
∂i∂jτ

ij
(1) =

∂i∂j
k2

NL

(
D(a)3c2

sδ
ij δ̃(1) +D(a)2ε̃ij

)
, (2.47)

which when plugging into the EOM, leads to

δct(~k, a) ∼ −D(a)3c2
s

k2

k2
NL

δ̃(1)(~k)−D(a)2k
ikj

k2
NL

ε̃ij(~k) (2.48)

which ultimately leads to

∆P13(k) ∝ c2
s

k2

k2
NL

P11(k) ,

∆P22(k) ∝ cε
k4

k4
NL

.

(2.49)

Notice that these are exactly the forms of the UV limits of the loops. The values of c2
s and cε

remove the ΛUV dependence and allow us to set the correct value that matches the true universe.

It is interesting to look back at Eq. (2.42), where we see that only one term there corresponds to

the ∆P13 counterterm, meaning all of the other coefficients are predictions of the theory.

To renormalize the bispectrum, we have to go up to second order in the counterterms. The

expressions are longer, but the idea is exactly the same. There are 4 response and 6 stochastic free

coefficients. A nice check is that the UV limits of all of the loops can be absorbed by the available

free EFT coefficients.

2.7 Symmetries and kernel identities

Given that our observables are in terms of the Kn and Gn kernels, let’s look at some general

properties. First of all, the forms of the UV limits of the loops are determined by the symmetries,

and so have to be equivalent to local counterterms that one can add to τ ij . For dark matter, where

we have mass and momentum conservation, this means that the UV limit of P13 is k2P11, and the

UV limit of P22 is k4. Similar limits for the bispectrum and higher loops also apply. In general,

mass and momentum conservation implies that [7, 9]

lim
|~k1+···+~kn|→0

Fn(~k1, . . . ,~kn) ∝ |~k1 + · · ·+ ~kn|2 . (2.50)

Furthermore, from the equation for δ Eq. (2.12) (whose structure is also a consequence of mass

and momentum conservation), we can also see that

lim
|~k1+···+~kn−2|�~q

Fn(~k1, . . . ,~kn−2, ~q,−~q) ∝
|~k1 + · · ·+ ~kn−2|2

q2
. (2.51)
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This comes from the fact that

δ ∼ ∂i∂j
(
∂iδ

∂2

∂jδ

∂2

)
, (2.52)

and taking a ~q in the first δ on the right-hand side and a −~q in the second δ on the right-hand side

(taking ~q and −~q in the same factor of δ will make it just cancel out in the denominator). We

will see below that this is no longer the case for galaxies, which do not have mass and momentum

conservation.

Another interesting limit is when internal momenta go to zero. These limits are determined

by Galilean invariance (which one can see because it involves a space-independent transformation,

which is when momentum is going to zero). A consequence of that is [10]

lim
~q1,...,~qm→0

Fn+m(~k1, . . . ,~kn, ~q1, . . . , ~qm)→ n!

(n+m)!

~q1 ·
∑

i
~ki

q2
1

. . .
~qm ·

∑
i
~ki

q2
m

Fn(~k1, . . . ,~kn) . (2.53)

2.8 c2
s running

This is a quite nice test of the validity of our EFT approach [2], and indeed shows that it is

correct. Imagine that we have a good N -body simulation, which exactly solves the equations of

motion deep into the UV, Λ → ∞. Now, let us do the two following procedures to measure the

counterterm c2
s.

First, we can smooth the simulation with various cutoffs, say Λ1 = 1/6hMpc−1 and Λ2 =

1/3hMpc−1. This directly gives us the long-wavelength fields. We can then take various correla-

tions of these long-wavelength fields to extract c2
s(Λ). Schematically, we have

〈∂i∂j [τ ij ]Λ∂k∂l[τkl]Λ〉 ⊃ c2
s(Λ)〈∂i∂j [τ ij ]Λ∂2[δ]Λ〉+ . . . . (2.54)

So, doing this on two simulations, we have two different values c2
s(Λ1) and c2

s(Λ2).

Second, we can match to some observable, like the power spectrum, at a renormalization scale

kren.. This is typical of what we do in QFT. We say

c2
s,bare(Λ, kren.) = c2

s,ren.(kren.) + c2
s,ctr.(Λ) . (2.55)

The counterterm contribution c2
s,ctr.(Λ) has to exactly cancel the Λ dependence of the loop, e.g.

Eq. (2.46). Even if the loop is finite, this still has to cancel the dependence on Λ. Then, we

determine the ‘finite’ piece c2
s,ren.(kren.) by matching the power spectrum to data at the scale kren..

One can of course use any sufficiently large Λ. However, it is convenient to take Λ→∞ because this

means that we can safely ignore higher-derivative operators (suppressed by k/Λ) when matching

to the observables. Then, one can run to finite values of Λ using the fact that the total power

spectrum does not depend on the cutoff Λ. Defining

P tot.
13 (k,Λ, kren.) ≡ PΛ

13(k)− c2
s, bare(Λ, kren.)

k2

k2
NL

P11(k) , (2.56)

we have

P tot.
13 (k,Λ, kren.)− P tot.

13 (k,∞, kren.) = 0 , (2.57)
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Figure 6: Plot of running of c2s. Here, c2comb(Λ) is c2s,bare(Λ, kren.) in Eq. (2.55), and kext is k in Eq. (2.59).

which implies that

PΛ
13(k)− P∞13 (k)−

(
c2
s, bare(Λ, kren.)− c2

s, bare(∞, kren.)
) k2

k2
NL

P11(k) = 0 , (2.58)

and finally

c2
s,bare(Λ, kren.) = c2

s,bare(∞, kren.) +
PΛ

13(k)− P∞13 (k)

(k/kNL)2P11(k)
, (2.59)

or

c2
s,ctr.(Λ) = c2

s,ctr.(∞) +
PΛ

13(k)− P∞13 (k)

(k/kNL)2P11(k)
(2.60)

for k � Λ, and where PΛ
13(k) is the SPT loop with cutoff Λ. Fig. 6 shows how these two approaches

agree.

3 Biased tracers

Above we discussed the solution for CDM clustering, which as we saw is connected to early universe

physics by P11. CDM is the main component of the universe, so this is a crucial component

to understand. However, we do not directly observe CDM, so we have to connect it to other

observables. Here, we are concerned with the density of galaxies, which we do in fact observe. So

now we will connect the CDM distribution to the distribution of galaxies.

3.1 Bias expansion

Some general references are [11–17].
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The general expression for the density of galaxies is something like this:

δg(~x, t) =

∫ t

dt′H(t′)fg
(
∂i∂jΦ(~xfl, t

′), ∂ivj(~xfl, t
′), εij(~xfl, t

′);me,mp, α; . . . ; t, t′
)
, (3.1)

i.e. given by some complicated function fg of many different variables, integrated over the past

fluid element. It is impossible to know this function exactly, so what we do is Taylor expand this

function for the small fluctuations ∂i∂jΦ, ∂iv
j , and εij .

So, we must now write down the most general expression for a Galilean scalar integrated over

time, in an expansion in the number of fields and derivatives. For now, we will focus on the lowest

order in derivatives, and ignore the stochastic field εij . The building blocks of Galilean scalars are

the dimensionless tensors

rij ≡
2∂i∂jΦ

3Ωma2H2
, and pij ≡ −

D

aḊ
∂iv

j , (3.2)

such that their traces are the familiar fields from before δijrij = δ and δijpij = θ.

Overall, this means that at n-th order, we have

δ(n)
g (~x, t) =

∑
Om

∫ t

dt′H(t′)cOm(t, t′)[Om(~xfl(~x, t, t′), t′)](n) , (3.3)

where {Om} is the set of all contractions of rij and pij up to n-th order (the subscript m means

that the field starts at m-th order), and the coefficients cOm(t, t′) come from functionally Taylor

expanding Eq. (3.1), i.e. they contain the information on UV physics. We have this expansion so

far up to fifth order [17]. So, for example, for δ
(5)
g , we need to find all of the contractions up to

fifth order

{Om} = {δ, θ, δ2, δθ, θ2, r · r, r · p, p · p, . . . , p · r · p · r, . . . } . (3.4)

There are 130 such contractions. However, since we only go up to fifth order, we can set r
(1)
ij = p

(1)
ij

in the terms that start at fifth order. This leaves us with 63 contractions. Then, we will expand

the Om and the ~xfl in each term and take the n-th order terms. After doing this, the expression

in Eq. (3.3) has 151 terms.

Let’s look at them more closely. For each Om, we can write the expansion of the fluid element

in the form

[Om(~xfl(~x, t, t′), t′)](n) =

n−m+1∑
α=1

(
D(t′)
D(t)

)α+m−1

C(n)
Om,α(~x, t) , (3.5)

where we have used the EdS approximation for the time dependence. The term with α = 1 has

the most expansion of the velocity in ~xfl, while the term with α = n −m + 1 contains the term

with no expansion of ~xfl, but also has ~xfl terms.

Then, defining new time-dependent coefficients as the integrals

cOm,α(t) ≡
∫ t

dt′H(t′)cOm(t, t′)
(
D(t′)
D(t)

)α+m−1

, (3.6)
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C(m)
Om,1

C(m+1)
Om,2 C(m+1)

Om,1

C(m+2)
Om,3 C(m+2)

Om,2 C(m+2)
Om,1

+

++

O(m)
m

O(m+1)
m

O(m+2)
m

=

=

=

Figure 7: Diagrammatic representation of one way of using the recursion relations Eq. (3.8) and Eq. (3.9) to

determine the full set of bias functions C(n)
Om,α

in the fluid expansion of a seed function Om. The red arrows indicate

the use of the fluid recursion Eq. (3.9), while the blue arrows indicate the use of the completeness relation Eq. (3.8).

Thus, the terms in the red shading (α < n −m + 1) are determined by the fluid recursion Eq. (3.9) and the terms

in the blue shading (α = n−m+ 1) are determined by the completeness relation Eq. (3.8).

we get the most general bias expansion

δ(n)
g (~x, t) =

∑
Om

n−m+1∑
α=1

cOm,α(t)C(n)
Om,α(~x, t) . (3.7)

So the functions C(n)
Om,α(~x, t) essentially describe all of the possible types of signals at order n. But

we should check if they are actually independent functions. We’ll return to that soon, but first

let’s look at how we can use a recursion relation to compute these functions in an easy way (such

that we formally expand in ~xfl, but do not have to do it manually).

The recursion relation comes in two parts. The first is the equal-time completeness relation

O(n)
m (~x, t) =

n−m+1∑
α=1

C(n)
Om,α(~x, t) , (3.8)

which is trivially obtained by setting t = t′ in Eq. (3.5), and where O(n)
m is the standard expansion

of Om at n-th order in perturbations. The second, which captures the consequences of expanding

~xfl in Eq. (3.5), is the fluid recursion

C(n)
Om,α(~x, t) =

1

n− α−m+ 1

n−1∑
`=m+α−1

∂iC
(`)
Om,α(~x, t)

∂i
∂2
θ(n−`)(~x, t) , (3.9)

which is valid for n − α − m + 1 > 0. This recursion is reminiscent of the famous dark-matter

recursion relations [7], and provides, for the first time, a full generalization to generic biased tracers.

We give a diagrammatic representation of this recursion relation in Fig. 7.

A proof of this is given in detail in [17], but basically, we take d/dt of both sides of Eq. (3.5)

and use properties of the fluid element. We can see how to use the recursion relation in Fig. 7,

16



and we see that we only have to compute O(n)
m , which is made up of the dark-matter solutions of

the last lecture, and the rest are determined by simple contractions with ∂iθ/∂
2.

Our expansion Eq. (3.7) is fully non-local in time, since the functions C(n)
Om,α(~x, t) came from

expanding the fluid element that was integrated over all past times. We can compare this with

the local-in-time expansion, which has cOm(t, t′) = cOm(t)δD(t− t′)/H(t), which gives

δ
(n)
g,loc(~x, t) =

∑
Om

cOm(t)O(n)
m (~x, t) . (3.10)

3.2 Bias bases and kernels

Now that we have the most general bias expansion, we should ask if all of the 151 functions

C(5)
Om,α(~x, t) are actually independent. To answer this, we simply take a brute force approach. It

would be nice to have a more clever way to get directly to a complete basis. What we do is convert

to momentum space, where we obtain the kernels KOm,α5 (~k1, . . . ,~k5). We then look to see if, as

functions of ~ki, any kernels are linear combinations of other kernels. Specifically, what we do is

plug in 151 sets of ~ki and form a 151× 151 matrix, and then find the degeneracies of this matrix.

This isn’t too bad, but perhaps at higher orders, it is overkill.

The bottom line is that we end up with 29 basis elements for the non-local in time expansion,

δ(5)
g (~x, t) =

29∑
j=1

bj(t)B
(5)
j (~x, t) , (3.11)

and only 26 for the local-in-time expansion. This means that it is possible to detect non-local-in-

time evolution using the static pictures of galaxy clustering.

All in all, the above procedure allows us to define the kernels Kg
n, which are analogues to the

Fn of dark matter, such that

δ(n)
g (~k, a) = D(a)n

∫ ~k

~k1,...,~kn

Kg
n(~k1, . . . ,~kn)δ̃

(1)
~k1
· · · δ̃(1)

~kn
. (3.12)

These kernels depend on the bias parameters, e.g.

Kg
1 [b1] , Kg

2 [b1, b2, b5] , Kg
3 [b1, b2, b3, b5, b6, b8, b10] , and Kg

4 [b1, . . . , b15] . (3.13)

Since galaxies do not satisfy mass or momentum conservation, the kernels are less suppressed

in the UV limit, i.e.

lim
~ki�~q

Kg
n(~k1, . . . ,~kn−2, ~q,−~q) ∝

k0

q0
. (3.14)

However, since δg is still a Galilean scalar, the kernels satisfy the same IR limits [10]

lim
~q1,...,~qm→0

Kg
n+m(~k1, . . . ,~kn, ~q1, . . . , ~qm)→ n!

(n+m)!

~q1 ·
∑

i
~ki

q2
1

. . .
~qm ·

∑
i
~ki

q2
m

Kg
n(~k1, . . . ,~kn) .

(3.15)
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3.3 Bias renormalization

We compute loops in the same way that we did for DM, just with the Fn kernels replaced by Kg
n.

However, now that the UV limits of the kernels are different, this means that the UV limits of the

loops will be different.

For concreteness, let’s focus on fourth order [16]. The first thing we should check is that we

did not shift the average of the field from zero. To the order relevant here, we have

〈δg(~x)〉 ≈ 〈δ(2)
g (~x)〉 =

∫
~q
Kg

2 (~q,−~q)P11(q) =
−b1 + b2 + b5

2π2

∫
dq q2P11(q) , (3.16)

so we should really use the field δg − 〈δ(2)
g 〉. This is a zero mode, and so is irrelevant for our

present purposes, but it becomes important in redshift space. We also note that since number and

momentum density are not conserved for tracers, the loops P g13, Bg
411, and B

g,(II)
321 start at k0 (as

opposed to k2 for dark matter) as k → 0. As described in [18, 14], this is best understood as the

renormalization of lower-order bias parameters. For example, consider the power spectrum up to

one loop

P g(k) = P g11(k) + P g13(k) + P g22(k) . (3.17)

In particular, we have P g11(k) = b21P11(k), and the UV limits

P g13(k)→ − b1
21π2

(13b1 − 63b10 + 34b2 − 47b3 + 42b5 − 110b6 − 82b8)P11(k)

∫ ΛUV

dq q2P11(q) ,

(3.18)

P g22(k)→ (b1 − b2 − b5)2

π2

∫ ΛUV

dq q2P11(q)2 . (3.19)

Since they have the same form as a function of P11(k), we see that the UV limit of P g13 can be

absorbed by redefining b1. You can think of this as a β-function for the bias parameters, i.e. how

they change as a function of the UV cutoff. Renormalization of P g22 is done by stochastic terms.

3.4 Higher derivative renormalization

To add the higher-derivative counterterms we write our renormalized field [δg]R as

[δg]R = δg−〈δ(2)
g 〉+Oδg , (3.20)

where Oδg contains all of the higher derivative counterterms. Similar to what we did above in

expanding τ ij , we now expand a general non-local-in-time Galilean scalar. We find

k2
NLOδg = D3cg1∂

2δ̃(1) +D4

(
cg1∂i∂

2δ̃(1)∂iδ̃
(1)

∂2
+ cg2∂

2δ̃(2) − cg2∂i∂2δ̃(1)∂iδ̃
(1)

∂2

+ cg3∂
2(δ̃(1)δ̃(1)) + cg4∂

2

(
∂i∂j δ̃

(1)

∂2

∂i∂j δ̃
(1)

∂2

)
+ cg5∂iδ̃

(1)∂iδ̃
(1)

)
,

(3.21)

is the minimal set of possible terms. There are of course stochastic terms, but we’ll skip those for

lack of time. In this way, we renormalize O(k2P11) for P g13, O(k2P 2
11) for Bg

411 and B
g,(II)
321 . A nice
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way to check everything is to do the UV matching, which is determining the parameters cgi that

cancel the UV limits of the loops.

In some ways, galaxy renormalization is easier than DM renormalization. For DM, all renor-

malization is done through τ ij , so we had to correctly track its contribution through the equations

of motion. For galaxies, we just write down the EFT expansion directly at the level of the field

(since there are no equations of motion).

3.5 Redshift space

The distribution of galaxies is homogeneous and isotropic in the coordinates determined by the

Hubble flow ~x(a). However, since the redshift a that we observe is also affected by the motion of

the galaxies, the distribution is anisotropic in the measured coordinate

~xr(aobs.(a)) ≈ ~x(a) +
ẑ · ~v
aH

ẑ , (3.22)

where ẑ is the line of sight direction (i.e. where the telescope is pointed).

Ultimately, what this means is that the distribution of galaxies that we measure is related to

the one discussed above by a non-linear transformation depending on the velocity and the line of

sight

δr,g(~k, ẑ) = δg(~k) +

∫
d3x e−i

~k·~x
(

exp

[
−i(ẑ ·

~k)

aH
(ẑ · ~v(~x))

]
− 1

)
(1 + δg(~x)) . (3.23)

This is basically just a coordinate transformation using Eq. (3.22). The main thing to notice is

that because the density depends on ẑ now, isotropy is broken, and correlations can depend on

external wave vectors dotted with the line of sight. Expanding this out perturbatively, we have

δr,g = δg −
ẑiẑj

aHρ̄g
∂iπ

j
g +

ẑiẑj ẑkẑl

2(aH)2ρ̄g
∂i∂j(π

k
gv

l)

−
∏6
a=1 ẑ

ia

3!(aH)3ρ̄g
∂i1∂i2∂i3(πi4g v

i5vi6) +

∏8
a=1 ẑ

ia

4!(aH)4ρ̄g
∂i1∂i2∂i3∂i4(πi5g v

i6vi7vi8) + . . . .

(3.24)

This is now the new expression that we will compute loops with. This leads to new UV limits

of the loops that are not captured by the renormalization that we have done so far. To renormalize

this expression, we notice that the transformation involves products of fields at the same point,

which we normally call contact operators in QFT. These need to be separately renormalized. So,

we write

[δg]R = δg +Oρg/ρ̄g ,
[πig]R = ρgv

i + viOρg +Oiπg , (3.25)

[πigv
j ]R = ρgv

ivj + vivjOρg + viOjπg + vjOiπg +Oijπgv ,
[πigv

jvk]R = ρgv
ivjvk + vivjvkOρg + (vivjOkπg + 2 perms.) + (viOjkπgv + 2 perms.) +Oijk

πgv2
,

[πigv
jvkvl]R = ρgv

ivjvkvl + vivjvkvlOρg + (vivjvkOlπg + 3 perms.)

+ (vivjOklπgv + 5 perms.) + (viOjkl
πgv2

+ 3 perms.) +Oijkl
πgv3

,
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where all of the Oijk... are Galilean scalars, and we use these renormalized quantities in Eq. (3.24).

We get this form by demanding that the renormalized operators satisfy the same Galilean trans-

formation rules as the non-renormalized operators, and the form is important to insure overall

Galilean invariance. The bottom line is that we expand each Oijk... in the same way that we did

before, with free parameters in front of each independent term. Again, a good consistency check

is doing the UV matching. All of this is described in detail in [16].

3.6 Loop integrals

Br,g
222 ∼ 8

∫
~q
P11(q)P11(|~k2 − ~q|)P11(|~k1 + ~q|)

×
(

(~k1 · ẑ)2(~k2 · ẑ)2((~k1 + ~k2) · ẑ)2((~k2 − ~q) · ẑ)2(~q · ẑ)2((~k1 + ~q) · ẑ)2

q4|~k1 + ~q|4|~k2 − ~q|4
+ . . .

)
,

Doing Expand in Mathematica, there are 23, 000 terms in this diagram.

3.7 Non-Gaussianity

For a quick example of why we are doing any of this, let’s look at inflation. We’ll skip all of the

details, but roughly, if there are interactions in the action for the inflaton π [19],

Linflation ∼ π̇2 − c2
s(∂iπ)2 + f

(1)
NLπ̇

3 + f
(2)
NLπ̇(∂iπ)2 + . . . (3.26)

then the statistics of π will be non-Gaussian, described by these parameters fNL. The inflaton

eventually sources the density perturbations that get imprinted on dark matter, such that the

initial conditions for dark matter change

δ̃
(1)
NG(~k) = δ̃(1)(~k) + fNL

∫ ~k

~k1,~k2

W (~k1,~k2)
T (|~k1 + ~k2|)
T (k1)T (k2)

δ̃(1)(~k1)δ̃(1)(~k2) . (3.27)

Here, the W function comes from the derivative coupling in Eq. (3.26), and the T function (called

a transfer function) tells us how to convert from π to δ. The bottom line is that we now use this

new δ̃
(1)
NG as the initial conditions in all of the expressions for the solutions that we showed above.

It will give new possible shapes in the observables, but in order to be able to measure fNL, we

have to understand the gravitational part very well. That is what the EFT allows us to do.
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