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Short history on Chern numbers in integer QHE
TKN2 for periodic 1-particle Hamiltonian H in d “ 2 on `2pZ2,CLq

Parital diagonalization H –
ş‘

T2 dk Hk by Bloch-Floquet

P “ χpH ď µq –
ş‘

T2 dk Pk smooth Fermi projection below gap µ

ChpPq “ 2πi
ż

T2

dk
p2πq2

Tr
`

Pk rBk1Pk , Bk2Pk s
˘

P Z

Disordered analog for random family H “ pHωqωPΩ

ChpPq “ 2πi E Tr
`

x0|P
“

rX1,Ps, rX2,Ps
‰

|0y
˘

Index theorem (Connes, Bellissard, Avron.., 1980’s): Almost surely

ChpPq “ IndpPFPq P Z , F “
X1 ` iX2

|X1 ` iX2|

If ∆ Ă R Anderson localized, then µ P ∆ ÞÑ ChpPq constant
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Numerical computation of Chern number
Periodic system: implementation of k -integral, twisted BC

disordered system: compute P from H (costly), then above, or Kitaev

Topological photonic crystals: 100’s of bands, not feasible

Spectral localizer on `2pZ2,C2Lq is Hamiltonian in a (dual) Dirac trap

Lκ “

˜

´pH ´ µq κpX1 ´ iX2q

κpX1 ` iX2q H ´ µ

¸

Selfadjoint Lκ “ pLκq˚ with compact resolvent. Fact: gap at 0

Lκ,ρ finite volume restriction to r´ρ, ρs2. For κ small and ρ large:

ChpPq “
1
2

SigpLκ,ρq

Computation: only LDL necessary for Sig! No spectral calculus!
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Implementation for dirty p ` ip superconductor
Standard toy model (like disordered Harper or Haldane)
DOS of the localizer for κ “ 0.1 and ρ “ 20
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Looks harmless, however, note gap at 0
Spectral asymmetry: count number of positve/negative eigenvalues
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More numerics for dirty p ` ip superconductor
Disorder strength λ is increased

Low lying spectra of Hρ and Lκ,ρ For each realization: 1
2 Sig “ 1
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Eigenvalues of the Hamiltonian with disorder
 δ=-0.35, µ=0.25, ρ=30
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Eigenvalues of the spectral localizer with disorder
 δ=-0.35, µ=0.25, κ=0.03, ρ=30

Remarkable: even when H has only mobility gap, half-signature works!

Not covered by theorem stated next:
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Main theorem on spectral localizer

Theorem (with Terry Loring)

Let g “ }pH ´ µq´1}´1 be gap of insulator Hamiltonian H

Suppose

κ ă
12 g3

}H} }rX1 ` iX2,Hs}
(*)

and

ρ ą
2 g
κ

(**)

Then Lκ,ρ has gap g
2 at 0 and

ChpPq “ IndpPFPq “
1
2

SigpLκ,ρq

Constants not optimal Numerics: typically κ « 0.1, ρ « 20 sufficient

Proof: K -theory of fuzzy spheres or spectral flow (discussions...)
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Intuition: H topological mass term

Lκpλq “

˜

´λH κ pX1 ´ iX2q

κ pX1 ` iX2q λH

¸

, λ ě 0

Spectrum for λ “ 0 symmetric and with space quanta κ

σpLκp0qq

κ

0

Spectrum for λ “ 1: less regular, central gap open and asymmetry

σpLκp1qq

g{2

0

Spectral asymmetry determined by low-lying spectrum (finite volume!)
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First generalization: higher even dimension d

Cht1,...,dupPq “
p2iπq

d
2

d
2 !

ÿ

σPSd

p´1qσ Tr
´

x0|P
d
ź

j“1

∇σj P|0y
¯

For d “ 4 and Xd “ time, Cht1,...,4upPq magneto-electric response

(Dual) Dirac opeator from tγj , γiu “ 2δi,j

D “

d
ÿ

j“1

Xj b γj “

˜

0 D˚0
D0 0

¸

Spectral localizer:
Lκ “

˜

´pH ´ µq b 1 κD˚0
κD0 pH ´ µq b 1

¸

Finite volume restriction Lκ,ρ on Ranp|D| ď ρq

Under same condition (*) and (**) with bounded rD0,Hs,

Cht1,...,dupPq “
1
2

SigpLκ,ρq

Spectral localizer 8 / 21



Modification: odd dimension d
Chiral Hamiltonian with (mobility) gap at 0

H “ ´ J H J “

˜

0 A˚

A 0

¸

, J “

˜

1 0
0 ´1

¸

Also approximate chirality }H ` JHJ} ă 2g is actually sufficient
Odd Chern numbers (higher winding numbers)

Cht1,...,dupAq “
ipiπq

d´1
2

d !!

ÿ

σPSd

p´1qσ Tr
´

x0|
d
ź

j“1

pA´1∇σj Aq|0y
¯

Build odd spectral localizer from Dirac (not chiral for odd d)

Lκ “

˜

κD A˚

A ´κD

¸

Under same condition (*) and (**) with bounded rA,Ds

Cht1,...,dupAq “
1
2

SigpLκ,ρq
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Weak invariants (here winding numbers)
For chiral Hamiltonian (possibly d even), I Ă t1, . . . ,du with |I| odd

ChIpAq “
ipiπq

|I|´1
2

|I|!!

ÿ

σPSI

p´1qσ Tr
´

x0|
|I|
ź

j“1

pA´1∇σj Aq|0y
¯

Example: weak winding numbers Cht1upAq and Cht2upAq of graphene

(well-defined and topologlical even though only pseudogap)

Localizer from DI “
ř

jPI Xj b γj and H periodized in directions j R I

Lκ “

˜

κDI A˚per

Aper ´κDI

¸

Hper “

˜

0 A˚per

Aper 0

¸

Weak invariants given by half-signature density:

ChIpAq “
1
2

lim
ρÑ8

1
ρd´|I| SigpLκ,ρq P R

Spectral localizer 10 / 21



Numerical example of Cht1upAq in graphene
Graphene with κ “ 0.1 and volume r´ρ, ρs2 with ρ “ 20
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Half-signature density of Lκ,ρ « 14
41 «

1
3 “ Cht1upAq Why care?

Theorem (Semimetal BBC with Tom Stoiber)
Cht1upAq equal to surface density of flat band of edge states
of half-space graphene Hamiltonian cut on 2-axis

Numerical verification: works like a charm
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Z2-invariants via skew localizer
Works for all 16 AZ-classes with strong Z2 index

Focus: d “ 2 and odd TRS I˚HI “ H with I “ iσ2 (Kane-Mele, QSHE)

Fredholm T “ PFP satisfies I˚T t I “ T and thus well-defined

Ind2pT q “ dimpKerpT qqmod 2 P Z2

Real skew localizer from <pHq “ 1
2pH ` Hq and =pHq “ 1

2i pH ´ Hq

Lκ “

˜

=pHq ` κX1I <pHqI ` κX2

I <pHq ´ κX2 =pHq ´ κX1I

¸

“ Lκ “ ´pLκq˚

Theorem (with Doll)
If (*) and (**),

Ind2
`

PFP
˘

“ sgnpPfpLκ,ρqq

For 8 of 16 cases, skew localizer is off-diagonal & only det needed
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Non-hermitian, line-gapped 2d heterostructure

Lκpxq “

˜

´H κD0pxq˚

κD0pxq H˚

¸

also line-gapped, so SigpLκq defined
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Approximate zero modes of localizer for graphene

Lκ “

˜

´H κ pX1 ´ iX2q

κ pX1 ` iX2q H

¸

“ ´ J Lκ J , JHJ “ ´H

Vanishing signature (Chern number vanishes due to chiral symmetry)
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Approximate kernel of multiplicity 2 = number of Dirac points
Splitting between two levels « e´1{κ (phase space tunnelling)
Very large gap to first excited «

?
κ (as for double Dirac Hamiltonian)

Measures points on Fermi surface – stable under disordered perturb.
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Why it works so well (for general dimension d):
H periodic ideal semimetal (only Dirac/Weyl points at Fermi surface)

FL2
κF˚ “ ´κ2

d
ÿ

j“1

B2
kj
`

˜

pHk q
2 κ

řd
j“1 γjpBkj Hk q

κ
řd

j“1 γjpBkj Hk q pHk q
2

¸

Second oder differential operator on L2pTd ,C2Lq

As in semi-classical analysis with ~ “ κ

IMS localization isolates Dirac/Weyl points

At each such point, explicitly solvable double Dirac Hamiltonians

Each double Dirac has simple zero mode and a gap of order κ

Theorem (with Stoiber)
Lκ has as many eigenvalues ď κ as H has Dirac/Weyl points
Next excited level is Op

?
κq
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Weyl points of 3d systems (same strategy)

H “ Hp`ip ` δ

˜

0 S3 ` S˚3
S3 ` S˚3 0

¸

` λHdis
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ρ “ 7, so cube of size 15, δ “ 0.6, µ “ 1.2, λ “ 0.5, κ “ 0.1

Approximate kernel dimension counts number of Weyl points
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Left out:

Franca/Grushin (2023): length of Fermi surface in metals via localizer

with Doll (2021): Spin Chern numbers and alike (approximate sym.)

just add ”spin twist” to position

with Cerjan, Loring (to come): localizer for corner states

based on spatial symmetries (C2, inversion, reflection, ...)

other ”twists” with the operators implementing spatial sym.

In the future? extensions to certain interacting systems
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Proofs (case of odd chiral dimension):

Proposition (Why the technique it works)

If (*) and (**) hold,

L2
κ,ρ ě

g2

2

Proof:

L2
κ,ρ “

˜

AρA˚ρ 0
0 A˚ρAρ

¸

` κ2

˜

D2
ρ 0

0 D2
ρ

¸

` κ

˜

0 rDρ,Aρs
rDρ,Aρs˚ 0

¸

Last term is a perturbation controlled by (*)

First two terms positive (indeed: close to origin and away from it)

Now A˚A ě g2, but pA˚Aqρ ­“ A˚ρAρ

This issue can be dealt with by tapering argument!
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Lemma

D even function fρ : RÑ r0,1s with fρpxq “ 0 for |x | ě ρ

and fρpxq “ 1 for |x | ď ρ
2 such that }pf 1ρ}1 “

8
ρ

With this, f “ fρpDq “ fρp|D|q and 1ρ “ χp|D| ď ρq:

A˚ρAρ “ 1ρA˚1ρA1ρ ě 1ρA˚f 2A1ρ
“ 1ρfA˚Af1ρ ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ
ě g2 f 2 ` 1ρ

`

rA˚, f sfA` fA˚rf ,As
˘

1ρ

Due to below, A˚ρAρ indeed positive close to origin for ρ large ... l

Proposition (Bratelli-Robinson)

For f : RÑ R with Fourier transform defined without
?

2π,

}rf pDq,As} ď }pf 1}1 }rD,As}
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Proof by spectral flow (based on Phillips’ results)
Using SF “ Ind for phase U “ A|A|´1 and Π “ χpD ą 0q Hardy:

ChdpAq “ IndpΠAΠ` 1´ Πq “ IndpΠUΠ` 1´ Πq

“ SFpU˚DU,Dq “ SFpκU˚DU, κDq

“ SF

˜˜

U 0
0 1

¸˚˜

κD 0
0 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

U 0
0 1

¸˚˜

κD 1
1 ´κD

¸˜

U 0
0 1

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κU˚DU U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

“ SF

˜˜

κD U
U˚ ´κD

¸

,

˜

κD 0
0 ´κD

¸¸

Now localize and use SF “ 1
2 Sig-Diff on paths of selfadjoint matrices l
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