The spectral localizer as numerical tool for topological materials

Hermann Schulz-Baldes with
Terry Loring, Nora Doll, Tom Stoiber, Lars Koekenbier, Alex Cerjan
ETH, July 2023

Short history on Chern numbers in integer QHE

TKN_{2} for periodic 1-particle Hamiltonian H in $d=2$ on $\ell^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{L}\right)$
Parital diagonalization $H \cong \int_{\mathbb{T}^{2}}^{\oplus} d k H_{k}$ by Bloch-Floquet
$P=\chi(H \leqslant \mu) \cong \int_{\mathbb{T}^{2}}^{\oplus} d k P_{k}$ smooth Fermi projection below gap μ

$$
\operatorname{Ch}(P)=2 \pi i \int_{\mathbb{T}^{2}} \frac{d k}{(2 \pi)^{2}} \operatorname{Tr}\left(P_{k}\left[\partial_{k_{1}} P_{k}, \partial_{k_{2}} P_{k}\right]\right) \in \mathbb{Z}
$$

Disordered analog for random family $H=\left(H_{\omega}\right)_{\omega \in \Omega}$

$$
\operatorname{Ch}(P)=2 \pi i \mathbb{E} \operatorname{Tr}\left(\langle 0| P\left[\left[X_{1}, P\right],\left[X_{2}, P\right]\right]|0\rangle\right)
$$

Index theorem (Connes, Bellissard, Avron.., 1980's): Almost surely

$$
\operatorname{Ch}(P)=\operatorname{Ind}(P F P) \in \mathbb{Z} \quad, \quad F=\frac{X_{1}+i X_{2}}{\left|X_{1}+i X_{2}\right|}
$$

If $\Delta \subset \mathbb{R}$ Anderson localized, then $\mu \in \Delta \mapsto \operatorname{Ch}(P)$ constant

Numerical computation of Chern number

Periodic system: implementation of k-integral, twisted BC disordered system: compute P from H (costly), then above, or Kitaev Topological photonic crystals: 100's of bands, not feasible Spectral localizer on $\ell^{2}\left(\mathbb{Z}^{2}, \mathbb{C}^{2 L}\right)$ is Hamiltonian in a (dual) Dirac trap

$$
L_{\kappa}=\left(\begin{array}{cc}
-(H-\mu) & \kappa\left(X_{1}-i X_{2}\right) \\
\kappa\left(X_{1}+i X_{2}\right) & H-\mu
\end{array}\right)
$$

Selfadjoint $L_{\kappa}=\left(L_{\kappa}\right)^{*}$ with compact resolvent.
Fact: gap at 0
$L_{\kappa, \rho}$ finite volume restriction to $[-\rho, \rho]^{2}$. For κ small and ρ large:

$$
\operatorname{Ch}(P)=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

Computation: only LDL necessary for Sig! No spectral calculus!

Implementation for dirty $p+i p$ superconductor

Standard toy model (like disordered Harper or Haldane)
DOS of the localizer for $\kappa=0.1$ and $\rho=20$

Looks harmless, however, note gap at 0
Spectral asymmetry: count number of positve/negative eigenvalues

More numerics for dirty $p+i p$ superconductor

Disorder strength λ is increased
Low lying spectra of H_{ρ} and $L_{\kappa, \rho}$
For each realization: $\frac{1}{2} \mathrm{Sig}=1$

Remarkable: even when H has only mobility gap, half-signature works! Not covered by theorem stated next:

Main theorem on spectral localizer

Theorem (with Terry Loring)
Let $g=\left\|(H-\mu)^{-1}\right\|^{-1}$ be gap of insulator Hamiltonian H
Suppose

$$
\begin{equation*}
\kappa<\frac{12 g^{3}}{\|H\|\left\|\left[X_{1}+i X_{2}, H\right]\right\|} \tag{*}
\end{equation*}
$$

and

$$
\begin{equation*}
\rho>\frac{2 g}{\kappa} \tag{**}
\end{equation*}
$$

Then $L_{\kappa, \rho}$ has gap $\frac{g}{2}$ at 0 and

$$
\operatorname{Ch}(P)=\operatorname{Ind}(P F P)=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

Constants not optimal Numerics: typically $\kappa \approx 0.1, \rho \approx 20$ sufficient Proof: K-theory of fuzzy spheres or spectral flow (discussions...)

Intuition: H topological mass term

$$
L_{\kappa}(\lambda)=\left(\begin{array}{cc}
-\lambda H & \kappa\left(X_{1}-i X_{2}\right) \\
\kappa\left(X_{1}+i X_{2}\right) & \lambda H
\end{array}\right) \quad, \quad \lambda \geqslant 0
$$

Spectrum for $\lambda=0$ symmetric and with space quanta κ

Spectrum for $\lambda=1$: less regular, central gap open and asymmetry

Spectral asymmetry determined by low-lying spectrum (finite volume!)

First generalization: higher even dimension d

$$
\mathrm{Ch}_{\{1, \ldots, d\}}(P)=\frac{(2 i \pi)^{\frac{d}{2}}}{\frac{d}{2}!} \sum_{\sigma \in S_{d}}(-1)^{\sigma} \operatorname{Tr}\left(\langle 0| P \prod_{j=1}^{d} \nabla_{\sigma_{j}} P|0\rangle\right)
$$

For $d=4$ and $X_{d}=$ time, $\mathrm{Ch}_{\{1, \ldots, 4\}}(P)$ magneto-electric response
(Dual) Dirac opeator from $\left\{\gamma_{j}, \gamma_{i}\right\}=2 \delta_{i, j}$

$$
D=\sum_{j=1}^{d} X_{j} \otimes \gamma_{j}=\left(\begin{array}{cc}
0 & D_{0}^{*} \\
D_{0} & 0
\end{array}\right)
$$

Spectral localizer:

$$
L_{\kappa}=\left(\begin{array}{cc}
-(H-\mu) \otimes \mathbf{1} & \kappa D_{0}^{*} \\
\kappa D_{0} & (H-\mu) \otimes \mathbf{1}
\end{array}\right)
$$

Finite volume restriction $L_{\kappa, \rho}$ on $\operatorname{Ran}(|D| \leqslant \rho)$
Under same condition (*) and (**) with bounded $\left[D_{0}, H\right.$,

$$
\mathrm{Ch}_{\{1, \ldots, d\}}(P)=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

Modification: odd dimension d

Chiral Hamiltonian with (mobility) gap at 0

$$
H=-J H J=\left(\begin{array}{cc}
0 & A^{*} \\
A & 0
\end{array}\right) \quad, \quad J=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Also approximate chirality $\|H+J H J\|<2 g$ is actually sufficient Odd Chern numbers (higher winding numbers)

$$
\mathrm{Ch}_{\{1, \ldots, d\}}(A)=\frac{i(i \pi)^{\frac{d-1}{2}}}{d!!} \sum_{\sigma \in S_{d}}(-1)^{\sigma} \operatorname{Tr}\left(\langle 0| \prod_{j=1}^{d}\left(A^{-1} \nabla_{\sigma_{j}} A\right)|0\rangle\right)
$$

Build odd spectral localizer from Dirac (not chiral for odd d)

$$
L_{\kappa}=\left(\begin{array}{cc}
\kappa D & A^{*} \\
A & -\kappa D
\end{array}\right)
$$

Under same condition (*) and (**) with bounded $[A, D]$

$$
\mathrm{Ch}_{\{1, \ldots, d\}}(A)=\frac{1}{2} \operatorname{Sig}\left(L_{\kappa, \rho}\right)
$$

Weak invariants (here winding numbers)

For chiral Hamiltonian (possibly d even), $I \subset\{1, \ldots, d\}$ with $|\||$ odd

$$
\mathrm{Ch}_{/}(A)=\frac{i(i \pi)^{\frac{\mid l-1}{2}}}{|| |!!} \sum_{\sigma \in \mathcal{S}_{l}}(-1)^{\sigma} \operatorname{Tr}\left(\langle 0| \prod_{j=1}^{| |}\left(A^{-1} \nabla_{\sigma_{j}} A\right)|0\rangle\right)
$$

Example: weak winding numbers $\mathrm{Ch}_{\{1\}}(A)$ and $\mathrm{Ch}_{\{2\}}(A)$ of graphene (well-defined and topologlical even though only pseudogap)
Localizer from $D_{l}=\sum_{j \in I} X_{j} \otimes \gamma_{j}$ and H periodized in directions $j \not \equiv I$

$$
L_{\kappa}=\left(\begin{array}{cc}
\kappa D_{l} & A_{\mathrm{per}}^{*} \\
A_{\mathrm{per}} & -\kappa D_{l}
\end{array}\right) \quad H_{\mathrm{per}}=\left(\begin{array}{cc}
0 & A_{\mathrm{per}}^{*} \\
A_{\mathrm{per}} & 0
\end{array}\right)
$$

Weak invariants given by half-signature density:

$$
\mathrm{Ch}_{/}(A)=\frac{1}{2} \lim _{\rho \rightarrow \infty} \frac{1}{\rho^{d-|| |}} \operatorname{Sig}\left(L_{\kappa, \rho}\right) \in \mathbb{R}
$$

Numerical example of $\mathrm{Ch}_{\{1\}}(A)$ in graphene

Graphene with $\kappa=0.1$ and volume $[-\rho, \rho]^{2}$ with $\rho=20$

Half-signature density of $L_{\kappa, \rho} \approx \frac{14}{41} \approx \frac{1}{3}=\mathrm{Ch}_{\{1\}}(A)$
Why care?
Theorem (Semimetal BBC with Tom Stoiber)
$\mathrm{Ch}_{\{1\}}(A)$ equal to surface density of flat band of edge states of half-space graphene Hamiltonian cut on 2-axis

Numerical verification: works like a charm

\mathbb{Z}_{2}-invariants via skew localizer

Works for all 16 AZ-classes with strong \mathbb{Z}_{2} index
Focus: $d=2$ and odd TRS $/ * \bar{H} I=H$ with $I=i \sigma_{2}$ (Kane-Mele, QSHE)
Fredholm $T=$ PFP satisfies $I^{*} T^{t} I=T$ and thus well-defined

$$
\operatorname{Ind}_{2}(T)=\operatorname{dim}(\operatorname{Ker}(T)) \bmod 2 \in \mathbb{Z}_{2}
$$

Real skew localizer from $\Re(H)=\frac{1}{2}(H+\bar{H})$ and $\Im(H)=\frac{1}{2 \lambda}(H-\bar{H})$

$$
L_{\kappa}=\left(\begin{array}{ll}
\Im(H)+\kappa X_{1} I & \Re(H) I+\kappa X_{2} \\
\Re \Re(H)-\kappa X_{2} & \Im(H)-\kappa X_{1} I
\end{array}\right)=\overline{L_{\kappa}}=-\left(L_{\kappa}\right)^{*}
$$

Theorem (with Doll)

If (*) and (**),

$$
\operatorname{Ind}_{2}(P F P)=\operatorname{sgn}\left(\operatorname{Pf}\left(L_{\kappa, \rho}\right)\right)
$$

For 8 of 16 cases, skew localizer is off-diagonal \& only det needed

Non-hermitian, line-gapped 2d heterostructure

$$
L_{\kappa}(x)=\left(\begin{array}{cc}
-H & \kappa D_{0}(x)^{*} \\
\kappa D_{0}(x) & H^{*}
\end{array}\right)
$$ also line-gapped, so $\operatorname{Sig}\left(L_{\kappa}\right)$ defined

Position, x

Position, x

Position, x

Position, x

Position, x

Approximate zero modes of localizer for graphene

$$
L_{\kappa}=\left(\begin{array}{cc}
-H & \kappa\left(X_{1}-i X_{2}\right) \\
\kappa\left(X_{1}+i X_{2}\right) & H
\end{array}\right)=-J L_{\kappa} J \quad, \quad J H J=-H
$$

Vanishing signature (Chern number vanishes due to chiral symmetry)

Approximate kernel of multiplicity $2=$ number of Dirac points Splitting between two levels $\approx e^{-1 / \kappa}$ (phase space tunnelling) Very large gap to first excited $\approx \sqrt{\kappa}$ (as for double Dirac Hamiltonian) Measures points on Fermi surface - stable under disordered perturb.

Why it works so well (for general dimension d):

H periodic ideal semimetal (only Dirac/Weyl points at Fermi surface)

$$
\mathcal{F} L_{\kappa}^{2} \mathcal{F}^{*}=-\kappa^{2} \sum_{j=1}^{d} \partial_{k_{j}}^{2}+\left(\begin{array}{cc}
\left(H_{k}\right)^{2} & \kappa \sum_{j=1}^{d} \gamma_{j}\left(\partial_{k_{j}} H_{k}\right) \\
\kappa \sum_{j=1}^{d} \gamma_{j}\left(\partial_{k_{j}} H_{k}\right) & \left(H_{k}\right)^{2}
\end{array}\right)
$$

Second oder differential operator on $L^{2}\left(\mathbb{T}^{d}, \mathbb{C}^{2 L}\right)$
As in semi-classical analysis with $\hbar=\kappa$
IMS localization isolates Dirac/Weyl points
At each such point, explicitly solvable double Dirac Hamiltonians
Each double Dirac has simple zero mode and a gap of order κ
Theorem (with Stoiber)
L_{κ} has as many eigenvalues $\leqslant \kappa$ as H has Dirac/Weyl points
Next excited level is $\mathcal{O}(\sqrt{\kappa})$

Weyl points of 3d systems (same strategy)

$$
H=H_{p+i p}+\delta\left(\begin{array}{cc}
0 & S_{3}+S_{3}^{*} \\
S_{3}+S_{3}^{*} & 0
\end{array}\right)+\lambda H_{\mathrm{dis}}
$$

$\rho=7$, so cube of size $15, \delta=0.6, \mu=1.2, \lambda=0.5, \kappa=0.1$
Approximate kernel dimension counts number of Weyl points

Left out:

Franca/Grushin (2023): length of Fermi surface in metals via localizer
with Doll (2021): Spin Chern numbers and alike (approximate sym.) just add "spin twist" to position
with Cerjan, Loring (to come): localizer for corner states based on spatial symmetries (C_{2}, inversion, reflection, ...) other "twists" with the operators implementing spatial sym.

In the future? extensions to certain interacting systems

Proofs (case of odd chiral dimension):

Proposition (Why the technique it works)

If (*) and (**) hold,

$$
L_{\kappa, \rho}^{2} \geqslant \frac{g^{2}}{2}
$$

Proof:

$$
L_{\kappa, \rho}^{2}=\left(\begin{array}{cc}
A_{\rho} A_{\rho}^{*} & 0 \\
0 & A_{\rho}^{*} A_{\rho}
\end{array}\right)+\kappa^{2}\left(\begin{array}{cc}
D_{\rho}^{2} & 0 \\
0 & D_{\rho}^{2}
\end{array}\right)+\kappa\left(\begin{array}{cc}
0 & {\left[D_{\rho}, A_{\rho}\right]} \\
{\left[D_{\rho}, A_{\rho}\right]^{*}} & 0
\end{array}\right)
$$

Last term is a perturbation controlled by (*)
First two terms positive (indeed: close to origin and away from it) Now $A^{*} A \geqslant g^{2}$, but $\left(A^{*} A\right)_{\rho} \neq A_{\rho}^{*} A_{\rho}$
This issue can be dealt with by tapering argument!

Lemma

\exists even function $f_{\rho}: \mathbb{R} \rightarrow[0,1]$ with $f_{\rho}(x)=0$ for $|x| \geqslant \rho$ and $f_{\rho}(x)=1$ for $|x| \leqslant \frac{\rho}{2}$ such that $\left\|\hat{f}_{\rho}^{\prime}\right\|_{1}=\frac{8}{\rho}$

With this, $f=f_{\rho}(D)=f_{\rho}(|D|)$ and $\mathbf{1}_{\rho}=\chi(|D| \leqslant \rho)$:

$$
\begin{aligned}
A_{\rho}^{*} A_{\rho} & =\mathbf{1}_{\rho} A^{*} \mathbf{1}_{\rho} A \mathbf{1}_{\rho} \geqslant \mathbf{1}_{\rho} A^{*} f^{2} A \mathbf{1}_{\rho} \\
& =\mathbf{1}_{\rho} f A^{*} A f \mathbf{1}_{\rho}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho} \\
& \geqslant g^{2} f^{2}+\mathbf{1}_{\rho}\left(\left[A^{*}, f\right] f A+f A^{*}[f, A]\right) \mathbf{1}_{\rho}
\end{aligned}
$$

Due to below, $A_{\rho}^{*} A_{\rho}$ indeed positive close to origin for ρ large ...

Proposition (Bratelli-Robinson)

For $f: \mathbb{R} \rightarrow \mathbb{R}$ with Fourier transform defined without $\sqrt{2 \pi}$,

$$
\|[f(D), A]\| \leqslant\left\|\hat{f^{\prime}}\right\|_{1}\|[D, A]\|
$$

Proof by spectral flow (based on Phillips' results)

 Using $\mathrm{SF}=$ Ind for phase $U=A|A|^{-1}$ and $\Pi=\chi(D>0)$ Hardy:$$
\begin{aligned}
\mathrm{Ch}_{d}(A) & =\operatorname{Ind}(\Pi A \Pi+\mathbf{1}-\Pi)=\operatorname{Ind}(\Pi U \Pi+\mathbf{1}-\Pi) \\
& =\operatorname{SF}\left(U^{*} D U, D\right)=\operatorname{SF}\left(\kappa U^{*} D U, \kappa D\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{ll}
U & 0 \\
0 & 1
\end{array}\right)^{*}\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\left(\begin{array}{ll}
U & 0 \\
0 & \mathbf{1}
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{ll}
U & 0 \\
0 & 1
\end{array}\right)^{*}\left(\begin{array}{cc}
\kappa D & \mathbf{1} \\
\mathbf{1} & -\kappa D
\end{array}\right)\left(\begin{array}{cc}
U & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{cc}
\kappa U^{*} D U & U \\
U^{*} & -\kappa D
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right) \\
& =\operatorname{SF}\left(\left(\begin{array}{cc}
\kappa D & U \\
U^{*} & -\kappa D
\end{array}\right),\left(\begin{array}{cc}
\kappa D & 0 \\
0 & -\kappa D
\end{array}\right)\right)
\end{aligned}
$$

Now localize and use SF $=\frac{1}{2}$ Sig-Diff on paths of selfadjoint matrices \square

