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Introduction

Twisted bilayer graphene (TBG)
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Introduction

Twisted bilayer graphene (TBG)
* bottom layer in the plane > =
gle 6 around the 2 axis

_g, top layer in the plane >z = g (d ~ 6.45 bohr)

e twist an
. 3t ¥
Moiré scale
a
an = _0 5~ apf~' (small twist angle)
2 sin 5

TBG at “magic” angles (e.g. 6 ~ 1.1°) ~ honeycomb lattice of quantum dots

e mean site occupation can be tuned by gating
» magnetic flux per moiré cell ® = B|Qy| ~ &g =2 for 6 ~ 1°and B ~ 20T

—  tunable quantum material
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Twisted bilayer graphene (TBG)

e bottom layer in the plane z = —%, top layer in the plane >z = % (d ~ 6.45 bohr)

e twist angle 6 around the 2 axis

Unconventional(?) superconducting phases
for some “magic” angles ¢
(Cao et al., Nature 18, 4000+ citations)

Rxx (kQ)B-ﬂ] 5 N |

M1, 6=1.16°

TBG phase diagram at twist angle 6 = 1.16°

-1.8 -1.6 -14 -1.2
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Twisted bilayer graphene (TBG)

e bottom layer in the plane z = —g, top layer in the plane >z = %

e twist angle 6 around the 2 axis

"~1.;i;:.,

Small twist angles

 moiré pattern of size ~ 0 'a: 6 = 1.16° = ~11,000 carbon atoms/moiré cell
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Twisted bilayer graphene (TBG)

e bottom layer in the plane z = —g, top layer in the plane >z = %

e twist angle 6 around the 2 axis

Small twist angles
 moiré pattern of size ~ 0 'a: 6 = 1.16° = ~11,000 carbon atoms/moiré cell

* most theoretical/numerical studies based on Bistritzer-MacDonald model (°’11)
Effective model at the moiré scale; two empirical parameters waa, wap

Some math papers: Becker, Embree, Wittsten & Zworski ’20, Luskin &
Watson ’21, Bal, Cazeaux, Massatt, Quinn ’22, ...



Introduction

Derivation of a BM-like model from first principles

A possible approach (Carr-Fang-Zhu-Kaxiras ’19, Luskin-Watson ’22):

DFT calculations

!

Tight-binding model (parameterized using Wannier functions)

!

Continuous model at the moiré scale

Alternative approach followed here

DFT calculations

!

Continuous model at the moiré scale
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1. A simple (formal) derivation of moiré scale models from DFT

C, Garrigue, Gontier, Phys. Rev. B °23

2. Mathematical analysis of Kohn-Sham Hamiltonians for moiré materials

Homogenization methods:
C, Garrigue, Gontier, SIAM J. Math. Anal. ’23

Semiclassical analysis (better suited for TBG at 1st magic angle?):
C, Meng, in preparation
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)
Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2NV electrons, M/ nuclei with charge density
M
P (r) = Z zmd(r—R,,), ¢ € C°(R?), radial, nonnegative, s.t. o =1
R3

m=1
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)
Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2NV electrons, M/ nuclei with charge density
M
P (r) = Z zmd(r—R,,), ¢ € C°(R?), radial, nonnegative, s.t. o =1
R3

m=1

Egs = inf E"5(y)

vekn

Ky = {7 € S(LARY) N & (LAR?), 0 < v < 1, Tr(y) = N, Tr(—Ay) < oo}

(¢ € L*(R®), (¢, ¢5)2 = i, mi € R

+00
o0 Ognzély ni:Na
yeKN & v=> mnile) (s with ;

i=1 o0
¢; € H'(R?), ZnZHV@H%Q < o0
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)
Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2NV electrons, M/ nuclei with charge density
M

P (r) = Z zmd(r—R,,), ¢ € C°(R?), radial, nonnegative, s.t. o =1
R3

m=1

Egs = inf E"5(y)

vekn

Ky = {7 € S(LARY) N & (LAR?), 0 < v < 1, Tr(y) = N, Tr(—Ay) < oo}

E"(y) = Tr (=Ay) + EY(p, — p™ )+ E*(p,) with “p.(r) = 2y(r,r)’
kinetic energy Hartree term  exchange—correlation

B = [ [ B
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)

ER(y) = Tr(=Ay) + EM(py — p™)+ E(py)  with “p,(r) =2y(r,x)’
(. -~ 7 . - 4 N’
kinetic energy Hartree term  exchange—correlation

Caveat: no explicit expression of the exact £*° functional
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)

ER(y) = Tr(=Ay) + EM(py — p™)+ E(py)  with “p,(r) =2y(r,x)’
(. -~ 7 . - 4 N’
kinetic energy Hartree term  exchange—correlation

Caveat: no explicit expression of the exact £*° functional

Fortunately, £ only represents about 10% of the total energy and can be
successfully approximated (£*° = 0 = reduced Hartree-Fock - rHF)

LN fwos - PWOI
EBO8::: v
PBEsol oo

et AL\ | EXX“” Main approximations actually used in pratice

“TevPBE | 7=

PBEO BP86 (Burke et al. ’14)
o WEESDAEES " .
B88 PZ 8] TPSS"s # of citations the B3LYP paper (Web of Science): 72,237

AM05 GGog PWECEIT



1 - A simple (formal) derivation of moiré scale models from DFT 8

Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)

ER(y) = Tr(=Ay) + EM(py — p™)+ E(py)  with “p,(r) =2y(r,x)’
(. -~ 7 . - 4 N’
kinetic energy Hartree term  exchange—correlation

Caveat: no explicit expression of the exact £*° functional

Fortunately, £ only represents about 10% of the total energy and can be
successfully approximated (£*° = 0 = reduced Hartree-Fock - rHF)

;" PWOI

wB3a7
A BNLOS
MO6-L
EBOS KMLYP V5LYP

PBESol |
el B RO FAVAC EXX“” Main approximations actually used in pratice
“YevPBE |
PBEO BP86 (Burke et al. ’14)
fgmﬁylsyggﬁ*LSDAsxRpA # of citations the B3LYP Web of Science): 72,237
s PZB] TESS of citations the paper (Web of Science): 72,
Mathematical justification: LSDA (Lewin-Lieb-Seiringer'19)  E¥gpa(p) = —Cp [ps p*/?

Existence of a ground-state for neutral molecules:
L1eb Simon ’77, Lions ’83 Solovej ’91 Anantharaman-C °09
Hartree-Fock rHF LSDA
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Kohn-Sham equations for finite systems (rHF and LSDA)

2

1 XC nuc — XC XC
Hyp=—=sA+Vi+ Vi, V= ("= p")x]- 7 Vi) =o(o(r)

V=1 o) (Hp)+0 with Ran(d) C Ker(Hyp —ep),0 <0 =0"<1

L “pV(r) = 29 (r, )7, s P’ =2Tr(yY) = 2N

€1 ENEN+L 0
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Kohn-Sham equations for periodic crystals (rHF and LSDA)

i

1 XC nuc XC XC
Hper - _§A + Vi)lgr + Vi)em _A‘/;;)Igr — 47T(pger T pper)? %er<r> = <pger<r>)

’yger =1 (—00,eR) (Hper>

) = 21 ol = 2TH40) = 2N
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Kohn-Sham equations for periodic crystals (rHF and LSDA)

i

1
Hper = =58+ Voo + Vo, —AVj = dm o), Vos(r)

0
per per’ per (pper o pper per

fyger — ]1 (—OO,€F) (Hper>

) = 21 ol = 2TH40) = 2N

Mathematical justification by thermodynamic limit (for rHF)

* Catto-Le Bris-Lions *01: cluster to crystal for p . = Z OR
ReZ3

e E-Deleurence-Lewin ’08: periodic supercell to crystal for generic p

= 0*(pper(r))

nuc
per

(closer to numerical practice, also works for crystals with local defects)
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Kohn-Sham equations for disordered crystals (stationary random nuclear charge)

Py (T)

77777777777777777777777777777777777777777
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Kohn-Sham equations for disordered crystals (Yukawa interaction)

C, Lahbabi, Lewin 13
(

1
Hy= —SA+ VIV, (=A+ eV = dm(pl — o), V2(r) = v(pl(x)

) /YB — ]1(—00,5F)(Hw)

L oo(r) =290, 0)", E([fyep) =2N

p), V] Ve stationary functions, H,_, v.: self-adjoint ergodic operators on L%(R?)
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Kohn-Sham equations for disordered crystals (Yukawa interaction)
C, Lahbabi, Lewin ’13

( 1
Ho= —SA+ VISV, (=A 4wV = dm(ol) — o), V(1) = v(pl(x)

) 72 — ]l(—oo,gF)(Hw)

L oo(r) =290, 0)", E([fyep) =2N

p), V] Ve stationary functions, H,_, v.: self-adjoint ergodic operators on L%(R?)

Roadmap (rHF model):
1. derive formally a variational Kohn-Sham model for this system

2. show existence and uniqueness of the ground-state density
3. show existence and uniqueness of the stationary Hartree potential
4. show that the ergodic Schrodinger operator has suitable properties

5. justify the formal model by thermodynamic limit (periodic supercell)
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Kohn-Sham equations for disordered crystals (Yukawa interaction)

C, Lahbabi, Lewin 13
(

w

1
Ho= —SA+ VISV, (=A 4wV = dm(ol) — o), V(1) = v(pl(x)

) 72 — ]1(—00,5F)(Hw)

L oo(r) =290, 0)", E([fyep) =2N

p), V] Ve stationary functions, H,_, v.: self-adjoint ergodic operators on L%(R?)

Roadmap (rHF model):

1. derive formally a variational Kohn-Sham model for this system

2. show existence and uniqueness of the ground-state density

3. show existence and uniqueness of the stationary Hartree potential
for Coulomb interaction (x = 0), we were not able to complete Step 3

Reason: for a given stationary p, with zero mean, the Poisson equation
—AV,, = 47 p,, has no stationary solution in general (see e.g. Papanicolaou-Varadhan ’82)



1 - A simple (formal) derivation of moiré scale models from DFT 15

Twisted bilayer graphene (TBG)

* bottom layer in the plane > = —%, top layer in the plane > =

NI

e twist angle 6 around the > axis

DFT model for TBG?
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Twisted bilayer graphene (TBG)

* bottom layer in the plane > = —g, top layer in the plane > =

NI

e twist angle 6 around the > axis

DFT model for TBG?
3n* + 3nr +1r°/2

TR R then the TBG is

If dn,r € N*, coprime, s.t. cosf =
a periodic 2D crystal
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Twisted bilayer graphene (TBG)

* bottom layer in the plane > = —%, top layer in the plane > =

NI

e twist angle 6 around the > axis

DFT model for TBG? |
3n* + 3nr +1r°/2

TR R then the TBG is

If dn,r € N*, coprime, s.t. cosf =
a periodic 2D crystal

Otherwise, it is aperiodic (incommensurate)

interesting mathematical questions (PhD thesis of Solal Perrin-Roussel)
extremely challenging computational / numerical analysis problem
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Twisted bilayer graphene (TBG)

e bottom layer in the plane z = —%, top layer in the plane >z =

NI

e twist angle 6 around the > axis

e approximate Kohn-Sham potential proposed in Tritsaris et al. ’16

Vr=(x,2) €R, Vyy(r) = (UggV)(x,2) + (U_q_6V)(X,2) + Vina.a(2)

cos (0/2)  —sin(0/2)

N—

(Uaof)(x,2) = f (RQ/QX, Z — d/2) ) Ry = ( sin (6/2) cos (6/2)

V' Kohn-Sham potential of monolayer graphene
(untwisted, in the z = 0 plane)

model DFT

6
:
:
5

0=06

g
e
e
e

‘
o
1}
9

;
]

0l8L12=06
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Twisted bilayer graphene (TBG)
e bottom layer in the plane z =

e twist angle 6 around the > axis

—%, top layer in the plane >z =

NI

e approximate Kohn-Sham potential proposed in Tritsaris et al. ’16

Vr = (x,2) € R,

Vdjg(r) = (UdﬁV)(X, Z) + (U_d’_@V)<X, Z) + de,d(z)

(Uapf)(x,2) = f (Rg/gx,z — d/2) :

V' Kohn-Sham potential of monolayer graphene

(untwisted, in the z = 0 plane)

L0
Ryjo = cos(6/2) 0 1)
N—_——

N\

o

N—

\

N\
I
'\‘<H©

Cp 1 N\

model

6
¢
:
6

=0

0

e

g
e
e

o

9

0l82°1C=06

) ©)

D @@
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Twisted bilayer graphene (TBG)

* bottom layer in the plane > = —g, top layer in the plane > =

NI

e twist angle 6 around the > axis

e approximate Kohn-Sham potential proposed in Tritsaris et al. ’16

Vr=(x,2) €R, Vyy(r) = (UggV)(x,2) + (U_q_6V)(X,2) + Vina.a(2)

)

7

N——
0

\ .

(Uasf)(%,2) = f (Ropsx, 2 — df2), Ry = cos(6/2) (é ?) — sin(6/2) ( _(1)

€o

DO —

V' Kohn-Sham potential of monolayer graphene

Vio(r) = vg (cox, €%, 2) (two-scale potential)
where v; : R? x R? x R — R is defined by
v (x,X,2) =V(x—3JX, 2 —d/2) + V(x + 1JX, 2 + d/2) + Vinaa(2)

and is

e L-periodic in the atomic-scale variable x (IL: untwisted MLG Bravais lattice)

e 2.JL-periodic in the moiré-scale variable X
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TBG Hamiltonian .
Hdﬁ = —§A + 'Ud(CQX, €pX, Z)

Remark 1. The Hamiltonian
1
hax = —§AX,Z +9(x,X, z) acting on L*(R2 x R.; C)

describes an untwisted bilayer graphene with disregistry y = /X

(a; + az): A-B stacking

y = 0: A-A stacking y =
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TBG Hamiltonian .
Hyp= —§A + va(cox, €6, 2)

Remark 2. H,;4 can also be written as a 3-scale operator

1 - - o0 6 _
Hipg = —§A+Ud(X, £pX, 592){), g = 28N 27 Ep = \/1 — Cos = ~ 2 3/259

where v;(x, X, X) is
e L-periodic w.r.t. the atomic scale variable x
o 2 JIL-periodic w.r.t. the moiré scale variable X

e L-periodic w.r.t. the (micron scale - for ¢ ~ 1°) variable X

Rescaling the length variable as x — 59_1X and letting 6 — 0, we can expect
to obtain a ‘moiré-periodic’ model in the limit
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TBG Hamiltonian .
Hyp= —§A + va(cox, €6, 2)

Remark 3. There are actually two small parameters
e the angle ¢

e the interlayer coupling energies (related to d)
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Electronic structure of monolayer graphene

1
H = —§A+V (space group Dg80:= D, x L - honeycomb p6/mmm symmetry)

(—iV+k)*+V onL2 (QxR)

Bloch transform: Hy = per

3t

énergie

At k = K (Dirac point): two-fold degenerate eigenvalue right at the Fermi level

J— : , . 1K-x T _ 42m
Hyxuj = ppu,;, dj(x,2) = uj(x, z)e™ ™, R%WCI)J = w,, w=-¢e"3

(D, (=i, )d)) = (8) By, (—iV)Dy) :vF< 1.) w0

—1
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Wavepacket propagation in monolayer graphene (/< -valley)

Fefferman-Weinstein 14 (2D, but can be easily extended to 3D graphene)

4 (
(t=0,x%,2) 504 (ex)P (t,x, 2) eaj(et, ex)P;i(x, z) + small
[o=0x =3 cofomns) |, [t =3 oo |
t<e™
| 10, = (H — up)ng | 10, = vpor - (—ZV) a(t=0)=a’
. 0 Oy, — 10, . .
o-(—iV) = 010,,+020,, = (39[;1 tid,, ! 0 2 ) self-adjoint op L*(R* C?)

—1

vp ~ 10°m s (slope of the Dirac cone)

o \
18—\

d’électrons
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Wavepacket propagation in monolayer graphene (/< -valley)

Fefferman-Weinstein 14 (2D, but can be easily extended to 3D graphene)

( (

Y(t =0,%, 2) Zsa ex)d;(x, 2) < (t,x, 2) Zeozj (et,ex)P,(x, z) + small

| 10, = (H — up)ng | 10,0 = vpo - (—ZV) a(t=0)=a"

Alternative (formal) derivation of the massless Dirac eq. for monolayer graphene
Project the Schrodinger equation
ié“(?T\Ifg = (H — ,LLF>\IJ5

on the c-dependent variational approximation space

Xo=19 ) aj(ex)9(x,2), « € H(R%C?) p € H'(R%C)
j€{1,2}

and let  go to zero
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Derivation of an effective model for TBG (K-valley, small twist angle)

Project the Schrodinger equation

. 1 = 0/2
1€90-Vap(T) = (Hap—pr)Vao(T), Hap= —§A+vd(09x, £0X, %), SZ _ ;C;Sl’é <é/>2>

on the (d, 0)-dependent variational approximation space
Xd,g = {(Oz . @)dﬁ, o < Hl(R2; C4)} C Hl(RB;C)
where

(0 @)y (x,2) = Y i (€x) Unagp®y)(x.2),  (Uaaf)(x,2) = f (Rypox, 2 — d/2)

ne{£1}
je{1,2}

and let 6 go to zero

Physical justification: weakly interacting layers = perturbation regime

(Attempts of) mathematical justification: see Part 2
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Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), Hqp and S; self-adjoint op. on L*(R* C*

Hamiltonian and overlap operators

(I Za(X) _ - (1)
S, = (ZZ:(X) I, and Hdﬁ = & Vi+ coly+ €9Td
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Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), Hqp and S; self-adjoint op. on L*(R* C*

Hamiltonian and overlap operators

(L E(X) - 1)
S, = (ZZ(X) I, and Hdﬁ = & Vi+ coly+ €9Td

Za(X)] ;0= /Q RCI)]- (x —3JX, 2 —d/2) Dy (x+3JX, 2 + d/2) dxdz
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Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), Hqp and S; self-adjoint op. on L*(R* C*

Hamiltonian and overlap operators

(L E(X) - 1)
S, = (Z;(X) I, and Hdﬁ = & Vi+ coly+ €9Td

Za(X)] 50 : :/Q RCDJ- (x —3JX, 2 —d/2) Dy (x+3JX, 2 + d/2) dxdz

= e_iql'X/ uj (x —3JX, 2 —d/2) uy (x+3JX, 2 + d/2) dxdz
QxR

IL M—perio&irc function

where
Ly = JL  (moiré lattice) and q .= —JK
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Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), H, and S, self-adjoint op. on L*(R*; C*)

Hamiltonian and overlap operators

(I Za(X) _ (1)
S, = (ZZ:(X) I, and /Hd,@ = & Vi+ coly+ €9Td

(multiplication operator / scalar potential)

W=£(X)].» Ly-periodic function
d JJ .
V(X)) e~ WX . Ly-periodic function



1 - A simple (formal) derivation of moiré scale models from DFT 23

Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), Hqp and S; self-adjoint op. on L*(R* C*

Hamiltonian and overlap operators

(I Za(X) _ - (1)
S, = (ZZ:(X) I, and Hdﬁ = & Vi+ cily+ €9Td

e
B
q
1.
4
N —

| J(—=iVEq)(X) - (-iV)
fa= (—%J (—1IVEN(X) - (—1V) vpo - (=iV) )
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Effective Schrodinger equation in the small twist angle limit
1S30-a(T) = Hapa(T), Hqp and S; self-adjoint op. on L*(R* C*

Hamiltonian and overlap operators

(I Za(X) _ - (1)
S, = (ZZ:(X) I, and Hdﬁ = & Vi+ coly+ 8@Td

TV = —%div (Su(X)Ve) + (‘”F" J(=IV) ! ) .

0 vpo - J(—iV)
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by

1. neglecting the interlayer overlap matrix >;(X)

NN
s
2828
N

-0.025 0.000 0.025

Plots of (X)) for d = 6.45 a.u. (PBE xc functional)
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix >;(X)
2. assuming that the matrix V;(X) is equal to

V(X) = A G(X) wap F(-X) F(X) = eaX 4 ¢iF i X | oif o—iazX
WAB F<X) WAA G(X) ’ G(X) — e—z’q1-X + e—@'qQ.X 4+ 6_¢q3.X
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix >;(X)

2. assuming that the matrix V;(X) is equal to

V(X) = A G(X) wap F(-X) F(X) = eaX 4 ¢iF i X | oif o—iazX
WAB F<X) WAA G(X) ’ G(X) — e—z’q1-X + e—@'qQ.X 4+ 6_¢q3.X

Ve Vi
Va2

... to be compared with the values wys = wag = 110 meV in the BM paper

1073

Taking waa = wap = 126 meV, we get
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix >;(X)

2. assuming that the matrix V;(X) is equal to

VI(X) =" G(X) wap F(—X) F(X) = e ia1X 4 ¢if emirX | i o-iayX
wap F(X) war G(X) )7 G(X) = e aX 4 gmiaX 4 pigzX

3. assuming that the functions W7 (X) — 1, are very small

D;O‘o'os -:.:. '_1; = : _'1 :
D o o - - - ® €% Ay
050450 s - b QUL PNz
pPo%0 e NSO
°°°°°° - - ® — ® e ® —
020% = | PSOOP
D,..O...O,.. - . = .
50500
0502 Cla™ ™
0L020 AN ™
0502 Cl™ ™
05020 1N ™
EEE——— 000 B ]

.20 0 20 40
meV
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix >;(X)
2. assuming that the matrix V;(X) is equal to
V(X) = (wAA G(X) wag m> | F(X) = e:z:q1:X + ei_%e-—z‘qu + ezj%ﬂe—z‘qg.x
wap F(X) war G(X) G(X) = e aX 4 gmiaX 4 omigzX
3. assuming that the functions W(}F(X) — durls are very small

4. neglecting the term —-2A
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Band diagrams (left: BM, right: our model)
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Computation done with DFTK (Density-Functional ToolKit)
» planewave DFT package injuli.il (2019-), MIT license
e outcome of the EMC2 ERC Synergy project

* main developers: Michael Herbst and Antoine Levitt

 supports mathematical developments (low entrance barrier, ~7Kk lines of code)
and scale-up to relevant applications (~ 1,000 electrons)

e fully composable with juli.i] ecosystem

— arbitrary precision (32bit, 64bit...)
— algorithmic differentiation
— numerical error control
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Atomic-scale Hamiltonian

1 Z l—v1—-¢%2 ¢

Hy. = —§A+vd(x—c(s)sx, £X, 2), e = 2sin > cle) = - ~ 5
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Atomic-scale Hamiltonian

0 1 —+1—¢g2

1
Hge = —§A+vd(x—c(5)sx, X, 2), £ = 2sin > c(e) = ~

DOS in the negative energy window: positive Borel measure vy, on (—o0,0)
such that for f € C>°(R; R, ) with support in (—oc0, 0),

Tlf(Hao) = [ 108) d ()
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Basic idea inspired by Dimassi ’99 and Panati-Teufel 03, based on many
works going back to Balezard-Konlein ’85: approximate Tr|f(H,.)] for ¢
small using semiclassical analysis with operator-valued symbols

Dimassi: c-expansion of Tr(f(H.)) for

H. = %(—iv + A(er))? + Viyu(r) + Wi(er) on L*(R%)

with V., € C*°(R% R) periodic, and e.g. A € C°(R%RY), W € CX(R; R),
and f supported in a spectral gap of the periodic operator —%A + Vier

Panati-Teufel: quantum dynamics in periodic media
1
H. = 5(—7JV + Aer))? + Viyu(r) + Wi(er) on L*(R%)

—  Semiclassical dynamics on Bloch bands with Berry curvature terms
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Atomic-scale Hamiltonian

1 0 1—+vV1—¢2 ¢

Hge = —§A+vd(x—c(s)sx, £X, 2), e = 2sin 7 cle) = - ~ >

The Hamiltonian
1
hax = —QAX,Z +9(x,X, 2z) actingon L*(R2 x R.;C)

describes an untwisted bilayer graphene with disregistry y = /X

y = 0: A-A stacking y = 3(a; + a,): A-B stacking
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Longitudinal Bloch transform of the L-periodic Hamiltonian /; x

1
hix = =50x: + va(x,X, z) actingon L*R:2 x R.;C)

S
— Z/[_l <][ hd,()(k, X) dk> U with hd’0<k, X) =
B

1
<_7’VX + k>2 - 583 + Ud(’? X7 >
7

1
2
For each (k, X) € R? x R?,
* hqo(k,X) is an operator on L’ = L*((R;/L) x R.)
* Uc<h<k7 X)) — IR—I—

0.3

eigenvalues - € f (En)

wave vector

Band spectrum of (-, X) in the negative energy window
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Semiclassical description of the atomic scale Hamiltonian

0 1 —+1—¢g2

1
Hg. = —§A+vd(x—c(e)ex, X, 2), e = 2sin > cle) = ~

)

Introducing the operator-valued symbol

1 1
hae(k, X) =2 (=iVsx+ k)2—§83+vd(- —c(6)X,X,),  (k,X)eR*xR?

2

ber)s We have

(hae(k, X) self-adjoint operator on L

Hd,g — u_lops(hd,5>u

[Op5<a)¢]k(xv Z) - : /]1%2 R2 [a (k 5 k/’ X> ¢kl] (X7 Z) e_i(k_l;/)'X dk/ X
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Weyl quantization rule for operator-valued symbols

k + k' (k—K/)-X
Op (ol ) = o [ o (S X o oxz) e M awax

Remarks:
e compare with usual Weyl quantization formula for symbols in C*(R? x R%; C)
1 r—+r p(r—')
O = Ve = drd
On () = oy [ a5 Ep) ete) e

e assuming that v, is smooth, the operator-valued symbol

1 1
hao(k, X) = 5 =iV + k)2—§8§+vd(-—0(5)X, X,),  (k,X)e R*xR?

isin S“(L(H?,; L? ) with order function w(k, X) = 1 + |k|?

per’ —~per

e it is T-equivariant in the sense that it satisfies the property
V(k, X) c R? x RQ, VG e L7, hdﬁ(k + G, X) = Tghd’(g(k, X)T_G

where

Yu € H? e!GX

per? (Tau)(x,2) = u(x, 2)
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Theorem (C, Meng, in preparation). Under suitable assumptions on V' and
Vints for all f € C°(R; R, ) with compact support included in (—oc, 0), it
holds

per

Tel f(H, )| - ’Q‘fjgf*TrLz (Fu (ke X)] dk dX + O(=")

with
fao(k, X) = f(hao(k, X))
fai(k, X) = i/(ﬁf(@ [{(¢ = hap) ™" (€ = hao) }C — hao) '] (k, X) d*¢

where }’v: C — C is any almost analytic extension of f

Tools for the proof: semiclassical analysis with operator-valued symbols,
Helffer-Sjostrand formula, (degenerate) perturbation theory, “twisted' Weyl
calculus to deal with the —c(¢)X term in vy(- — ¢(¢)X, X, )
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Theorem (C, Meng, in preparation). Under suitable assumptions on 1/
and Vi, for all f € C°(R; R, ) with compact support included in (—1,1),
0, > 0 small enough, d > 0 large enough,

Tr ( ¥ (Hdﬂg 5_ “F)) — OTr < f (ng(ﬁ» + O ) + 6 ey + O)

with

Tixe =T(—iV, — K) + Vik(ex) acting on L*(R? C*),

T(k) = (UFUO ) fUFaO - k) Ve = (%‘Z{f(%) ‘%ﬁ(é)))

and e; = f(V, Vix, u;, d) computable, converging to zero when d — +00
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Towards first-principle models for moiré materials

o first attempt to derive an effective model for moiré materials directly
from Kohn-Sham Hamiltonians

 bypass tight-binding models and use instead tools from multiscale analysis
Extensions (work in progress)

 mathematical analysis with semiclassical techniques

e lattice relaxation: straightforward if the displacement field is given

e coupling with phonons
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