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Introduction 1
.

Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2 (d ≃ 6.45 bohr)

• twist angle θ around the z axis

Moiré scale

aM =
a0

2 sin θ
2

∼ a0θ
−1 (small twist angle)
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2, top layer in the plane z = d
2 (d ≃ 6.45 bohr)

• twist angle θ around the z axis

Moiré scale

aM =
a0

2 sin θ
2

∼ a0θ
−1 (small twist angle)

TBG at “magic” angles (e.g. θ ≃ 1.1◦) ∼ honeycomb lattice of quantum dots
• mean site occupation can be tuned by gating
• magnetic flux per moiré cell Φ = B|ΩM| ∼ Φ0 =

h
2e for θ ∼ 1◦ and B ∼ 20T

−→ tunable quantum material
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Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2 (d ≃ 6.45 bohr)

• twist angle θ around the z axis
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FIG. 2. Gate-tunable superconductivity in MA-TBG. (a) Two-probe conductance G2 = I/Vbias of device M1 measured
in zero magnetic field (red trace) and at a perpendicular field of B? = 0.4 T (blue trace). The traces show the typical
V-shaped conductance near charge neutrality n = 0, as well as insulating states at the superlattice bandgaps, n = ±ns,
corresponding to filling ±4 electrons in each moiré unit cell, and the conductance reductions at intermediate integer fillings of
the superlattice due to Coulomb interactions. Near �2e� per unit cell filling, there is a considerable conductance enhancement
which is suppressed in B? = 0.4 T, signaling the onset of superconductivity. Measurements are taken at T = 70 mK. (b)
Four-probe resistance Rxx measured at densities corresponding to the region bounded by pink dashed lines in (a), versus
temperature. Two superconducting (SC) domes are clearly observed next to the half-filling state (“Mott”, centered around
�ns/2 = �1.58 ⇥ 1012 cm�2). The remaining regions in the diagram are labeled as “Metal” due to the metallic temperature
dependence. The highest critical temperature observed in device M1 is Tc = 0.5 K (50% normal state resistance). (c) Similar
plot as in (b) but measured in device M2, showing two asymmetric and overlapping domes. The highest critical temperature
in this device is Tc = 1.7 K.

the contact resistance, which is absent in the four-probe
measurements shown in the subsequent figures.

Figure 2b and 2c show the four-probe resistance of
device M1 and M2, respectively, as a function of both
density n and temperature T . Both devices show two
pronounced superconducting ‘domes’ on each side of the
half-filling correlated insulating state. These features
share similarities with the phenomenology observed in
high-temperature superconductivity in cuprate materi-
als. At base temperature, the resistance inside the domes
is lower than our measurement noise floor, which is more

than 2 and 3 orders of magnitude lower than the nor-
mal state resistance for device M1 and M2, respectively.
The I-V curves inside the domes show critical current
behavior as exemplified in Fig. 1e, while being ohmic
in the metallic phases outside the domes. When cooling
down right through the middle of the half-filling state,
the correlated insulating phase is exhibited at interme-
diate temperatures (from 1K to 4 K), but at lower tem-
peratures both devices exhibit signs of superconductivity
at the lowest temperatures. Device M1 becomes weakly
superconducting, while device M2 becomes fully super-

TBG phase diagram at twist angle θ = 1.16°

Unconventional(?) superconducting phases
for some “magic” angles θ
(Cao et al., Nature ’18, 4000+ citations)
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Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis

Small twist angles
• moiré pattern of size ∼ θ−1a: θ = 1.16° ⇒∼11,000 carbon atoms/moiré cell



Introduction 3
.

Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis

Small twist angles
• moiré pattern of size ∼ θ−1a: θ = 1.16° ⇒∼11,000 carbon atoms/moiré cell
• most theoretical/numerical studies based on Bistritzer-MacDonald model (’11)

Effective model at the moiré scale; two empirical parameters wAA, wAB

Some math papers: Becker, Embree, Wittsten & Zworski ’20, Luskin &
Watson ’21, Bal, Cazeaux, Massatt, Quinn ’22, ...
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Derivation of a BM-like model from first principles

A possible approach (Carr-Fang-Zhu-Kaxiras ’19, Luskin-Watson ’22):

DFT calculations
↓

Tight-binding model (parameterized using Wannier functions)
↓

Continuous model at the moiré scale

Alternative approach followed here

DFT calculations
↓

Continuous model at the moiré scale



Outline of the talk 5
.

1. A simple (formal) derivation of moiré scale models from DFT

C, Garrigue, Gontier, Phys. Rev. B ’23

2. Mathematical analysis of Kohn-Sham Hamiltonians for moiré materials

Homogenization methods:
C, Garrigue, Gontier, SIAM J. Math. Anal. ’23

Semiclassical analysis (better suited for TBG at 1st magic angle?):
C, Meng, in preparation
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1 - A simple (formal) derivation of moiré scale models from DFT 7
.

Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)
Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2N electrons, M nuclei with charge density

ρnuc(r) =
M∑
m=1

zmϕ(r−Rm), ϕ ∈ C∞
c (R3), radial, nonnegative, s.t.

ˆ
R3
ϕ = 1
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Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2N electrons, M nuclei with charge density

ρnuc(r) =
M∑
m=1

zmϕ(r−Rm), ϕ ∈ C∞
c (R3), radial, nonnegative, s.t.

ˆ
R3
ϕ = 1

EGS = inf
γ∈KN

EKS(γ)

KN :=
{
γ ∈ S(L2(R3)) ∩S1(L

2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞
}

γ ∈ KN ⇔ γ =

+∞∑
i=1

ni|ϕi⟩⟨ϕi| with



ϕi ∈ L2(R3), (ϕi, ϕj)L2 = δij, ni ∈ R

0 ≤ ni ≤ 1,

+∞∑
i=1

ni = N,

ϕi ∈ H1(R3),

+∞∑
i=1

ni∥∇ϕi∥2L2 <∞
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)
Hohenberg & Kohn ’64, Kohn & Sham ’65, Lieb ’84 (W. Kohn 1998 Nobel Laureate in Chemistry)

DFT aims at computing electronic ground-state energies and densities

System with 2N electrons, M nuclei with charge density

ρnuc(r) =
M∑
m=1

zmϕ(r−Rm), ϕ ∈ C∞
c (R3), radial, nonnegative, s.t.

ˆ
R3
ϕ = 1

EGS = inf
γ∈KN

EKS(γ)

KN :=
{
γ ∈ S(L2(R3)) ∩S1(L

2(R3)), 0 ≤ γ ≤ 1, Tr(γ) = N, Tr(−∆γ) <∞
}

EKS(γ) = Tr (−∆γ)︸ ︷︷ ︸
kinetic energy

+EH(ργ − ρnuc)︸ ︷︷ ︸
Hartree term

+ Exc(ργ)︸ ︷︷ ︸
exchange−correlation

with “ργ(r) = 2γ(r, r)”

EH(ρ) =
1

2

ˆ
R3

ˆ
R3

ρ(r)ρ(r′)

|r− r′|
dr dr′
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)

EKS(γ) = Tr (−∆γ)︸ ︷︷ ︸
kinetic energy

+EH(ργ − ρnuc)︸ ︷︷ ︸
Hartree term

+ Exc(ργ)︸ ︷︷ ︸
exchange−correlation

with “ργ(r) = 2γ(r, r)”

Caveat: no explicit expression of the exact Exc functional
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EKS(γ) = Tr (−∆γ)︸ ︷︷ ︸
kinetic energy

+EH(ργ − ρnuc)︸ ︷︷ ︸
Hartree term

+ Exc(ργ)︸ ︷︷ ︸
exchange−correlation

with “ργ(r) = 2γ(r, r)”

Caveat: no explicit expression of the exact Exc functional

Fortunately, Exc only represents about 10% of the total energy and can be
successfully approximated (Exc ≡ 0⇒ reduced Hartree-Fock - rHF)

Main approximations actually used in pratice
(Burke et al. ’14)

# of citations the B3LYP paper (Web of Science): 72,237
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Density Functional Theory: finite systems (spin-unpolarized, smeared nuclei)

EKS(γ) = Tr (−∆γ)︸ ︷︷ ︸
kinetic energy

+EH(ργ − ρnuc)︸ ︷︷ ︸
Hartree term

+ Exc(ργ)︸ ︷︷ ︸
exchange−correlation

with “ργ(r) = 2γ(r, r)”

Caveat: no explicit expression of the exact Exc functional

Fortunately, Exc only represents about 10% of the total energy and can be
successfully approximated (Exc ≡ 0⇒ reduced Hartree-Fock - rHF)

Main approximations actually used in pratice
(Burke et al. ’14)

# of citations the B3LYP paper (Web of Science): 72,237

Mathematical justification: LSDA (Lewin-Lieb-Seiringer ’19) Ex
LSDA(ρ) = −CD

´
R3 ρ

4/3

Existence of a ground-state for neutral molecules:
Lieb-Simon ’77, Lions ’83︸ ︷︷ ︸

Hartree-Fock

, Solovej ’91︸ ︷︷ ︸
rHF

, Anantharaman-C ’09︸ ︷︷ ︸
LSDA
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Kohn-Sham equations for finite systems (rHF and LSDA)
Hρ0 = −1

2
∆ + V H

ρ0 + V xc
ρ0 , V H

ρ0 = (ρ0 − ρnuc) ⋆ | · |−1, V xc
ρ0 (r) = vxc(ρ0(r))

γ0 = 1(−∞,εF)(Hρ0) + δ with Ran(δ) ⊂ Ker(Hρ0 − εF), 0 ≤ δ = δ∗ ≤ 1

“ρ0(r) = 2γ0(r, r)”,
´
R3 ρ

0 = 2Tr(γ0) = 2N

ε1 εN N+1ε

εF

0
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Kohn-Sham equations for periodic crystals (rHF and LSDA)

Hper = −1

2
∆ + V H

per + V xc
per, −∆V H

per = 4π(ρ0per − ρnucper), V xc
per(r) = vxc(ρ0per(r))

γ0per = 1(−∞,εF)(Hper)

“ρ0per(r) = 2γ0per(r, r)”,
´
UC ρ

0
per = 2Tr(γ0) = 2N

ε
F
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Kohn-Sham equations for periodic crystals (rHF and LSDA)

Hper = −1

2
∆ + V H

per + V xc
per, −∆V H

per = 4π(ρ0per − ρnucper), V xc
per(r) = vxc(ρ0per(r))

γ0per = 1(−∞,εF)(Hper)

“ρ0per(r) = 2γ0per(r, r)”,
´
UC ρ

0
per = 2Tr(γ0) = 2N

Mathematical justification by thermodynamic limit (for rHF)

• Catto-Le Bris-Lions ’01: cluster to crystal for ρnucper =
∑
R∈Z3

δR

• E-Deleurence-Lewin ’08: periodic supercell to crystal for generic ρnucper

(closer to numerical practice, also works for crystals with local defects)

L LL
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Kohn-Sham equations for disordered crystals (stationary random nuclear charge)

ρnucω1
(r) ρnucω2

(r)

ρnucω3
(r) ρnucω4

(r)

ρnucτR(ω)(r) = ρnucω (r +R)

ω τR(ω)
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Kohn-Sham equations for disordered crystals (Yukawa interaction)
C, Lahbabi, Lewin ’13
Hω = −1

2
∆ + V H

ω + V xc
ω , (−∆+ κ2)V H

ω = 4π(ρ0ω − ρnucω ), V xc
ω (r) = vxc(ρ0ω(r))

γ0ω = 1(−∞,εF)(Hω)

“ρ0ω(r) = 2γ0ω(r, r)”, E
(´

UC ρ
0
•
)
= 2N

ρ0ω, V
H
ω , V

xc
ω : stationary functions, Hω, γω: self-adjoint ergodic operators on L2(R3)
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Hω = −1

2
∆ + V H

ω + V xc
ω , (−∆+ κ2)V H

ω = 4π(ρ0ω − ρnucω ), V xc
ω (r) = vxc(ρ0ω(r))

γ0ω = 1(−∞,εF)(Hω)

“ρ0ω(r) = 2γ0ω(r, r)”, E
(´

UC ρ
0
•
)
= 2N

ρ0ω, V
H
ω , V

xc
ω : stationary functions, Hω, γω: self-adjoint ergodic operators on L2(R3)

Roadmap (rHF model):
1. derive formally a variational Kohn-Sham model for this system
2. show existence and uniqueness of the ground-state density
3. show existence and uniqueness of the stationary Hartree potential
4. show that the ergodic Schrödinger operator has suitable properties
5. justify the formal model by thermodynamic limit (periodic supercell)
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Kohn-Sham equations for disordered crystals (Yukawa interaction)
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Hω = −1
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∆ + V H
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ω , (−∆+ κ2)V H

ω = 4π(ρ0ω − ρnucω ), V xc
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(´

UC ρ
0
•
)
= 2N

ρ0ω, V
H
ω , V

xc
ω : stationary functions, Hω, γω: self-adjoint ergodic operators on L2(R3)

Roadmap (rHF model):
1. derive formally a variational Kohn-Sham model for this system
2. show existence and uniqueness of the ground-state density
3. show existence and uniqueness of the stationary Hartree potential

for Coulomb interaction (κ = 0), we were not able to complete Step 3

Reason: for a given stationary ρω with zero mean, the Poisson equation
−∆Vω = 4πρω has no stationary solution in general (see e.g. Papanicolaou-Varadhan ’82)
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Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis

DFT model for TBG?
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2, top layer in the plane z = d
2

• twist angle θ around the z axis

DFT model for TBG?

If ∃!n, r ∈ N∗, coprime, s.t. cos θ =
3n2 + 3nr + r2/2

3n2 + 3nr + r2
, then the TBG is

a periodic 2D crystal
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.

Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis

DFT model for TBG?

If ∃!n, r ∈ N∗, coprime, s.t. cos θ =
3n2 + 3nr + r2/2

3n2 + 3nr + r2
, then the TBG is

a periodic 2D crystal

Otherwise, it is aperiodic (incommensurate)

−→
∣∣∣∣ interesting mathematical questions (PhD thesis of Solal Perrin-Roussel)

extremely challenging computational / numerical analysis problem
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Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis
• approximate Kohn-Sham potential proposed in Tritsaris et al. ’16

∀r = (x, z) ∈ R3, Vd,θ(r) := (Ud,θV )(x, z) + (U−d,−θV )(x, z) + Vind,d(z)

(Ud,θf )(x, z) := f
(
Rθ/2x, z − d/2

)
, Rθ/2 :=

(
cos (θ/2) − sin (θ/2)
sin (θ/2) cos (θ/2)

)
V Kohn-Sham potential of monolayer graphene
(untwisted, in the z = 0 plane)
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2
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∀r = (x, z) ∈ R3, Vd,θ(r) := (Ud,θV )(x, z) + (U−d,−θV )(x, z) + Vind,d(z)

(Ud,θf )(x, z) := f
(
Rθ/2x, z − d/2

)
, Rθ/2 := cos(θ/2)︸ ︷︷ ︸

cθ

(
1 0
0 1

)
− sin(θ/2)︸ ︷︷ ︸

1
2εθ

(
0 1

−1 0

)
︸ ︷︷ ︸

JV Kohn-Sham potential of monolayer graphene
(untwisted, in the z = 0 plane)
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Twisted bilayer graphene (TBG)
• bottom layer in the plane z = −d

2, top layer in the plane z = d
2

• twist angle θ around the z axis
• approximate Kohn-Sham potential proposed in Tritsaris et al. ’16

∀r = (x, z) ∈ R3, Vd,θ(r) := (Ud,θV )(x, z) + (U−d,−θV )(x, z) + Vind,d(z)

(Ud,θf )(x, z) := f
(
Rθ/2x, z − d/2

)
, Rθ/2 := cos(θ/2)︸ ︷︷ ︸

cθ

(
1 0
0 1

)
− sin(θ/2)︸ ︷︷ ︸

1
2εθ

(
0 1

−1 0

)
︸ ︷︷ ︸

JV Kohn-Sham potential of monolayer graphene

Vd,θ(r) = vd (cθx, εθx, z) (two-scale potential)
where vd : R2 × R2 × R → R is defined by

vd (x,X, z) = V (x− 1
2JX, z − d/2) + V (x + 1

2JX, z + d/2) + Vind,d(z)

and is
• L-periodic in the atomic-scale variable x (L: untwisted MLG Bravais lattice)
• 2JL-periodic in the moiré-scale variable X
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TBG Hamiltonian
Hd,θ = −1

2
∆ + vd(cθx, εθx, z)

Remark 1. The Hamiltonian

hd,X = −1

2
∆x,z + vd(x,X, z) acting on L2(R2

x × Rz;C)

describes an untwisted bilayer graphene with disregistry y = JX

y = 0: A-A stacking y = 1
3(a1 + a2): A-B stacking
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TBG Hamiltonian
Hd,θ = −1

2
∆ + vd(cθx, εθx, z)

Remark 2. Hd,θ can also be written as a 3-scale operator

Hd,θ = −1

2
∆+ṽd(x, εθx, ε̃θ

2x), εθ = 2 sin
θ

2
, ε̃θ =

√
1− cos

θ

2
∼ 2−3/2εθ

where ṽd(x,X,X) is
• L-periodic w.r.t. the atomic scale variable x

• 2JL-periodic w.r.t. the moiré scale variable X

• L-periodic w.r.t. the (micron scale - for θ ∼ 1°) variable X

Rescaling the length variable as x → ε−1
θ X and letting θ → 0, we can expect

to obtain a ‘moiré-periodic’ model in the limit
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TBG Hamiltonian
Hd,θ = −1

2
∆ + vd(cθx, εθx, z)

Remark 3. There are actually two small parameters
• the angle θ
• the interlayer coupling energies (related to d)
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Electronic structure of monolayer graphene

H = −1

2
∆+V (space group Dg80:= D6h ⋉ L - honeycomb p6/mmm symmetry)

Bloch transform: Hk =
1

2
(−i∇ + k)2 + V on L2

per(Ω× R)

At k = K (Dirac point): two-fold degenerate eigenvalue right at the Fermi level

HKuj = µFuj, Φj(x, z) = uj(x, z)e
iK·x, R2π

3
Φj = ωjΦj, ω = ei

2π
3

⟨Φj, (−i∇x)Φj⟩ =
(
0
0

)
, ⟨Φ1, (−i∇x)Φ2⟩ = vF

(
1
−i

)
, vF > 0
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Wavepacket propagation in monolayer graphene (K-valley)

Fefferman-Weinstein ’14 (2D, but can be easily extended to 3D graphene) ψε(t = 0,x, z) =
2∑
j=1

εα0
j(εx)Φj(x, z)

i∂tψε = (H − µF)ψε

⇒
t<ε−2+δ

 ψε(t,x, z) =
2∑
j=1

εαj(εt, εx)Φj(x, z) + small

i∂τα = vFσ · (−i∇)α, α(τ = 0) = α0

σ·(−i∇) = σ1∂x1+σ2∂x2 =

(
0 ∂x1 − i∂x2

∂x1 + i∂x2 0

)
self-adjoint op L2(R2;C2)

vF ∼ 106 m s−1 (slope of the Dirac cone)
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Wavepacket propagation in monolayer graphene (K-valley)

Fefferman-Weinstein ’14 (2D, but can be easily extended to 3D graphene) ψε(t = 0,x, z) =
2∑
j=1

εα0
j(εx)Φj(x, z)

i∂tψε = (H − µF)ψε

⇒
t<ε−2+δ

 ψε(t,x, z) =
2∑
j=1

εαj(εt, εx)Φj(x, z) + small

i∂τα = vFσ · (−i∇)α, α(τ = 0) = α0

Alternative (formal) derivation of the massless Dirac eq. for monolayer graphene

Project the Schrödinger equation

iε∂τΨε = (H − µF)Ψε

on the ε-dependent variational approximation space

Xε :=

 ∑
j∈{1,2}

αj (εx) Φj(x, z), α ∈ H1(R2;C2)

 ⊂ H1(R3;C)

and let ε go to zero
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Derivation of an effective model for TBG (K-valley, small twist angle)

Project the Schrödinger equation

iεθ∂τΨd,θ(τ ) = (Hd,θ−µF)Ψd,θ(τ ), Hd,θ = −1

2
∆+vd(cθx, εθx, z),

cθ = cos (θ/2)
εθ = 2 sin (θ/2)

on the (d, θ)-dependent variational approximation space

Xd,θ :=
{
(α : Φ)d,θ, α ∈ H1(R2;C4)

}
⊂ H1(R3;C)

where

(α : Φ)d,θ (x, z) :=
∑
η∈{±1}
j∈{1,2}

αη,j (εθx) (Uηd,ηθΦj)(x, z), (Ud,θf )(x, z) := f
(
Rθ/2x, z − d/2

)
and let θ go to zero

Physical justification: weakly interacting layers ⇒ perturbation regime

(Attempts of) mathematical justification: see Part 2
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d

[Σd(X)]jj′ : =

ˆ
Ω×R

Φj
(
x− 1

2JX, z − d/2
)
Φj′

(
x + 1

2JX, z + d/2
)
dx dz
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d

[Σd(X)]jj′ : =

ˆ
Ω×R

Φj
(
x− 1

2JX, z − d/2
)
Φj′

(
x + 1

2JX, z + d/2
)
dx dz

= e−iq1·X
ˆ
Ω×R

uj
(
x− 1

2JX, z − d/2
)
uj′

(
x + 1

2JX, z + d/2
)
dx dz︸ ︷︷ ︸

LM-periodic function
where

LM := JL (moiré lattice) and q1 := −JK
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d

Vd =
(
W+

d (X) Vd(X)
Vd(X)∗ W−

d (X)

)
(multiplication operator / scalar potential)

[W±
d (X)]jj′ LM-periodic function

[Vd(X)]jj′ e−iq1·X × LM-periodic function
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d

Td =

(
vFσ · (−i∇) 1

2J(−i∇Σd)(X) · (−i∇)
−1

2J(−i∇Σ∗
d)(X) · (−i∇) vFσ · (−i∇)

)
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Effective Schrödinger equation in the small twist angle limit

iSd∂τα(τ ) = Hd,θα(τ ), Hd,θ and Sd self-adjoint op. on L2(R2;C4)

Hamiltonian and overlap operators

Sd =
(

I2 Σd(X)
Σ∗
d(X) I2

)
and Hd,θ = ε−1

θ Vd + cθTd + εθT
(1)
d

T
(1)
d = −1

2
div (Sd(X)∇•) +

(
−vFσ · J(−i∇) 0

0 vFσ · J(−i∇)

)
.
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix Σd(X)

ϵθ

− 1a1,Mϵθ

− 1a2,M

-0.025 0.000 0.025-0.025 0.000 0.025-0.025 0.000 0.025

Plots of Σ(X) for d = 6.45 a.u. (PBE xc functional)
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix Σd(X)

2. assuming that the matrix Vd(X) is equal to

V (X) =

(
wAAG(X) wAB F (−X)
wAB F (X) wAA G(X)

)
,

F (X) := e−iq1·X + ei
2π
3 e−iq2·X + ei

4π
3 e−iq3·X

G(X) := e−iq1·X + e−iq2·X + e−iq3·X
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix Σd(X)

2. assuming that the matrix Vd(X) is equal to

V (X) =

(
wAAG(X) wAB F (−X)
wAB F (X) wAA G(X)

)
,

F (X) := e−iq1·X + ei
2π
3 e−iq2·X + ei

4π
3 e−iq3·X

G(X) := e−iq1·X + e−iq2·X + e−iq3·X

Taking wAA = wAB = 126 meV, we get
∥Vd − V ∥L2

∥Vd∥L2
∼ 10−3

... to be compared with the values wAA = wAB = 110 meV in the BM paper
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix Σd(X)

2. assuming that the matrix Vd(X) is equal to

V (X) =

(
wAAG(X) wAB F (−X)
wAB F (X) wAA G(X)

)
,

F (X) := e−iq1·X + ei
2π
3 e−iq2·X + ei

4π
3 e−iq3·X

G(X) := e−iq1·X + e−iq2·X + e−iq3·X

3. assuming that the functions W±
d (X)− δµFI2 are very small

ϵθ

− 1a1,Mϵθ

− 1a2,M

meV
-20 0 20 40

meV
-20 0 20 40

meV
-20 0 20 40

Plots of W+
d (X)−

 
ΩM

W+ for d = 6.45 a.u.
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Comparison with the Bistritzer-MacDonald model

The BM model is obtained by
1. neglecting the interlayer overlap matrix Σd(X)

2. assuming that the matrix Vd(X) is equal to

V (X) =

(
wAAG(X) wAB F (−X)
wAB F (X) wAA G(X)

)
,

F (X) := e−iq1·X + ei
2π
3 e−iq2·X + ei

4π
3 e−iq3·X

G(X) := e−iq1·X + e−iq2·X + e−iq3·X

3. assuming that the functions W±
d (X)− δµFI2 are very small

4. neglecting the term −εθ
2∆
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Band diagrams (left: BM, right: our model)
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Computation done with DFTK (Density-Functional ToolKit)
• planewave DFT package in (2019-), MIT license
• outcome of the EMC2 ERC Synergy project
• main developers: Michael Herbst and Antoine Levitt

• supports mathematical developments (low entrance barrier, ∼7k lines of code)
and scale-up to relevant applications (∼ 1,000 electrons)

• fully composable with ecosystem
– arbitrary precision (32bit, 64bit...)
– algorithmic differentiation
– numerical error control
– ...
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Atomic-scale Hamiltonian

Hd,ε = −1

2
∆+vd(x−c(ε)εx, εx, z), ε = 2 sin

θ

2
, c(ε) =

1−
√
1− ε2

ε
∼ ε

2
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Atomic-scale Hamiltonian

Hd,ε = −1

2
∆+vd(x−c(ε)εx, εx, z), ε = 2 sin

θ

2
, c(ε) =

1−
√
1− ε2

ε
∼ ε

2

DOS in the negative energy window: positive Borel measure νHd,ε on (−∞, 0)
such that for f ∈ C∞

c (R;R+) with support in (−∞, 0),

Tr[f (Hd,ε)] =

ˆ
(−∞,0)

f (E) dνHd,ε(E)
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Basic idea inspired by Dimassi ’99 and Panati-Teufel ’03, based on many
works going back to Balezard-Konlein ’85: approximate Tr[f (Hd,ε)] for ε
small using semiclassical analysis with operator-valued symbols

Dimassi: ε-expansion of Tr(f (Hε)) for

Hε =
1

2
(−i∇ +A(εr))2 + Vper(r) +W (εr) on L2(Rd)

with Vper ∈ C∞(Rd;R) periodic, and e.g. A ∈ C∞
b (Rd;Rd), W ∈ C∞

c (R;R),
and f supported in a spectral gap of the periodic operator −1

2∆+ Vper

Panati-Teufel: quantum dynamics in periodic media

Hε =
1

2
(−i∇ +A(εr))2 + Vper(r) +W (εr) on L2(Rd)

−→ Semiclassical dynamics on Bloch bands with Berry curvature terms
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Atomic-scale Hamiltonian

Hd,ε = −1

2
∆+vd(x−c(ε)εx, εx, z), ε = 2 sin

θ

2
, c(ε) =

1−
√
1− ε2

ε
∼ ε

2

The Hamiltonian

hd,X = −1

2
∆x,z + vd(x,X, z) acting on L2(R2

x × Rz;C)

describes an untwisted bilayer graphene with disregistry y = JX

y = 0: A-A stacking y = 1
3(a1 + a2): A-B stacking



2 - Mathematical analysis of KS Hamiltonians for moiré materials 31
.

Longitudinal Bloch transform of the L-periodic Hamiltonian hd,X

hd,X = −1

2
∆x,z + vd(x,X, z) acting on L2(R2

x × Rz;C)

= U−1

( ⊕

BZ

hd,0(k,X) dk

)
U with hd,0(k,X) :=

1

2
(−i∇x + k)2 − 1

2
∂2z + vd(·,X, ·)

For each (k,X) ∈ R2 × R2,
• hd,0(k,X) is an operator on L2

per := L2((R2
x/L)× Rz)

• σc(h(k, X)) = R+

Band spectrum of h(·,X) in the negative energy window
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Semiclassical description of the atomic scale Hamiltonian

Hd,ε = −1

2
∆+vd(x−c(ε)εx, εx, z), ε = 2 sin

θ

2
, c(ε) =

1−
√
1− ε2

ε
∼ ε

2

Introducing the operator-valued symbol

hd,ε(k,X) :=
1

2
(−i∇x + k)2− 1

2
∂2z+vd(·−c(ε)X,X, ·), (k,X) ∈ R2×R2

(hd,ε(k,X) self-adjoint operator on L2
per), we have

Hd,ε = U−1Opε(hd,ε)U

where

[Opε(a)ϕ]k(x, z) =
1

(2πε)2

ˆ
R2×R2

[
a

(
k + k′

2
,X

)
ϕk′

]
(x, z) e−i

(k−k′)·X
ε dk′ dX
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Weyl quantization rule for operator-valued symbols

[Opε(a)ϕ]k(x, z) =
1

(2πε)2

ˆ
R2×R2

[
a

(
k + k′

2
,X

)
ϕk′

]
(x, z) e−i

(k−k′)·X
ε dk′ dX

Remarks:
• compare with usual Weyl quantization formula for symbols in C∞(Rd × Rd;C)

[Opε(a)φ](r) =
1

(2πε)d

ˆ
Rd×Rd

a

(
r + r′

2
,p

)
φ(r′) ei

p·(r−r′)
ε dr dp

• assuming that vd is smooth, the operator-valued symbol

hd,ε(k,X) :=
1

2
(−i∇x + k)2−1

2
∂2z+vd(·−c(ε)X,X, ·), (k,X) ∈ R2×R2

is in Sω(L(H2
per;L

2
per)) with order function ω(k,X) = 1 + |k|2

• it is τ -equivariant in the sense that it satisfies the property

∀(k,X) ∈ R2 × R2, ∀G ∈ L∗, hd,ε(k +G,X) = τGhd,ε(k,X)τ−G

where
∀u ∈ Hs

per, (τGu)(x, z) = eiG·xu(x, z)
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Theorem (C, Meng, in preparation). Under suitable assumptions on V and
Vint, for all f ∈ C∞

c (R;R+) with compact support included in (−∞, 0), it
holds

Tr[f (Hd,ε)] =

n∑
j=0

εj

|Ω|

 
JΩ

 
Ω∗
TrL2per[fd,j(k,X)] dk dX +O(εn+1)

with

fd,0(k,X) := f (hd,0(k,X))

fd,1(k,X) :=
i

2π

ˆ
C
∂f̃ (ζ)

[
{(ζ − hd,0)

−1, (ζ − hd,0)}(ζ − hd,0)
−1
]
(k,X) d2ζ

· · ·

where f̃ : C → C is any almost analytic extension of f

Tools for the proof: semiclassical analysis with operator-valued symbols,
Helffer-Sjöstrand formula, (degenerate) perturbation theory, “twisted" Weyl
calculus to deal with the −c(ε)X term in vd(· − c(ε)X,X, ·)
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Theorem (C, Meng, in preparation). Under suitable assumptions on V
and Vint, for all f ∈ C∞

c (R;R+) with compact support included in (−1, 1),
δ, ε > 0 small enough, d > 0 large enough,

Tr
(
f

(
Hd,ε − µF

δ

))
= 2Tr

(
f

(
Td,K,ε
δ

))
+O(δ−1ε) + δ1−ed +O(δ3−)

with

Td,K,ε := T (−i∇x −K) + Vd,K(εx) acting on L2(R2;C4),

where

T (k) :=

(
vFσσσ · k 0

0 vFσσσ · k

)
, Vd,K(X) :=

(
W+

d,K(X) Vd,K(X)

Vd,K(X)∗ W−
d,K(X)

)
and ed = f (V, Vint, uj, d) computable, converging to zero when d→ +∞
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Towards first-principle models for moiré materials

• first attempt to derive an effective model for moiré materials directly
from Kohn-Sham Hamiltonians

• bypass tight-binding models and use instead tools from multiscale analysis

Extensions (work in progress)

• mathematical analysis with semiclassical techniques

• lattice relaxation: straightforward if the displacement field is given

• coupling with phonons
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