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Outline

• Quantum Hall e�ect is large-scale spectral-geometric
phenomenon exhibited by electrons coupled to gauge �eld.

• �Topological?� Does not care about small-scale holes, bumps,
lattice vs continuum. . .

• Today: General quantization of conductance via coarse
locality principle/index theory on any sample geometry.

• Is �topology� really needed to quantize σHall?

• BEC for bounded sample will also be discussed.

Based on arXiv:2307.xxxxx with M. Ludewig (Regensburg)
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Exhibit 1: Amorphous phenomenon

Small-scale structure and homogeneity unimportant:

N. Mitchell et al, Nature
Phys. (2018)
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Exhibit 2: Geometric curvatures?

Precision of quantization (∼ 10−9) far exceeds �atness of
laboratory sample, or uniformity of magnetic �eld.

• How to explain experimental quantization of conductance in
(very) non-Euclidean geometry?

• Can we justify �geometry-free� e�ective topological �eld
theory?
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I. Traces of commutators
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Trace-class ideal

A Hilbert space operator S is trace class, if for a(ny) O.N.B. {ei}i ,∑
i

⟨ei ,
√
S∗Sei ⟩ <∞. (sum singular values)

⇝ Tr(S) :=
∑
i

⟨ei ,Sei ⟩ ∈ C.

Lidskii: ST and TS trace class ⇒ Tr[S ,T ] = 0.

Examples:

• Smooth integral kernel operator on L2(Mcpt).

• Operator on L2(R) with Schwartz class integral kernel.

• Rapid decay kernels ⇝ locally trace class.
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Trace and quantum theory

• Bounded operators B (observables) are continuously dual to
trace class operators (states):

⟨B⟩ρ = Tr(ρB).

• Locality structure: metric measure space M, subsets A ⊂ M
act as multiplication-by-χA on L2(M).

• Laplacians, gauge �elds, unitary gauge transformations etc.

• Local Hamiltonian H gives energy spectrum.
Fermi energy: Dirac-sea vacuum/∞-fermion ground state.

• Fermi projection P not trace class, yet it has �renormalizable
observables�.
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Main result (L+T '23)

M = metric space. For any projection P = P∗ = P2 on L2(M;µ)
with rapid-decay kernel, and any �coarsely transverse� half-spaces
X ,Y ⊂ M,

2πi · Tr[PXP,PYP] ∈ Z

← Y →

↓X
↑

← Y →

↓X
↑

�Physics proof� : Quantum Hall e�ect

Maths: Coarse pairing of P with partition.
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Commutator-trace is a �small-scale �lter�

Write PX = PXP and PY = PYP.

Generically, Tr[PX ,PY ] = 0:

• P supported within X or Y ; or X or Y compact.

• P is real.

Tr[PX ,PY ] ̸= 0 requires:

• P breaks time-reversal and orientation-reversal symmetry.

• P is supported on �all of M� and �delocalized�
(e.g. Wannier sense, [L+T, JMP '22]).

• PXPY and PYPX not trace class. So

Tr[PX ,PY ] = “∞−∞′′ =??
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Hall conductance

[PX ,PY ] = P
[
[X ,P], [Y ,P]

]
• Current Y c → Y in response to electric potential X c → X .
(e.g. Elgart�Schlein '03).

• Adiabatic curvature, Kubo formula. . .

AB

C

X
↑
↓

← Y →

Tr[PX ,PY ] = 2 · Tr[PA,PB ]︸ ︷︷ ︸
Kitaev“2-current′′

• Response to a magnetic �ux at intersection [Mitchell '18].
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II: Coarse viewpoint
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2000s: Coarse geometry was anticipated (A. Kitaev)
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Coarse cohomology, geometry, and index (J. Roe)

Finite propagation method, Dirac's unit speed of propagation.
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Coarse ingredients:

2-partition : Br (A) ∩ Br (B) ∩ Br (C ) bounded ∀r > 0.

AB

C

Dually: algebra B�n(M) of operators L on L2(M) satisfying:

• �nite propagation: ∃r > 0 such that ALB = 0 whenever
dist(A,B) > r .

• locally trace class: AL and LA trace class whenever A
bounded.
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Partition-projection duality pairing

Coarse partitions pair with projections in B�n(M).

⟨A,B,C ;P⟩ := Tr(APBPCP︸ ︷︷ ︸
trace class

+antisymm) = . . . = Tr[PA,PB ].

AB

C

••

•

••

•

•

•
•

• •
•

•

•
•

•
•
•
•

•

•
• •

•
•

•
•

••

•
• •

•

Oriented sum of �loop amplitudes�; large loops suppressed.
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Quantization of pairing

�Coarse cobordism invariance� argument gives

2 · [PA,PB ] = [PX ,PY ] up to traceless term.

AB

C

X
↑
↓

← Y →

• PX − P2
X = PXPX cP is supported near X ∩ X c .

• So (PX − P2
X )(PY − P2

Y ) is supported near intersection point,
thus trace class.

• Conditions of abstract quantization theorem (next slide) hold.
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Abstract functional analytic quantizations

• [L+T'23]: If projections P and X ,Y satisfy

[PX ,PY ] and (PX − P2
X )(PY − P2

Y ) trace class,

then:
2πi · Tr[PX ,PY ] ∈ Z.

Compare

• If projection P is trace class, then Tr(P) ∈ Z.
• If unitary U and projection X have X − UXU−1 trace class1,

Tr(X − UXU−1) ∈ Z.

1E�ros '89, Avron�Seiler�Simon '93
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Proof of abstract quantization theorem

Holomorphic map z 7→ e2πiz − 1 has poles at z = 0, 1.

• So the following is trace class:

(
e2πiPX − 1)

(
e2πiPY − 1) = ψ(PX ) ·

PX−P2

X︷ ︸︸ ︷
PX (1− PX ) ·

PY−P2

Y︷ ︸︸ ︷
PY (1− PY ) ·ψ(PY )

• Kitaev's observation (2000), proved by Elgart�Frass (2023):

det(e2πiPX e2πiPY e−2πiPX e−2πiPY ) = 1.

• By Pincus�Helton�Howe '73,

1 = det(e2πiPX e2πiPY e−2πiPX e−2πiPY ) = exp
(
(2πi)2Tr[PX ,PY ]).

Thus 2πi · Tr[PX ,PY ] ∈ Z.
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For NCG experts:

Note: �No topology� was needed for quantization. . .

Partition ⇝ coarse 2-cocycle ⇝ cyclic 2-cocycle on B�n(M),

(L0, L1, L2) 7→ Tr(AL0BL1CL2 + antisymm)

Formula descends to coarse cohomology class of partition and
algebraic K0-theory class of P.

HX 2(M)× K0(B�n(M))→ Z ⊂ C(
(A,B,C ) , P

)
7→ 4πi · Tr[PA,PB ].

→ Additivity in P, functorial in M (coarse-metric category), etc.
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III. Coarse index, brie�y
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Roe's coarse index

• Roe was trying to generalize Atiyah�Singer index theory to
non-compact manifolds M.

• Constructed abstract index Ind( /D) ∈ K0(B�n(M)), and
proved:

• Demonstrates non-trivial pairing with projections representing
Dirac index.
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2D Dirac coarse index

Massless Dirac operator on Euclidean R2 is

D =

(
0 −i∂x − ∂y

−i∂x + ∂y 0

)

• (Massless) Gapping out of Dirac point is
obstructed by �Index(D)�.

Method 1: Atiyah�Singer families index
bundle over momentum space (�T-duality�).

Method 2: Twist by gauge �eld: get
∞-degenerate zero modes ↔ Landau levels.

[PLandau] = Index(D).
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Landau level = Dirac Index

D2
b =

(
0 −i∂x − (∂y − ibx)

−i∂x + (∂y − ibx) 0

)2

=

(
HLandau−b 0

0 HLandau+b

)

Landau Spectrum : •b •3b •5b •7b . . .

• Landau level spectral projection ∼ coarse Dirac index.

• Geometry a�ects Landau spectrum:
Helical geometry on R2, no gaps2!

• These projections are not �nite propagation. . . quantization??

2Kubota+L+T, CMP '21- '22
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IV. Rapid decrease operators

20 / 25



Algebra of rapid decrease operators

• Choose any tiling T of M, and de�ne seminorms for each
ν ≥ 0,

||L||ν := sup
V∈T

∑
W∈T

||VLW ||Tr(1+ d(V ,W ))ν <∞.

• Finiteness of seminorms determines Fréchet algebra B(M),
whose local traces decay rapidly from diagonal.

For subsets Z ⊂ M, there are ideals B(M;Z ) ⊂ B(M) de�ned by
rapid decrease of local traces away from Z .
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Properties of B(M)

We prove:

• Trace class. B(M;K ) in trace class, if K is bounded and M
has polynomial growth.

• Localization. If Z1,Z2 are polynomially excisive, meaning
that ∃µ such that

Br (Z1) ∩ Br (Z2) ⊂ Brµ(Z1 ∩ Z2) ∀r > 0,

then
B(M;Z0) ·B(M;Z1) ⊂ B(M;Z1 ∩ Z2).
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Universal quantization of conductance

May now adapt �algebraic� proof from �nite-prop. case:

• If X ,Y are coarsely transverse and polynomially-excisive, then

Tr[PX ,PY ], P = P2 = P∗ ∈ B(M)

makes sense, quantized to 1
2πi · Z.

• Continuous, thus constant in P as it is deformed within space
of projections in topological algebra B(M).

• Coarse cobordism invariant3 w.r.t. choice of X ,Y .

• Applies to PLandau, and other PFermi with rapid decrease
integral kernels.
(Generalizable to mobility gap?)

3For edge-following states, see [L+T, ATMP '22]
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V. Finite size?
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Trivial theory for �nite size M?!

• De�ne bulk K ⊂ M to be region at distance > r from ∂M,
where r = propagation of P.

σbulk(P) = Tr
(
(KAK )P(KBK )P(KCK )P + antisymm

)
is not quantized, because PKP is not a projection.

• Similarly, K c gives boundary contribution σboundary(P).

0 = σtotal = σbulk(P) + σboundary(P),

up to cross-terms like

(KAK )P(K cBK c)P(KCK )P.
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Finite size M

Cross-terms vanish if diam(K )≫ r , then σbulk(P) = σboundary(P).

Ã ∩ B̃ ∩ C̃

M

K = bulk

Precision of σbulk(P) ≈ Z depends on how well P approximates
unbounded model, decay rate of P, volume and growth rate of
M. . .
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End/Discussion
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