Large-scale geometry and quantization of Hall conductance

Guo Chuan Thiang BICMR, Peking University

Mathematical Aspects of Condensed Matter Physics, ETH
20 July 2023

- Quantum Hall effect is large-scale spectral-geometric phenomenon exhibited by electrons coupled to gauge field.
- "Topological?" Does not care about small-scale holes, bumps, lattice vs continuum...
- Today: General quantization of conductance via coarse locality principle/index theory on any sample geometry.
- Is "topology" really needed to quantize $\sigma_{\text {Hall }}$?
- BEC for bounded sample will also be discussed.

Based on arXiv:2307.xxxxx with M. Ludewig (Regensburg)

Exhibit 1: Amorphous phenomenon

Small-scale structure and homogeneity unimportant:

N. Mitchell et al, Nature Phys. (2018)

Precision of quantization ($\sim 10^{-9}$) far exceeds flatness of laboratory sample, or uniformity of magnetic field.

Are 2D Interfaces Really Flat?

Zhihui Cheng,* Huairuo Zhang, Son T. Le, Hattan Abuzaid, Guoqing Li, Linyou Cao, Albert V. Davydov, Aaron D. Franklin,* and Curt A. Richter*
(Cite This: ACS Nano 2022, 16, 5316-5324
to examıne the cross-sectional structure of varıous LD interfaces on the length scale of an array of electronic devices ($\sim 12.5 \mu \mathrm{~m}$ in total). Contrary to the conventional assumption that 2D interfaces are always flat, we find that these interfaces can be quite intricate and complex. Correlating the interface deformation with the corresponding device performance, we

- How to explain experimental quantization of conductance in (very) non-Euclidean geometry?
- Can we justify "geometry-free" effective topological field theory?
I. Traces of commutators

A Hilbert space operator S is trace class, if for a(ny) O.N.B. $\left\{e_{i}\right\}_{i}$,

$$
\begin{gathered}
\sum_{i}\left\langle e_{i}, \sqrt{S^{*} S} e_{i}\right\rangle<\infty . \quad \text { (sum singular values) } \\
\rightsquigarrow \operatorname{Tr}(S):=\sum_{i}\left\langle e_{i}, S e_{i}\right\rangle \in \mathbb{C}
\end{gathered}
$$

Lidskii: $S T$ and $T S$ trace class $\Rightarrow \operatorname{Tr}[S, T]=0$.
Examples:

- Smooth integral kernel operator on $L^{2}\left(M_{\mathrm{cpt}}\right)$.
- Operator on $L^{2}(\mathbb{R})$ with Schwartz class integral kernel.
- Rapid decay kernels \rightsquigarrow locally trace class.
- Bounded operators B (observables) are continuously dual to trace class operators (states):

$$
\langle B\rangle_{\rho}=\operatorname{Tr}(\rho B)
$$

- Locality structure: metric measure space M, subsets $A \subset M$ act as multiplication-by- χ_{A} on $L^{2}(M)$.
- Laplacians, gauge fields, unitary gauge transformations etc.
- Local Hamiltonian H gives energy spectrum. Fermi energy: Dirac-sea vacuum/ ∞-fermion ground state.
- Fermi projection P not trace class, yet it has "renormalizable observables".
$M=$ metric space. For any projection $P=P^{*}=P^{2}$ on $L^{2}(M ; \mu)$ with rapid-decay kernel, and any "coarsely transverse" half-spaces $X, Y \subset M$,

$$
2 \pi i \cdot \operatorname{Tr}[P X P, P Y P] \in \mathbb{Z}
$$

"Physics proof": Quantum Hall effect
Maths: Coarse pairing of P with partition.

Write $P_{X}=P X P$ and $P_{Y}=P Y P$.
Generically, $\operatorname{Tr}\left[P_{X}, P_{Y}\right]=0$:

- P supported within X or Y; or X or Y compact.
- P is real.
$\operatorname{Tr}\left[P_{X}, P_{Y}\right] \neq 0$ requires:
- P breaks time-reversal and orientation-reversal symmetry.
- P is supported on "all of M " and "delocalized" (e.g. Wannier sense, [L+T, JMP '22]).
- $P_{X} P_{Y}$ and $P_{Y} P_{X}$ not trace class. So

$$
\operatorname{Tr}\left[P_{X}, P_{Y}\right]=" \infty-\infty^{\prime \prime}=? ?
$$

$$
\left[P_{X}, P_{Y}\right]=P[[X, P],[Y, P]]
$$

- Current $Y^{c} \rightarrow Y$ in response to electric potential $X^{c} \rightarrow X$. (e.g. Elgart-Schlein '03).
- Adiabatic curvature, Kubo formula...

$$
\operatorname{Tr}\left[P_{X}, P_{Y}\right]=2 \cdot \underbrace{\operatorname{Tr}\left[P_{A}, P_{B}\right]}_{\text {Kitaev "2-current" }}
$$

- Response to a magnetic flux at intersection [Mitchell '18].

II: Coarse viewpoint

Periodic table for topological insulators and superconductors
Alexei Kitaev
Theorem: Any gapped local free-fermion Hamiltonian in \mathbb{R}^{d} is equivalent to a texture.
(That is the key technical result, but I cannot explain it in any detail in such a short note.) Discrete systems on a compact metric space L are classified by the K-homology group $K_{q}^{\mathbb{R}}(L)$.
30. N. Higson, and J. Roe, Analytic K-homology, Oxford University Press, New York, 2000.
31. A. Connes, Noncommutative geometry, Academic Press, San Diego, 1994.

In general, a quasidiagonal matrix is a lattice-indexed matrix $A=\left(A_{j k}\right)$ with sufficiently rapidly decaying off-diagonal elements. Technically, one requires that

```
|Ajk}|\leqslantc|j-k\mp@subsup{|}{}{-\alpha},\quad\alpha>d
```

where c and α are some constants, and d is the dimension of the space. Note that "lattice" is simply a way to impose coarse \mathbb{R}^{d} geometry at large distances. We may think about the problem in these terms: matrices are operators acting in some Hilbert space, and lattice points are basis vectors. But the choice of the basis need not be fixed. One may safely replace the basis vector corresponding to a given lattice point by a linear combination of nearby points. One may also use some kind of coarse-graining, replacing the basis by a decomposition into orthogonal subspaces corresponding to groups of points, or regions in \mathbb{R}^{d}.

Finite propagation method, Dirac's unit speed of propagation.

2-partition: $\quad B_{r}(A) \cap B_{r}(B) \cap B_{r}(C) \quad$ bounded $\forall r>0$.

Dually: algebra $\mathscr{B}_{\text {fin }}(M)$ of operators L on $L^{2}(M)$ satisfying:

- finite propagation: $\exists r>0$ such that $A L B=0$ whenever $\operatorname{dist}(A, B)>r$.
- locally trace class: $A L$ and $L A$ trace class whenever A bounded.

Coarse partitions pair with projections in $\mathscr{B}_{\text {fin }}(M)$.

$$
\langle A, B, C ; P\rangle:=\operatorname{Tr}(\underbrace{A P B P C P}_{\text {trace class }}+\text { antisymm })=\ldots=\operatorname{Tr}\left[P_{A}, P_{B}\right] .
$$

Oriented sum of "loop amplitudes"; large loops suppressed.
"Coarse cobordism invariance" argument gives

$$
2 \cdot\left[P_{A}, P_{B}\right]=\left[P_{X}, P_{Y}\right] \quad \text { up to traceless term. }
$$

- $P_{X}-P_{X}^{2}=P X P X^{c} P$ is supported near $X \cap X^{c}$.
- So $\left(P_{X}-P_{X}^{2}\right)\left(P_{Y}-P_{Y}^{2}\right)$ is supported near intersection point, thus trace class.
- Conditions of abstract quantization theorem (next slide) hold.

Abstract functional analytic quantizations

- [L+T'23]: If projections P and X, Y satisfy

$$
\left[P_{X}, P_{Y}\right] \quad \text { and } \quad\left(P_{X}-P_{X}^{2}\right)\left(P_{Y}-P_{Y}^{2}\right) \quad \text { trace class, }
$$

then:

$$
2 \pi i \cdot \operatorname{Tr}\left[P_{X}, P_{Y}\right] \in \mathbb{Z}
$$

Compare

- If projection P is trace class, then $\operatorname{Tr}(P) \in \mathbb{Z}$.
- If unitary U and projection X have $X-U X U^{-1}$ trace class ${ }^{1}$,

$$
\operatorname{Tr}\left(X-U X U^{-1}\right) \in \mathbb{Z}
$$

Proof of abstract quantization theorem

Holomorphic map $z \mapsto e^{2 \pi i z}-1$ has poles at $z=0,1$.

- So the following is trace class:

$$
\left(e^{2 \pi i P_{X}}-1\right)\left(e^{2 \pi i P_{Y}}-1\right)=\psi\left(P_{X}\right) \cdot \overbrace{P_{X}\left(1-P_{X}\right)}^{P_{X}-P_{X}^{2}} \cdot \overbrace{P_{Y}\left(1-P_{Y}\right)}^{P_{Y}-P_{Y}^{2}} \cdot \psi\left(P_{Y}\right)
$$

- Kitaev's observation (2000), proved by Elgart-Frass (2023):

$$
\operatorname{det}\left(e^{2 \pi i P_{X}} e^{2 \pi i P_{Y}} e^{-2 \pi i P_{X}} e^{-2 \pi i P_{Y}}\right)=1
$$

- By Pincus-Helton-Howe '73,

$$
1=\operatorname{det}\left(e^{2 \pi i P_{X}} e^{2 \pi i P_{Y}} e^{-2 \pi i P_{X}} e^{-2 \pi i P_{Y}}\right)=\exp \left((2 \pi i)^{2} \operatorname{Tr}\left[P_{X}, P_{Y}\right]\right)
$$

Thus $2 \pi i \cdot \operatorname{Tr}\left[P_{X}, P_{Y}\right] \in \mathbb{Z}$.

Note: "No topology" was needed for quantization. . .
Partition \rightsquigarrow coarse 2-cocycle \rightsquigarrow cyclic 2-cocycle on $\mathscr{B}_{\text {fin }}(M)$,

$$
\left(L_{0}, L_{1}, L_{2}\right) \mapsto \operatorname{Tr}\left(A L_{0} B L_{1} C L_{2}+\text { antisymm }\right)
$$

Formula descends to coarse cohomology class of partition and algebraic K_{0}-theory class of P.

$$
\begin{aligned}
& H X^{2}(M) \times K_{0}\left(\mathscr{P}_{\mathrm{fin}}(M)\right) \rightarrow \mathbb{Z} \subset \mathbb{C} \\
&((A, B, C), P) \quad \mapsto 4 \pi i \cdot \operatorname{Tr}\left[P_{A}, P_{B}\right]
\end{aligned}
$$

\rightarrow Additivity in P, functorial in M (coarse-metric category), etc.
III. Coarse index, briefly

- Roe was trying to generalize Atiyah-Singer index theory to non-compact manifolds M.
- Constructed abstract index $\operatorname{Ind}(\not D) \in K_{0}\left(\mathscr{B}_{\text {fin }}(M)\right)$, and proved:
(4.42) Theorem: Let M be a complete Riemannian manifold of dimension $2 m$, and let D be a graded generalized Dirac operator over M. Let $[\varphi] \in H X^{2 q}(M)$ be a coarse cohomology class. Then

$$
\langle\operatorname{Ind}(D), \chi[\varphi]\rangle=\frac{q!}{(2 q)!(2 \pi i)^{q}}\left\langle\Im_{D} \smile c[\varphi],[M]\right\rangle ;
$$

where $c: H X^{*}(M) \rightarrow H_{c}^{*}(M)$ is the character map of 2.11 .

- Demonstrates non-trivial pairing with projections representing Dirac index.

Massless Dirac operator on Euclidean \mathbb{R}^{2} is

$$
D=\left(\begin{array}{cc}
0 & -i \partial_{x}-\partial_{y} \\
-i \partial_{x}+\partial_{y} & 0
\end{array}\right)
$$

- (Massless) Gapping out of Dirac point is obstructed by "Index(D)".

Method 1: Atiyah-Singer families index bundle over momentum space ("T-duality").
Method 2: Twist by gauge field: get ∞-degenerate zero modes \leftrightarrow Landau levels.

$$
\left[P_{\text {Landau }}\right]=\operatorname{Index}(D)
$$

$$
\begin{aligned}
D_{b}^{2} & =\left(\begin{array}{cc}
0 & -i \partial_{x}-\left(\partial_{y}-i b x\right) \\
-i \partial_{x}+\left(\partial_{y}-i b x\right) & 0
\end{array}\right)^{2} \\
& =\left(\begin{array}{cc}
H_{\text {Landau }}-b & 0 \\
0 & H_{\text {Landau }}+b
\end{array}\right)
\end{aligned}
$$

Landau Spectrum :

- $b \quad \bullet_{b}$
$\bullet 5 b$
-7b ...
- Landau level spectral projection \sim coarse Dirac index.
- Geometry affects Landau spectrum: Helical geometry on \mathbb{R}^{2}, no gaps ${ }^{2}$!
- These projections are not finite propagation... quantization??
${ }^{2}$ Kubota + L + T, CMP '21- '22
IV. Rapid decrease operators

Algebra of rapid decrease operators

- Choose any tiling \mathcal{T} of M, and define seminorms for each $\nu \geq 0$,

$$
\|L\|_{\nu}:=\sup _{V \in \mathcal{T}} \sum_{W \in \mathcal{T}}\|V L W\|_{\operatorname{Tr}}(1+d(V, W))^{\nu}<\infty .
$$

- Finiteness of seminorms determines Fréchet algebra $\mathscr{B}(M)$, whose local traces decay rapidly from diagonal.

For subsets $Z \subset M$, there are ideals $\mathscr{B}(M ; Z) \subset \mathscr{B}(M)$ defined by rapid decrease of local traces away from Z.

We prove:

- Trace class. $\mathscr{B}(M ; K)$ in trace class, if K is bounded and M has polynomial growth.
- Localization. If Z_{1}, Z_{2} are polynomially excisive, meaning that $\exists \mu$ such that

$$
B_{r}\left(Z_{1}\right) \cap B_{r}\left(Z_{2}\right) \subset B_{r^{\mu}}\left(Z_{1} \cap Z_{2}\right) \quad \forall r>0,
$$

then

$$
\mathscr{B}\left(M ; Z_{0}\right) \cdot \mathscr{B}\left(M ; Z_{1}\right) \subset \mathscr{B}\left(M ; Z_{1} \cap Z_{2}\right) .
$$

May now adapt "algebraic" proof from finite-prop. case:

- If X, Y are coarsely transverse and polynomially-excisive, then

$$
\operatorname{Tr}\left[P_{X}, P_{Y}\right], \quad P=P^{2}=P^{*} \in \mathscr{B}(M)
$$

makes sense, quantized to $\frac{1}{2 \pi i} \cdot \mathbb{Z}$.

- Continuous, thus constant in P as it is deformed within space of projections in topological algebra $\mathscr{B}(M)$.
- Coarse cobordism invariant ${ }^{3}$ w.r.t. choice of X, Y.
- Applies to $P_{\text {Landau }}$, and other $P_{\text {Fermi }}$ with rapid decrease integral kernels.
(Generalizable to mobility gap?)

[^0]V. Finite size?

- Define bulk $K \subset M$ to be region at distance $>r$ from ∂M, where $r=$ propagation of P.

$$
\sigma_{\text {bulk }}(P)=\operatorname{Tr}((K A K) P(K B K) P(K C K) P+\text { antisymm })
$$

is not quantized, because $P K P$ is not a projection.

- Similarly, K^{c} gives boundary contribution $\sigma_{\text {boundary }}(P)$.

$$
0=\sigma_{\text {total }}=\sigma_{\text {bulk }}(P)+\sigma_{\text {boundary }}(P)
$$

up to cross-terms like
$(K A K) P\left(K^{c} B K^{c}\right) P(K C K) P$.

Cross-terms vanish if $\operatorname{diam}(K) \gg r$, then $\sigma_{\text {bulk }}(P)=\sigma_{\text {boundary }}(P)$.

Precision of $\sigma_{\text {bulk }}(P) \approx \mathbb{Z}$ depends on how well P approximates unbounded model, decay rate of P, volume and growth rate of M...

End/Discussion

[^0]: ${ }^{3}$ For edge-following states, see [L+T, ATMP '22]

