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Quantum Hall effect is large-scale spectral-geometric
phenomenon exhibited by electrons coupled to gauge field.

® “Topological?” Does not care about small-scale holes, bumps,
lattice vs continuum. ..

® Today: General quantization of conductance via coarse
locality principle/index theory on any sample geometry.

® |s “topology” really needed to quantize opan?

BEC for bounded sample will also be discussed.

Based on arXiv:2307 .xxxxx with M. Ludewig (Regensburg)
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Exhibit 1: Amorphous phenomenon

Small-scale structure and homogeneity unimportant:

N. Mitchell et al, Nature
Phys. (2018)

Driving
amplitude

Kl

3/25



Exhibit 2: Geometric curvatures?

Precision of quantization (~ 107°) far exceeds flatness of
laboratory sample, or uniformity of magnetic field.

Are 2D Interfaces Really Flat?

Zhihui Cheng* Huairuo Zhang, Son T. Le, Hattan Abuzaid, Guoging Li, Linyou Cao,
Albert V. Davydov, Aaron D. Franklin,* and Curt A. Richter*

Cite This: ACS Nano 2022, 16, 5316-5324 I:I Read Online

to examine the cross-sectional structure of various 2D
interfaces on the length scale of an array of electronic devices
(~12.5 pm in total). Contrary to the conventional assumption
that 2D interfaces are always flat, we find that these interfaces
can be quite intricate and complex. Correlating the interface
deformation with the corresponding device performance, we

® How to explain experimental quantization of conductance in
(very) non-Euclidean geometry?

® Can we justify “geometry-free” effective topological field
theory?
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|. Traces of commutators
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Trace-class ideal

A Hilbert space operator S is trace class, if for a(ny) O.N.B. {e¢;},

Z(e;, VS5*Se) < 0. (sum singular values)

~ Tr(S) == Z(e,-, Sei) € C.
Lidskii: ST and TS trace class = Tr[S, T] = 0.

Examples:
® Smooth integral kernel operator on L2(Mpt).
® Operator on L%(R) with Schwartz class integral kernel.

® Rapid decay kernels ~~ focally trace class.

5/25



Trace and quantum theory

® Bounded operators B (observables) are continuously dual to
trace class operators (states):

(B), = Tr(pB).

® | ocality structure: metric measure space M, subsets A C M
act as multiplication-by-y 4 on L2(M).
® Laplacians, gauge fields, unitary gauge transformations etc.

® Local Hamiltonian H gives energy spectrum.
Fermi energy: Dirac-sea vacuum/oo-fermion ground state.

® Fermi projection P not trace class, yet it has “renormalizable
observables”.
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Main result (L+T "23)

M = metric space. For any projection P = P* = P? on L?(M; i)
with rapid-decay kernel, and any “coarsely transverse” half-spaces
X, Y CM,

2mi - Te[PXP, PYP] € Z

X

“Physics proof”’: Quantum Hall effect

Maths: Coarse pairing of P with partition.
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Commutator-trace is a “small-scale filter”

Write Px = PXP and Py = PYP.

Generically, Tr[Px, Py] = 0:
® P supported within X or Y; or X or Y compact.
® P s real.

Tr[Px, Py] # 0 requires:

® P breaks time-reversal and orientation-reversal symmetry.

® P is supported on “all of M" and “delocalized”
(e.g. Wannier sense, [L+T, JMP '22]).

® Py Py and Py Px not trace class. So

Tx[Px, Py] = “o0 — o0 =77
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Hall conductance

[PXaPY]:P[[Xv'D]v[YaP]]

e Current Y¢ — Y in response to electric potential X¢ — X.
(e.g. Elgart—Schlein '03).
e Adiabatic curvature, Kubo formula. ..

Tr[Px, Py] =2- Tr[Pa, Pg]
—_——

Kitaev “2-current’’

® Response to a magnetic flux at intersection [Mitchell "18].
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|I: Coarse viewpoint
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00s: Coarse geometry was anticipated (A. Kitaev)

q

Periodic table for logical insul s and super

Alexei Kitaev
Theorem: Any gapped local free-fermion Hamilto-
Anyons in an exactly solved model and beyond nian in R is equivalent to a texture.
(That is the key technical result, but I cannot ex-
plain it in any detail in such a short note.) Discrete

_ systems on a compact metric space L are classified
V(P) - h(A7 B, C) by the K-homology group K2(L).

def
— 2 , Z Z } ijl- ) . -
je€A keB leC 30. N. Higson, and J. Roe, Analytic K-homology, Oxford

University Press, New York, 2000.
31. A. Connes, Noncommutative geometry, Academic Press,
San Diego, 1994.

Alexei Kitaev *

In general, a quasidiagonal matrix is a lattice-indexed matrix A4 = (A4) with sufficiently
rapidly decaying off-diagonal elements. Technically, one requires that

Mpl Scli =K, «>d,

where ¢ and « are some constants, and d is the dimension of the space. Note that ““lattice™
is simply a way to impose coarse R? geometry at large distances. We may think about the
problem in these terms: matrices are operators acting in some Hilbert space, and lattice
points are basis vectors. But the choice of the basis need not be fixed. One may safely re-
place the basis vector corresponding to a given lattice point by a linear combination of
nearby points. One may also use some kind of coarse-graining, replacing the basis by a
decomposition into orthogonal subspaces corresponding to groups of points, or regions
in R,
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Coarse co y, and index

M M O I RS Conference Board of (he Malhematical Seiences
— CBMS

American Mathematical Society

Regional Conference Series in Mathematics
Number 497 e

Index Theory,
Coarse Geometry, and
Topology of Manifolds

Coarse Cohomology
and Index Theory
on Complete
Riemannian Manifolds

John Roe

John Roe

American Mathematical Society

Finite propagation method, Dirac’s unit speed of propagation.
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Coarse ingredients:

2-partition : B.(A)N B,(B)N B,(C) bounded Vr > 0.

Dually: algebra %5, (M) of operators L on L?(M) satisfying:

e finite propagation: 3r > 0 such that ALB = 0 whenever
dist(A, B) > r.

® |ocally trace class: AL and LA trace class whenever A

bounded.
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Partition-projection duality pairing

Coarse partitions pair with projections in g, (M).

(A, B, C; P) := Tr(APBPCP +antisymm) = ... = Tr[Pa, Pg].

trace class

Oriented sum of “loop amplitudes”; large loops suppressed.
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Quantization of pairing

“Coarse cobordism invariance” argument gives

2 - [Pa, Pg] = [Px, Py] up to traceless term.

HT%

L
7

® Py — P)2< = PXPXC€P is supported near X N X°.

® So (Px — P%)(Py — P%) is supported near intersection point,
thus trace class.

e Conditions of abstract quantization theorem (next slide) hold.
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Abstract functional analytic quantizations

e [L+T'23]: If projections P and X, Y satisfy
[Px,Py] and (Px — P%)(Py — P%) trace class,
then:

2mi - Tr[Px, Py] € Z.

Compare
e |If projection P is trace class, then Tr(P) € Z.
e If unitary U and projection X have X — UXU™! trace class?,

Tr(X — UXU™Y) € Z.

1Effros '89, Avron—Seiler-Simon '93
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Proof of abstract quantization theorem

2miz

Holomorphic map z +— €™ — 1 has poles at z =0, 1.

® So the following is trace class:

Px—P% Py—P%

(e2™Px —1) (™ — 1) = ¢p(Px) - Px(1 = Px)- Py(1 = Py) 4)(Py)

¢ Kitaev's observation (2000), proved by Elgart—Frass (2023):

det(e27riPXe27TiPye—27riPXe—27riPy) — 1
® By Pincus—Helton—Howe '73,

1 = det(e”™Px Py 72T Px e 72TPY ) — exp ((2mi)*Tr[Px, Py]).

Thus 27/ - Tr[Px, Py] € Z.
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For NCG experts:

Note: “No topology” was needed for quantization. ..
Partition ~~ coarse 2-cocycle ~~ cyclic 2-cocycle on PBxn(M),
(Lo, Ly, L2) — TI'(ALQ BL,ClL> + antisymm)

Formula descends to coarse cohomology class of partition and
algebraic Ko-theory class of P.

HX?(M) x Ko(PBgn(M)) = Z c C
((A, B,C), P) s 477 - Tv[Pa, Pg].

— Additivity in P, functorial in M (coarse-metric category), etc.
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IIl. Coarse index, briefly
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Roe's coarse index

® Roe was trying to generalize Atiyah—Singer index theory to
non-compact manifolds M.

e Constructed abstract index Ind(D) € Ko(%sn(M)), and
proved:

(4.42) THEOREM: Let M be a complete Riemannian manifold of dimension 2m,
and let D be a graded generalized Dirac operator over M. Let [p] € HX? (M)
be a coarse cohomology class. Then

(Ind(D), x[¢)) = @%mﬁ

where ¢: HX*(M) — H}(M) is the character map of 2.11.

(Sp — cle], [M]);

® Demonstrates non-trivial pairing with projections representing
Dirac index.
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2D Dirac coarse index

Massless Dirac operator on Euclidean R? is
B 0 —i0x — 0y
b= (—/ax 1o, 0 >

® (Massless) Gapping out of Dirac point is
obstructed by “Index(D)".

Method 1: Atiyah—Singer families index
bundle over momentum space (“T-duality”).

Method 2: Twist by gauge field: get
oo-degenerate zero modes <+ Landau levels.

[PLandau] = IndeX(D).
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Landau level = Dirac Index

D 0 —idy — (8 — ibx)\
B \—idc + (0y — ibx) 0
— (HLandau_b 0 >
0 ffLandau*‘b
Landau Spectrum : o, o3 osp °7p

Landau level spectral projection ~ coarse Dirac index.

Geometry affects Landau spectrum:
Helical geometry on R?, no gaps?!

These projections are not finite propagation. .. quantization??

2Kubota+L+T, CMP "21- "22
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IV. Rapid decrease operators
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Algebra of rapid decrease operators

® Choose any tiling 7 of M, and define seminorms for each
v >0,

1Ll = sup Y |IVIW||xe(1 + d(V, W))” < oc.
weT

e Finiteness of seminorms determines Fréchet algebra #(M),
whose local traces decay rapidly from diagonal.

For subsets Z C M, there are ideals Z(M; Z) C $(M) defined by
rapid decrease of local traces away from Z.

21/25



Properties of Z(M)

We prove:

® Trace class. Z(M; K) in trace class, if K is bounded and M
has polynomial growth.

¢ Localization. If Z;, Z; are polynomially excisive, meaning
that Ju such that

Br(Zl) N Br(ZQ) C Bru(Zl N Zg) Vr >0,

then
B(M; Zy) - B(M; Z1) C B(M; Zy N 2o).
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Universal quantization of conductance

May now adapt “algebraic” proof from finite-prop. case:

e If X, Y are coarsely transverse and polynomially-excisive, then

Tr[Px,Py], P =P?=P*c B(M)

1

makes sense, quantized to 5.7 " L.
Tl

e Continuous, thus constant in P as it is deformed within space
of projections in topological algebra (M).

e Coarse cobordism invariant® w.r.t. choice of X, Y.

® Applies to Prandau, and other Prermi with rapid decrease
integral kernels.
(Generalizable to mobility gap?)

3For edge-following states, see [L+T, ATMP '22]
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V. Finite size?
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Trivial theory for finite size M?!

® Define bulk K C M to be region at distance > r from oM,
where r = propagation of P.

opui(P) = Tr((KAK)P(KBK)P(KCK)P + antisymm)

is not quantized, because PKP is not a projection.

® Similarly, K¢ gives boundary contribution opoundary (P)-

0 = Tiotal = Obulk(P) + Tboundary (P),
up to cross-terms like

(KAK)P(KBK)P(KCK)P.
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Finite size M

Cross-terms vanish if diam(K) > r, then opuk(P) = oboundary (P)-

AB
(SR
fFO OO off

Precision of oux(P) ~ Z depends on how well P approximates
unbounded model, decay rate of P, volume and growth rate of
M...
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End/Discussion
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