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Robust Asymmetric Transport in TIs
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e Quantized asymmetric transport at different scales.
o IQHE, Twister biilayer Graphene, Atmospherics waves, Photonics.
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Topological phase transition: domain walls

e Insulating phases (typically) described by mass term p #= 0.
e Transition (typically) modeled by Domain Wall u(y).
e Asymmetric transport observed near interface p~1(0).

"I ww>o . £
D
u(y) ~0
EDGE T
& p(y) <0
/

e Interface Hamiltonian H, modeling transition between bulk insulators.
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Asymmetric transport and Interface Conductivity

e Let P(x) model density on right of =z = zg.

P=0||P=1
e Observable: (P) = (y(t)|P|y(t)), 0 = H1. | ;
e Rate of change: p(y) > 0 |
S(P)=Tr i[H, Pl ()" (8). ol .
L0 €T
e Models current across line z = xg. uw(y) <0
e Density ¢/(E) > 0 with [ (E)dE =1

supported within bulk gap.

e \We define interface conductivity as:

or = Tr i[H, P]l¢' (H).
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Topological invariants for asymmetric transport

e Asymmetric transport modeled by o; = Tr i[H, P]o'(H).

e Objectives:

1. Identify classes of Interface Hamiltonians H.

2. Introduce Topological invariants via two different Fredholm oper-
ators: T(H) = PU(H)P and F(H).

3. Prove Topological Charge: 2no; = IndexT = IndexF' € Z.
This is a form of bulk-edge correspondence.

4. Computation of invariants: IndexF' by winding number/Chern num-
ber/topological degree formulas; indexT by spectral flow.
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Genericity of PDE models / Dirac operators

Bloch decomposition of microscopic problems (e.g., Schrodinger/Maxwell
equation with periodic coefficients or tight-binding problems) provide:

—F =<+
ra"i‘ Te~8
*F’L *L

Conventional Insulator QSH Insulator

Low energy models near Dirac points (generic in honeycomb structures
[Fefferman-Weinstein 2012]) are Dirac equations :

H = Dyoq + Dyop + m(x,y)o3 = (Da:<‘|‘ z%y —fn(x y§>

with Dy = —i0z, Dy = —i0y and m(x,y) a mass term.
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Examples of Hamiltonians H

Examples of (unperturbed) Hamiltonians in different applications:

Dy — 1D
Hp = Dgzoy + Dyoy +m(y)oz = (D;n_f_yz)Dy —m(;)y>

1
Hp = (%(Dﬁ + D2) — u(y))o1 + 3{c(y), Dy}too + coDzo3
1
Hy = (=—(D2+4 D2) — u(y))o1 + co(D2 — D2)op + 3Dz{c(y), Dy}os
2m
14+ D o eB*(y) O 0 Dy D,
Hp = eB(y) D-o eB*(y) Hy = [Dz 0  if(y)
O eB(y) -1+ D-o Dy —if(y) O

Hp: Dirac operator in electronics and photonics; H, and H;: BdG p-wave and d-wave
superconductor Hamiltonians; Hr: 3-replica model in graphene-based Floquet TI (and

bilayer graphene); Hy: Atmospheric Fluid-wave Hamiltonian.
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Classes of Hamiltonians

We consider Hamiltonians in Weyl form H = OpW%a on Rd, where

1 : T
w — i(z—y)-§ Y
(0p%a) f(@) = 537 foo @@ a5 2.0 () dedy.
e In d = 2 for (differential) Hamiltonians with bounded domain walls:
a € S™= ST, e, |0885al(x,€) < Cy ple)m 1o,

[H1] Assume m > 0, a € S™, Hermitian, elliptic (s.v. > C1{§{)™ — C>).
[H2] Assume H insulating for |y| > L, i.e., H = H4 for +y > L with Hy
gapped : spec(H+) N (E_,EL) = 0.

[H3] Assume ¢’ € C2°(R) supported inside that gap (E_, Ey).

od>2. Letx=(z;,x)) fora € RF, X = (z,€), wp(X) = \/1 + |:13;€|2 + [£|2.

ap € S, e, (@)N)PN080 ar(X)] < Co g (X).

[H1] Symbol a; € ES]*: Hermitian, elliptic (s.v. > Ciw/"(X) — C5).
Si* © k confining unbounded domain walls. (Also chiral when d+ k even.)
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Topological classification by domain walls: 2D

e Topology of operator tested by domain walls leading to transverse
asymmetric transport. In R2:

e Bare (graphene) 2D Dirac Hy = Dgo1+ Dyor = (D —I?z'D Dz BZD?/).
x Y

e Construct confined Hy = Hgy + yos (or start from Hy confined in y).
e Further confine in z and define the Fredholm operator F = H{ —ix.

e For Dirac, Index FF :=dim KerF —dim KerF* = —1 =Index FF + V.

EaCA Z,Y

ans
Wi

e With a(z,y,£,() = &o1 + (oo + yoz — ix symbol of F:

1 —1 \A3 _
2/S3tr (a” “da)™> = —1.

24T

IndexF =

This is the Fedosov-HoOormander index formula.
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Topological classification by domain walls: nD

e Using Clifford algebras generalizing 0,0t 0j0; = 257;3', we may construct
an arbitrary number of domain walls.

e Start: Hj confined in k axes. Construct H; | =0 @ Hy +p-v® In,.
e Construct Fredholm operator FF = H,; 1 —iu(x,y).

e Theorem. Let Hy = Op%ay for a; € ES]" (elliptic symbols). Then
F = OpYa with

(d—1)! ~1 , \A(2d—1)
IndexF = — , L tr(a” “da) :
(2mi)d(2d — 1)! /géd 1

Fedosov-Hormander formula: Topological Charge associated to Hy.

[B. JMP 23 Topological charge conservation for continuous insulators].
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Main Results
e H;, H; 1 as above (confined in d— 1 directions) and F = Hy_1 —iu(xy).
e Theorem (stability): o; = Tri[H,;_ 1, P]l¢'(Hy_1) is well-defined edge
conductivity. 2moy € Z stable w.r.t. class- and ellipticity-preserving per-

turbations including H, — H;. +V and D — hD.

e Proof based on 270y = IndexT, T = Pe?™(Ha-1)p . o Fredholm.

e Theorem (TCC / BECQC): Index F' = 2noy|.

[B. JMP 23 Topological charge conservation for continuous insulators]
[B. CPDE 22 Topological invariants for interface modes]

[Quinn B. 21 Approximations of Top. inv. for interface Hamiltonians]
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Related mathematical works

e IQHE [Avron, Seiler, Simon 80s',90s’']. Bulk invariant as Index of pairs of projections
Index(P,UPU*) applied to magnetic Schrodinger equations.

e [Germinet et al. 05'] Asymmetric transport (with o; as interface invariant) for mag-
netic Schrodinger; [Quinn B. 22'] for magnetic Dirac.

e [Graf. et al. 00s'] Generalization of Asymmetric Transport to discrete Hamiltonians.
or associated to half-space Hamiltonians and Bulk-Edge correspondence (BEC).

e [Bellissard et al. 80s',90s'] Non-commutative geometry techniques applied to Bulk
Invariant in IQHE.

e [Kellendonk, Prodan, Schulz-Baldes 00’ 10'] Extension to general discrete Hamilto-
nians and BEC. e K-theoretic approaches for general continuous operators [Bourne,
Carrie, Kaufmann, Kellendonk, Lorie, Thiang 10s’, 20s’].

e (Magnetic) Schrodinger/photonic operators; periodic small scale structure [Fefferman-
Weinstein 12-13'] [Drouot-Fefferman-Weinstein 19'] [Ablowitz et al. 13']; BEC [Drouot
19" & 217].

e Topological Charge Conservation, Green's functions [Essin-Gurarie], [Volovik].
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Functional calculus

We consider Hamiltonians in Weyl form H = OpYa

(0P") /(@) = 557 [o0 @™ T2 ey

In d = 2 for Hamiltonians with bounded domain walls, consider:

a€S" =5y ie, [080fal(w,€) < Cup(&)™ 1.

o[H1] Assume m > 0, a € S™, Hermitian, elliptic (s.v. > C1{(§)™ — C>»).
o[H2] Assume H insulating for |y| > L, i.e., H = Hy for £y > L with Hy
gapped : spec(H+) N (E_,Ey) = 0.

o[H3] Assume ¢’ € CZ°(R) supported inside that gap (E_,EL).

Then: (i) H self-adjoint. Functional calculus (Helffer-Sjostrand formula):
1 ~ ~ _
F(H) = —;/Caf(z)(z ~ )~ l42..

(i) i[H, P] € Op¥((z)~°°(¢,¢)™ 1) while o'(H) € Op™({y,§,¢)) .
Thus i[H, P]y'(H) is trace-class by composition calculus.
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Fredholm operator in Toeplitz form

e By cyclicity of trace, for ¢ € C°(R),
Tr[H", Pl¢(H) = Tr[H, PlnH" 1¢(H)
so that (essentially) by density
2ror = Tr2mi[H, Pl¢' (H) = Tr[U(H), PIU*(H), U(H) = 2m¢(H)
e For (modified) P2 = P, then the Calderén-Fedosov formula implies
T .= PU(H)P|Ranp Fredholm : IndexPU(H)P = Tr[U(H),PJU*(H).
Thus,

2no(H) = IndexPU(H)P € Z.

This implies stability w.r.t. P; P, s H—+ H4+V; £ — h§;, © — hz.
The index remains hard to compute (essentially by spectral flow).
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Edge conductivity and spectral flow illustrations
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When spectral decomposition of H available, IndexPU(H)P = SF(H).

e Left: Dirac model for m(y) = —y with SF = 1. e Middle: Geophysical

fluid model with f(y) = f with SF = 2. e Right: gated twisted bilayer
graphene with SF = —2 close to E = 0 (finite spectral gap).
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Derivation of 27o; = IndexF (i)

e Deform symbol a — a(y, &, () and compute

2wor = Try / . 2mi[H, P)(z, 2" )¢’ (H) (2, x)dx'dz = Tr, /R(?glflgol(ﬁ)df

R
e Use invariance of oy w.r.t. ( — h(, Y = (y,¢{), and define

OcHy, = —Op} (9¢02), ¢ (Hy) = Opys, (2— Hy)~ !t = Opjr.

to obtain (using f; for semiclassical (Moyal) symbol product):

1 _
2o = ﬂ/ﬂﬁ tr Ocozfips dYd§ = X%o’(z) troco fipr- dY ded?z.

2712h JR3
e With semiclassical expansion in h using o f,r. = I, the O(hO) term is
)

2nop = 22 R3X%'5/(z) trr dYdéd?z, = 8502{0;1, o Yo 1 — {0¢o, o, 1}
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2no; = IndexF  (ii)

2 = ~ 2 1 1 1
2mo = 12 Rsx%ol(z) trr dYdéd®z, T = 0¢0z{0, ,0z2}0, " —{0¢0z,0; "}
e Use z — o 1(2) defined and analytic for |(£,Y = (y,¢))| > R, write
Poisson brackets in divergence form, and use Stokes theorem to get

A+0s

1
> :/’AIAdA,I)\:—/ t[—la -1 ] dY de.
o1 = [ SOOI 100 =55 [t [t o] [ Lo

e Compute

1 _
aglﬁgaz{az_l, oz }dY d§ = 5(02 Ldo )3

e Use I()\) independent of )\, closedness d(tr(agldaz)A3) = 0, Stokes:

1
D472

2o = /3 tr (az_ldaz)/\3.
SR

S, is three-sphere in (z = w, £, y,() variables.
This is the explicit Fedosov-Hormander formula for IndexF'. [
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Arbitrary dimension with infinite domain walls

o Let z = (,2}) for ) € R¥, X = (z,¢), and for H, = Op%ay, define

wi(X) = (2},8), (@) NVN028 ar(X)| < Cq pui’(X)  (ay, € S,

Symbol a; € ES}* assumed elliptic (singular values > C1w*(X) — C>).
e ' = OpY(a) Fredholm with index given by FH formula.
e o;[H,_1] defined similarly with 2wo; = IndexPU(Hy _1)P. Then:

|)\—|-ZO

—icd_l — —
2o = /RQd_lngo/()\)tr o 18502{02 L az}f dY dédM.

(2m)4

For isotropic symbols (i.e., (X)1?1165a(X)| < Cy gwi™(X)), o7 invariant
w.r.t. rotations in variables X: oy = mzpegzd_Q(—l)pO‘](p(Y)). So:

(-t (d-1)!

(2mi)d (2d — 1)!
We need to approximate a;. € ES,T by isotropic symbols. Rest asin d = 2.
[B. JMP 23 Topological charge conservation for continuous insulators]

A+:0
/de_lxR ‘(Wtr (o7 Ldo2) 21 + JdY dgd).

2o =
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Bulk-Edge correspondence

e TCC is a bulk-edge correspondence in 2d (and a generalization to
high-order topological insulators in higher dimensions).
-

e We can continuously deform the topological integral | /

Oro; = == /S3tr (atda)"3

'\xu’
tr (a_lda)/\3. | \/ )'

e Above integrals at y = £R involves bulk quantities.

D472

— 1
247 /{y=R}u{y=—R}

e Introduce the (imaginary frequency w = z) Green's functions:

GN/S(C‘))ga C) — _a’_l(w7y — ﬂ:R,f,C) — (Zw T HN/S(&) C))_l'
e Defining the projectors MV/5(¢,¢) = v(AN/5(¢,¢) < 0), we have:

/]R3tr(GO‘d(GO‘)_1)A3 — 12in /R2 trM%dn® A dN®,  a=N,S.
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Bulk-difference invariant and correspondence
=
= —

e Gluing two bulk quantities continuously by circle compactification gen-
erates invariant on sphere. Thus 2no; =bulk-difference Chern invariant:

i i
* trI‘IdI‘I/\dI'I:—/ tr(NS[o,nS, 8,15 — NN (8, NN, 9,1 ) de.
27r/82 2WR2< [01 2~ [01 2MN])de

e EXxplicitly integrates curvature of connection on principal bundle.

e Easier to define relative rather than absolute topological phases.

e Chern Bulk invariants not defined for many (such as Dirac) operators.
[B. CPDE 22 Topological invariants for interface modes]



ETH, Zurich July 2023

Summary

e Hy = Op%ay for elliptic symbols a; € ES;"
e H = H,; 1 confined by domain walls in all variables but one
e Physical observable o; = Tri[H, Pl (H) for asymmetric transport

e Classification by F'= H,; 1 —x; Fredholm operator

Index PU(H)P = spectral flow
Index F'

2mog

bulk-difference Chern number

= TrT_T_TJr—TrTiT_ = asymmetric transport.

Requirement: Elliptic, confined, (partial differential) Hamiltonians.
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Some applications and computations
Theory applies to:
e Dirac operators (TC==1),
e BdG superconductors (TC==1 (p-wave), TC==+2 (d-wave)),
e Models of gated twisted bilayer graphene (TC==2); see below

e Models of Floquet Topological insulators with TC = -1 4+ 2n(n+ 1)
with n number of replicas. Heuristically: —1 short-time; 3 longer-time;
11 even longer...

e (Regularized) Water Waves (TC=2); see below

e Dirac model of Higher-Order topological insulator; see below
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gated twisted Bilayer Graphene

Region 2

. < o
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(a) (Relaxed) Moiré pattern in tBLG; (b) Bulk dispersion; (c) Edge dispersion.

e Model of gated twisted bilayer graphene in Region 1 (valley n = +1)
Q + Dzo1 + nDyoo eV*(y) 2 2. b
H = on L“(R~<;C™).
( £V (y) —Q + Dyoq + 1Dyos (R5C0)
Domain wall [0,1] > m(y), V(y) = m(y)A+ (1 —m(y))A*.
+ is voltage of top/bottom layer. ¢ is inter-layer coupling strength.

o TC =—-2sign(n<2). oy difficult to evaluate without TCC/BEC.
[B. Cazeaux, Massatt, Quinn MMS 23]
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Region 1

/NN

e Dirac operator H = D - o + m(xz,y)osz with m =~ S(z + iy)3.

e Models propagation across junction in Region 2 of tBLG.

e P(x,y) now with (smooth) jump across thick solid or dashed curves.

e Let g(z,y) such that P jumps near g~ 1(0) and F = H—ig(x,y) Fredholm.
e Theorem: 2no; = 27 Tr i[H, Pl¢/(H) equals TC = Index F.

e Corollary: 1 = intersections solid curve = intersections dashed curve
= 3 — 2. Consistent with observed wavepacket propagation initially on
middle left branch.

[B. Cazeaux Massatt Quinn MMS 23]
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(Semi) Failure of Bulk-Edge correspondence

For Elliptic operators: 2mo; = Bulk-difference Chern number.

Does not always hold for the geophysical model (though mostly does):

A B

/
aaaaaa
wwwwww

SN

SF =2 = Ch when f(y) =y while SF =1 % Ch when f(y) = sign(y).

) 0 £ ¢
AEO=|¢ 0 if|, Er=+/2+2+f2, EBy=o0.
¢ —if O

So Ellipticity condition [H1] important.
(Fix: make flat band smile/frown. Then TC= 2.)
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Higher-order Topological Insulators

e Consider the 2 x 2 (bare) Weyl Hamiltonian Hy = D .o in 3D. Adding
two domain walls (topological classification) leads to the 4 x 4

Ho=01QD -c+0o0Q@I1Ixr1 +03Q [x>, F = Hy —1x3.
e Then for P(z3), TCC is 2no;[Ho] = —deg(&q, &0, £3) = Index F = —1.
n + 4 | -
i 3 m1(x1,x2) = ° - mo(xy,x2) =
T1 - + ~

e Define mq(x1,22) = S(x1 + i25)P and mo(x1,x2) = R(x1 + ix-)P and

Hy=01®D -0+ 02®Imi(x1,22) + 03 ® Imo(x1,22), F = Hp—ix3.

e 2wo;[H>] = p. Coaxial cable with p protected modes along z3—axis.

e Difficult to topologize with bulk phases. Simpler with domain walls.

[B. JMP 23 Topological charge conservation for continuous insulators]
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