Asymmetric Transport in Topological Insulators

Guillaume Bal University of Chicago

Abstract

Asymmetric transport along interfaces separating insulating bulks has been observed and shown to be robust to perturbations in many settings. This surprising robustness has a topological origin. The talk proposes a classification of elliptic partial differential operators modeling such systems by means of confining domains walls. This defines a first topological invariant as the index of a Fredholm operator computed explicitly by a Fedosov-Hormander formula. We also characterize asymmetric transport by a physical observable, an edge conductivity, itself naturally associated to a second topological invariant whose calculation is less direct. We present a general bulk-edge correspondence stating that the two invariants in fact agree. The theory is illustrated on several examples of applications in bilayer graphene models, geophysical models, and three-dimensional higher-order topological insulators.