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Dirac-Bogoliubov-de Gennes (DBdG) equations
Problem: Given smooth functions v(z) and K (x), consider
v(x)0z + O A(x) ur) (0
A(x) v(x)0p — 0 ) \u_) \O

A(z) = v(z)0; log /K (x)

for ux = uy(x,t) with given initial conditions.

where

Questions:
o What is the general solution?
o What is the effect of A(x) # 07
o What is the behavior as t — 00?
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Applications of DBdG-type equations

< [Andreev, Sov. Phys. JETP (1964)]:

Interfaces between normal metals and superconductors

¢ [Takayama, Lin-Liu, Maki, PRB (1980)]:

Continuum description of Su-Schrieffer-Heeger model

< [P.M., arXiv:2208.14467]:

Dynamics in inhomogeneous Tomonaga-Luttinger |iquids (TLLS)

N
a(x) \ arx)
b) Charges in a nanowire

\ d) Spin chams
Inhomogeneous Tomonaga-Luttinger liqulds
\ \
n(x) a) Cold atoms c) Superconducting circuits
AN J69
®oo0 o =] [Gluza, P.M., Sotiriadis, JPA (2022)]
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Applications of DBdG-type equations

< [Andreev, Sov. Phys. JETP (1964)]:

Interfaces between normal metals and superconductors

¢ [Takayama, Lin-Liu, Maki, PRB (1980)]:

Continuum description of Su-Schrieffer-Heeger model

< [P.M., arXiv:2208.14467]:
Quantum wires Fractional quantum Hall (FQH) edges

1229 MR

K, 1
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Some previous works on inhomogeneous TLLs

¢ [Maslov, Stone], [Safi, Schulz], [Ponomarenko] {PRB (1995)}:

Quantum wires

¢ [Stringari, PRL (1996)], ..., [Citro et al., New J. Phys. (2008)]:

Effective descriptions of trapped ultra-cold atoms in equilibrium

< [Brun, Dubail, SciPost (2018)], [Bastianello, Dubail, Stéphan, JPA (2020)], [Gluza,
P.M., Sotiriadis, JPA (2022)], [Ruggiero, Calabrese, Giamarchi, Foini, SciPost (2022)]:

Inhomogeneous TLLs out of equilibrium
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Outline

& Tomonaga-Luttinger liquids (TLLs)

<& DBJAG equations from TLL theory

<& Solving the DBAG equations



Tomonaga-Luttinger liquids (TLLs)



TLL theory / Free compactified bosons

Given v > 0 and K > 0. Consider the action functional

R2

"~ 8w

s / 02z (90)(9,0)
]RXSE

for fields o : S} — S with compactification radius R satisfying

RZ

K
4

and metric (h,,) = diag(1, —1) in coordinates (z°, 2') = (vt, z).

4/16



TLL theory in Hamiltonian framework

Hamiltonian

(%

1
Hy g =— dx:(K

3 s, [TT1(@)]? + oK [Ore(@)]? )

with bosonic field ¢(z) and conjugate I1(z) for z € S} satisfying
[Owp(), T(y)] = 16"(2 — y).

Diagonalizable by simple Bogoliubov transformation in terms of bosonic
creation and annihilation operators after expanding in plane waves:

TV T
H, k= f(ag +ag) + T %&0 (a—pn + Gepln):
n

with a, = al and @, = @', (n € Z) for right/left movers satisfying

[arw am] = n5n+m,0 = [ana dm]; [an7 dm] =0.
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Inhomogeneous TLL

Hamiltonian

Haowo = o7 [, 4 (e PG H oK@t

with inhomogeneous periodic v(z) > 0 and K(z) > 0 on the circle S} .
Not diagonalizable by simple Bogoliubov transformation for K(x) # K.

For inhomogeneous periodic v(z) and K(z) = K constant:

[Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)], [Dubail, Stéphan, Calabrese, SciPost Phys. (2017)]
[Gawedzki, Langmann, P.M., JSP (2018)], [Langmann, P.M., PRL (2019)], [P.M., AHP (2021)]
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Inhomogeneous TLL

Hamiltonian

Haowo = o7 [, 4 (e PG H oK@t

with inhomogeneous periodic v(z) > 0 and K(z) > 0 on the circle S} .
Not diagonalizable by simple Bogoliubov transformation for K(x) # K.

For inhomogeneous periodic v(z) and K(z) = K constant:

[Dubail, Stéphan, Viti, Calabrese, SciPost Phys. (2017)], [Dubail, Stéphan, Calabrese, SciPost Phys. (2017)]
[Gawedzki, Langmann, P.M., JSP (2018)], [Langmann, P.M., PRL (2019)], [P.M., AHP (2021)]

Corresponding action functional

Shy = 5 [, o VIRRE@E0")00)

:87T

with inhomogeneous compactification radius R(z) = 21/ K (x) and
metric (hyy) = diag(v(x)?/v?, —1) in coordinates (20, z') = (vt, z).
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Related special case: Conformal interfaces

[Bachas, Brunner, JHEP (2008)]:

Contormal

TLL wth ‘21 ?n\reiﬁue TLL \'th 21

| X
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DBdG equations from TLL theory



PDE approach

Instead of diagonalizing H,(.) x(.) rewrite it as

Hy() k() = / o dz mo(z): (/7+(x)2 + 5,(;@)2);

—L)2
with right/left-moving densities

-~ 1
p(x) = m |:7TH(I) F K(m)@xcp(x)} .

Result: py(x) satisfy
i

[P+ (), p=(y)] = ﬂFﬂc?’(w -y),

7(2). 5 ()] = 5-A@)3(z — )

with A(z) = 0, log /K (z) coupling right/left movers.
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Dirac-Bogoliubov-de Gennes (DBdG) equations

Heisenberg equation and commutation relations imply that p.(z) and
J+(x) = +v(x)py(x) satisfy coupled continuity equations

Oipx + Opjr = +A(2)p
with A(z) = v(x)A(z).

Result: }i(a:,t) satisfy the inhomogeneous DBdG equations

(8 ) CE)- 0

with a local gap A(w) = v(x)@x ]Og \/ K(.CE) [P.M., arXiv:2208.14467]
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Solving the DBdG equations






o Recall: ji(x,t) satisfy

() ("

with A(z) = 0, log /K (z).



o Recall: ji(x,t) satisfy
()¢ (R i) ()= )
with A(z) = 9, log /K ().

¢ [Magnus, Comm. Pure Appl. Math. (1954)]:

%Y(s) = A(s)Y (s),  Y(so) =Yo.
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Analogy with non-Hermitian (PT-symmetric) 2-level system

DBdG egs. in frequency space w for expectations in the infinite volume:

Go@ ) _ip (o (Gr@w)), 1 ({e(@0)
Or <<5<x,w>>) = iPul) <<j<m,w>>> @ <<j<x,o>>>
for z € R with the s((2, C) matrix
Pu(z) = %03 +iA(z)o;.

— =
In general, P, ()P, (y) # Pu(y)Pw(x), so need spatial ordering X' (X)
where positions decrease (increase) from left to right.

Note: Expectations (-) w.r.t. arbitrary state in the infinite-volume limit L — oo.
Assumed system prepared in an initial state for ¢ < 0 and evolving for ¢t > 0 with
initial data (j1 (z,t = 0)). Fourier transforms: j4(z,w) = 157 dt jo (z, t)elwt.
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Green's functions

Result: Given (j.(z,0)) and assuming lim (j.(z,t)) = 0, then

|z| =00

G(z,y;w)e ! with

—

(@ z,1))
G- (a,1))

using G(z,y;t) = /
R

/dyG(w yit)

| e N———
&

oo + 03
2

: Tl 7 APl
Cia (i, y300) = +0([z — ) Tl ls AP,

Gz, y;w) = G (2, y;w) + G (i w) 2
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Green's functions

Result: Given (j.(z,0)) and assuming lim (j.(z,t)) = 0, then

|z| =00

G(z,y;w)e ! with

—

(@ z,1))
G- (a,1))

using G(z,y;t) = /
R

/dyG(w yit)

| e N———
&

0pg — 03
2 )

oo + 03
2

e Tl dsPu(s)
Gi(:v,y;w) = :|:9(:|:[:U _ y])Xelfy sPu(s),,

+ G (2, y;w)

Gz, y;w) = G (2, y;w)

Special case: If K(x) = K, then G+ (z, y;w) equal

GO (2, y;w) = +6([z — y])eTrve o= [ ds——.
L, 5) = £ — ),y = [ s
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Magnus expansion

Result:

& T
/—?ei S dsPu(s) _ exp

o0
>y l‘)] QT3

n=1

with

x —2iwTs o
ey =1 [ asPlisa) P =in6) (. )
Y

e
Qi(x,y;a) = —i/ dsl/ dsa A(s1)A(s2) sin(2wTs, s,)03,
y y

and

- k
B z 1
O (z,y;a Z o Z / ds H adgm; (5.5:0) P, (s;a)
m1>1,...omp>1 7Y j=1
mi+...+mp=n—1

for n > 3 consist of similar nested spatial integrals of s((2, C)-valued
functions that vanish at w = 0. (Bernoulli numbers By, with By = —1/2)
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Late-time asymptotics

If w =0, then Py(z) = P}(z;") =

= iA(z)oy for different z commute.
= Only non-zero contribution in the Magnus expansion is

K@) /K@) K@) _ /K@)
x K(») TV K@) K@ VK@)
_ 2 —
exp [/ dSA(S)Ul} = K [E@) 7. ww | = T@Y)
Yy

K@)V K@) \/K<ac>+ K(y)
2

since A(z) = 0, log(\/K(x)).

Result: Leading ¢ >> 1 contribution to G(z,y;t) is T(z,y)G"(z, y;t)
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Late-time asymptotics

If w =0, then Po(z) = P}(z;-) = iA(z)o; for different z commute.

= Only non-zero contribution in the Magnus expansion is

K(y) K(z) Ky) _ [K(=z)

z K(x) K(y) K(x) K(y)
_ ) .
exXp |:/ ds A(S)01:| - K@ _ [E@ \/K(y) K@) = T(;C’y>
Yy

K@)V K@) K(2) TV ()

since A(z) = 0, log(\/K(x)).
Result: Leading ¢ >> 1 contribution to G (z,y;t) is T(z,y)G%(z, y; t).
Corollary: For the current j = K(x)(}+ + }_)
ONTpy —t) —0(Tpy +t
O R e

5(7_90,3/ — 1)+ 6(7—1'721 +1) -1
+ [ ay e (03 0)) + ol ™)

when ¢ > 1 for all K(z).
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Transfer matrix

Consider a subsystem on a finite interval [y, z] with (j=(-,0)) =0
inside and currents instead incident at y and x.

Result: The transfer matrix T(w) between (j'+(y,w),j'_(y,w))T and
(i (z,w), 7 (z,w))T for xz >y is

W) = Tit(w) Ti-(w) _ el Iy dsPuls)
Te = (10 1) =7 '
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Transfer matrix

Consider a subsystem on a finite interval [y, z] with (j=(-,0)) =0
inside and currents instead incident at y and x.

Result: The transfer matrix T(w) between (j4(y,w),j_(y,w))T and
(j+(m,w),j,(m,w))T for z > Yy is

W) = Tit(w) Ti-(w) _ el Iy dsPuls)
Te = (10 1) =7 '

Simplifies for w = 0:

K K K K
HORRYE{IRRTE < RaVH <67
K K K(z)

\/ () (y) ()
T(w=0)= 2 E 2 — | =T(z,y).
\/KE%;\/KEy; \/Kg;;\/KEU) ’
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Scattering matrix

Result: The scattering matrix is

with the transmission and reflection amplitudes  (|7(w)|*> + |R(w)|* = 1)

1 T mo o T
_T__(w)’ R( ) R( )m

S

~—
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Scattering matrix

Result: The scattering matrix is

with the transmission and reflection amplitudes  (|7(w)|*> + |R(w)|* = 1)

) == K@ =T R = -Fw) ;Ez;
Again, simplifies for w = 0:
2 /EGK@ Ky - K@)
B (e (e N (ORI )

Generalizes results for conformal interfaces and yields simple proof of
independence on intermediate values of K (-) for quantum wires.

[Bachas, Brunner, JHEP (2008)], [Maslov, Stone, PRB (1995)], [Safi, Schulz, PRB (1995)]
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Summary



&

Showed that the dynamics of inhomogeneous TLLs are described
by inhomogeneous DBdG equations.

Obtained general solution of the DBdG equations.

Derived explicit results at late time or at stationarity that
generalize known results in the literature.

Used results to study coupled FQH edges, quantum wires, and
quantum quenches.

Results applicable whenever DBdG-type equations appear and
approach directly generalizable to other algebras than s[(2,C).

Interesting to extend to heat transport and correlation functions.

Thank you for your attention!



Appendices



Remark 1: Vector and axial currents

The PDEs are equivalent to existence of vector and axial current with

pla) =T1(z), (o) = o) K (2)ps(),
pale) = ~Opl@)/m, aslo) = g plo)
satisfying
Orp + 0z = 0, 0rg + v(@) K ()0, [v(z) K (2) ' p] =0,

0
Ops + 0235 =0, Oygs +v(2)K ()10, [v(z) K (z)ps| =0,

In terms of quantities for right/left movers:

p=VEK@(p+p-), 1=VEK@)(i+i)
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Remark 2: Coupled U(1) current algebras

Define

anz/ dz gy (z)e=2mne/L, anz/ dz p_(z)e?n=/L
Sl S

1
L L
Obtain coupled U(1) current algebras:

i

%Anfma

[an7 am] - n5n+m,0 - [am am]a [an7 C_Zm] -
where A,, = fsi dz A(x)e=2mine/L

= Infinitely many coupled quantum harmonic oscillators.

Special case: If K(z) = K, then A,, = 0 and the algebras decouple.
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Application: Transport in quantum wire

Consider a quantum quench turning off a smooth chemical-potential
profile pu(x) at t = 0. Suppose there is some finite £ > 0 so that

,LLL,KL,UL for x < —[7
(), K(z),v(z) = {
ur, Kr,vp for x > +/.

Due to universality of ]”(((3;)) {p) and equilibrium before the quench:

K(y)

,0)) = , ,0)) =0. u
(p(y,0)) 7w(y)u(y) (1(y,0)) f
Inserted into the ¢ > 1 expression for : m

lim (j(z, 1)) = 5 F=

t—o00 2T

with uy = Kpprp and - = Kpug.

3/3



	Tomonaga-Luttinger liquids (TLLs)
	DBdG equations from TLL theory
	Solving the DBdG equations
	Appendix

