

Universität Zürich

Topologically localized phases

In collaboration with Titus Neupert, Piet Brouwer, and Luka Trifunovic

Phys. Rev. Lett. **129** (25), 256401 (2022), and work in progress

Bastien Lapierre

University of Zürich

1) Anderson localization

1) Anderson localization

2) Topology

Bastien Lapierre

University of Zürich

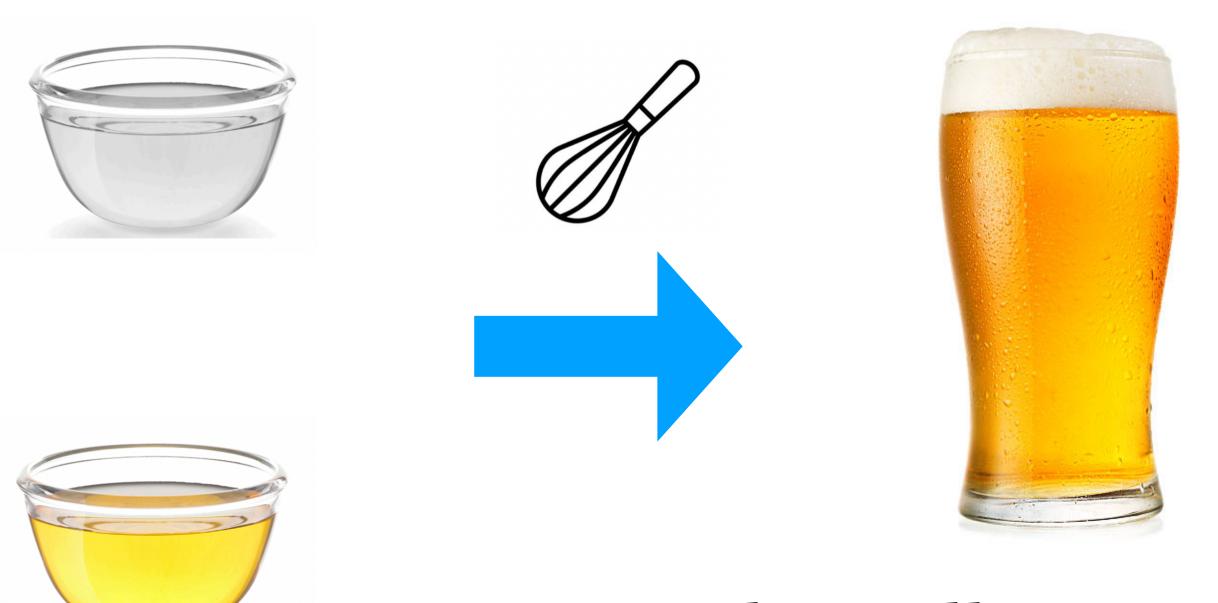
1) Anderson localization

2) Topology

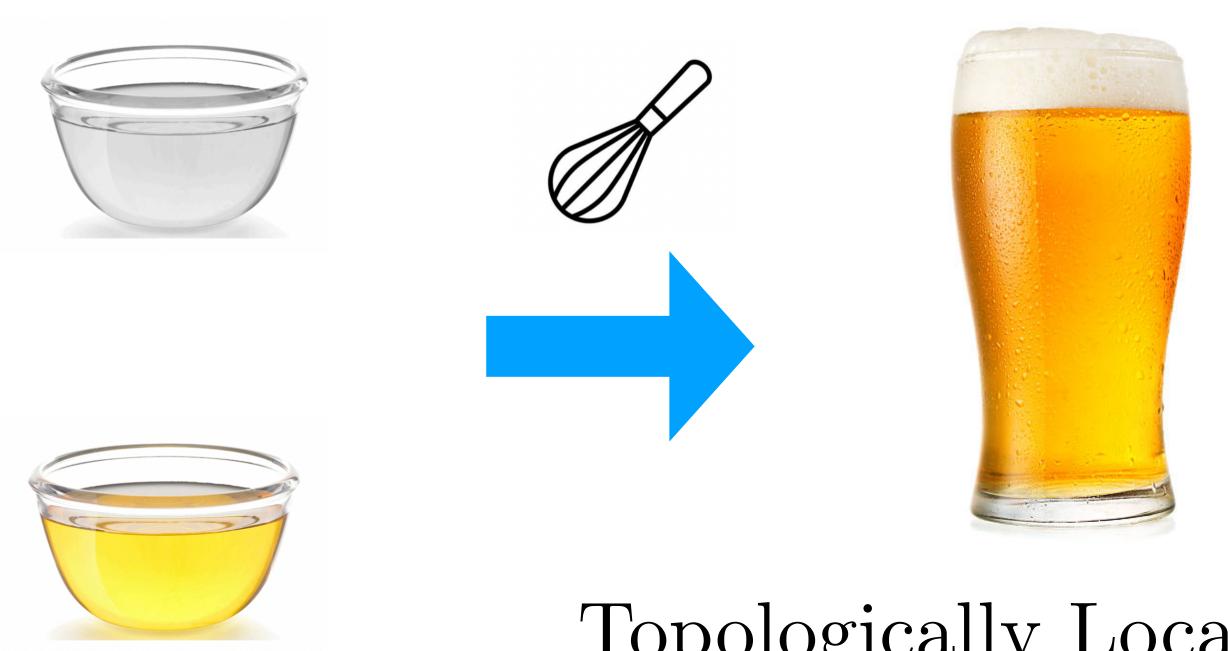
Bastien Lapierre

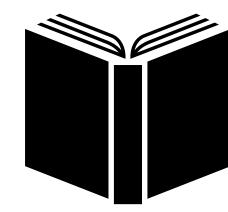
Topological insulator

1) Anderson localization



2) Topology





B.L, T. Neupert, L. Trifunovic, Phys. Rev. Lett. **129** (25), 256401 (2022), "Topologically localized insulators"

Bastien Lapierre

Topologically Localized Insulator (TLI)

AZ	\mathcal{T}	${\cal P}$	\mathcal{C}	1	2	3	4	5	6	7	8
А	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

[A. P. Schnyder et al., Phys. Rev. B 78, 195125]

AZ	\mathcal{T}	${\cal P}$	\mathcal{C}	1	2	3	4	5	6	7	8
А	0	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Bastien Lapierre

QHE QSHE 3D TIs

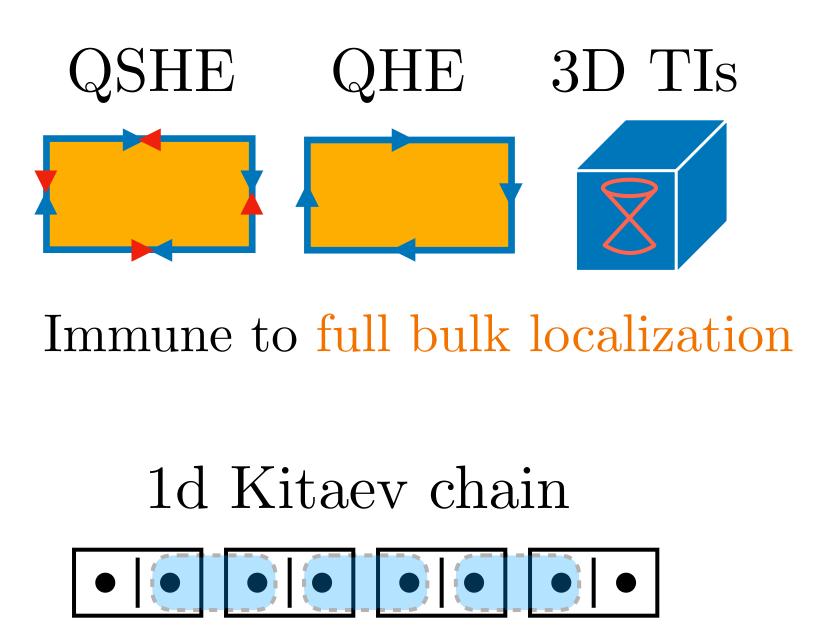
Immune to full bulk localization

[A. P. Schnyder et al., Phys. Rev. B 78, 195125]

AZ	\mathcal{T}	${\cal P}$	${\mathcal C}$	1	2	3	4	5	6	7	8
Α	0	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

Bastien Lapierre

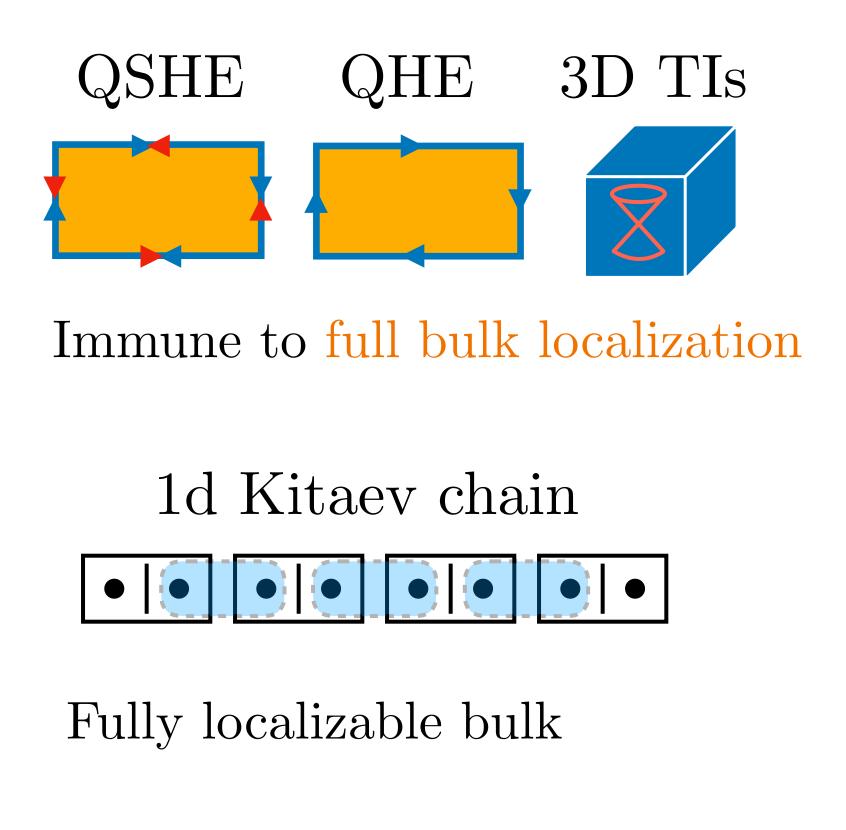
[A. P. Schnyder et al., Phys. Rev. B 78, 195125]



Fully localizable bulk

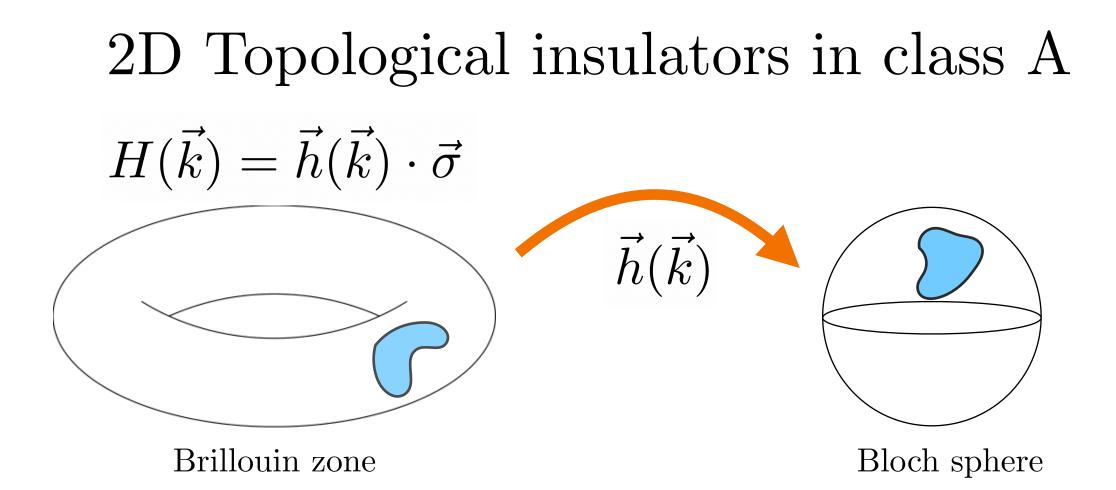
AZ	\mathcal{T}	${\cal P}$	${\mathcal C}$	1	2	3	4	5	6	7	8
А	0	0	0	0	Z	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}
AIII	0	0	1	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}
BDI	1	1	1	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2
DIII	-1	1	1	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}	0
AII	-1	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0	\mathbb{Z}
CII	-1	-1	1	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
\mathbf{C}	0	-1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0
CI	1	-1	1	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0

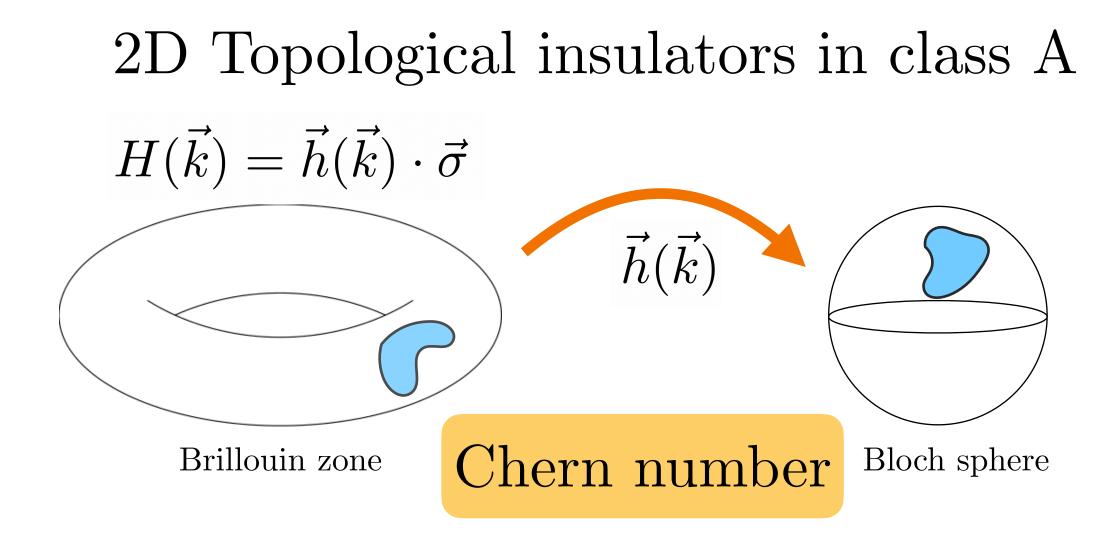
Can we find new fully localized phases?

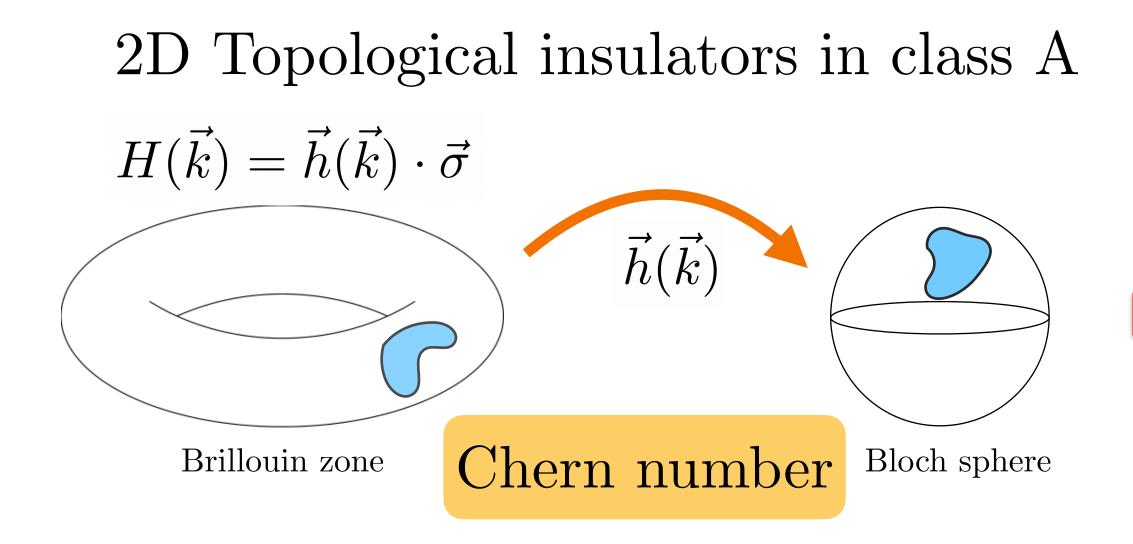


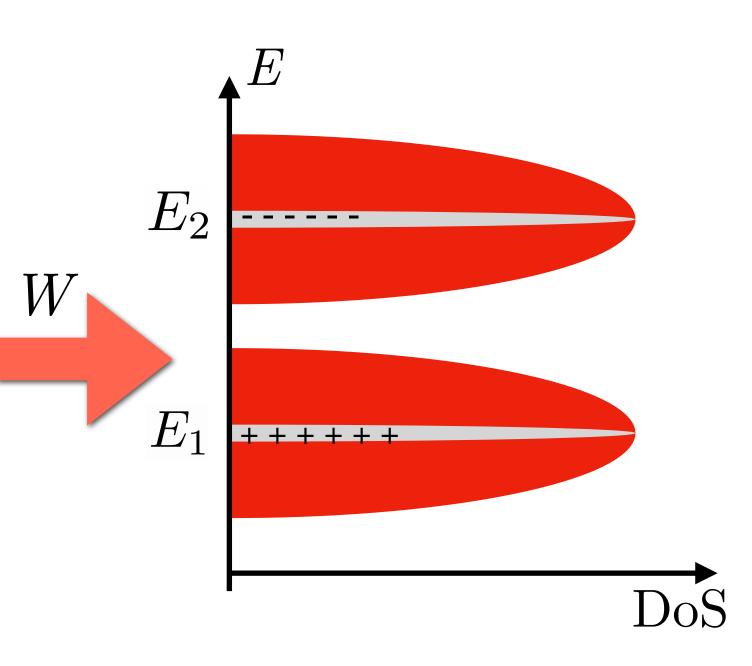
[A. P. Schnyder et al., Phys. Rev. B 78, 195125]

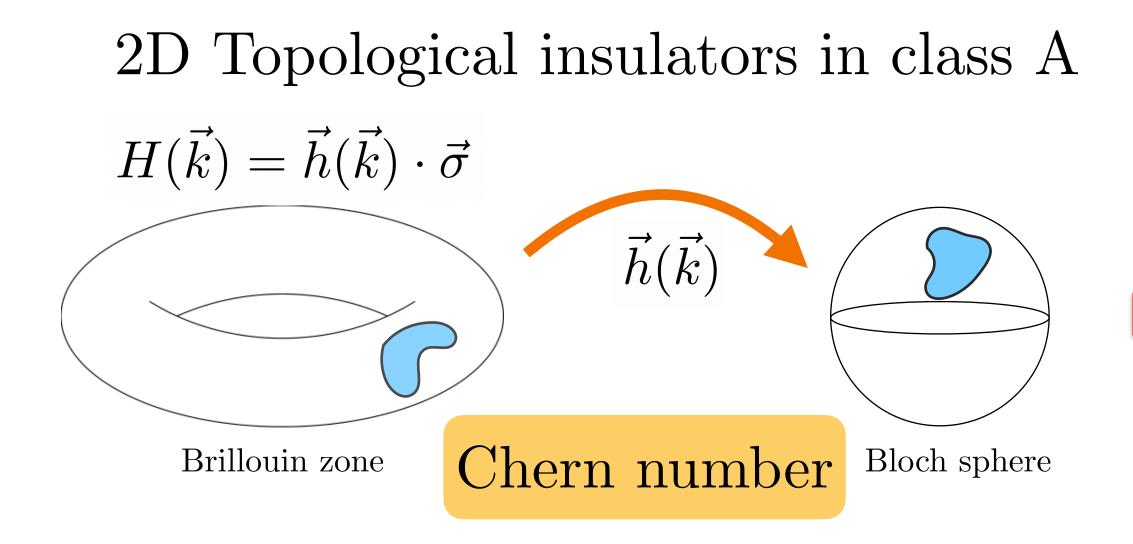
Can we classify topological phases with fully localized bulk?

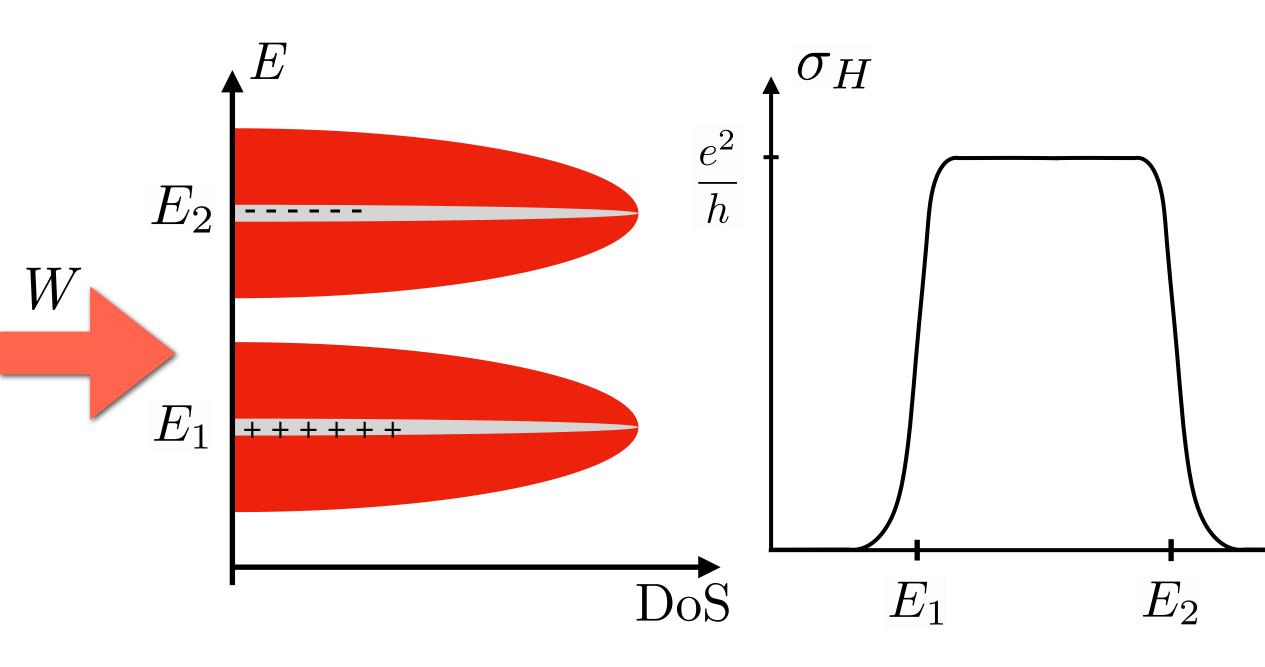


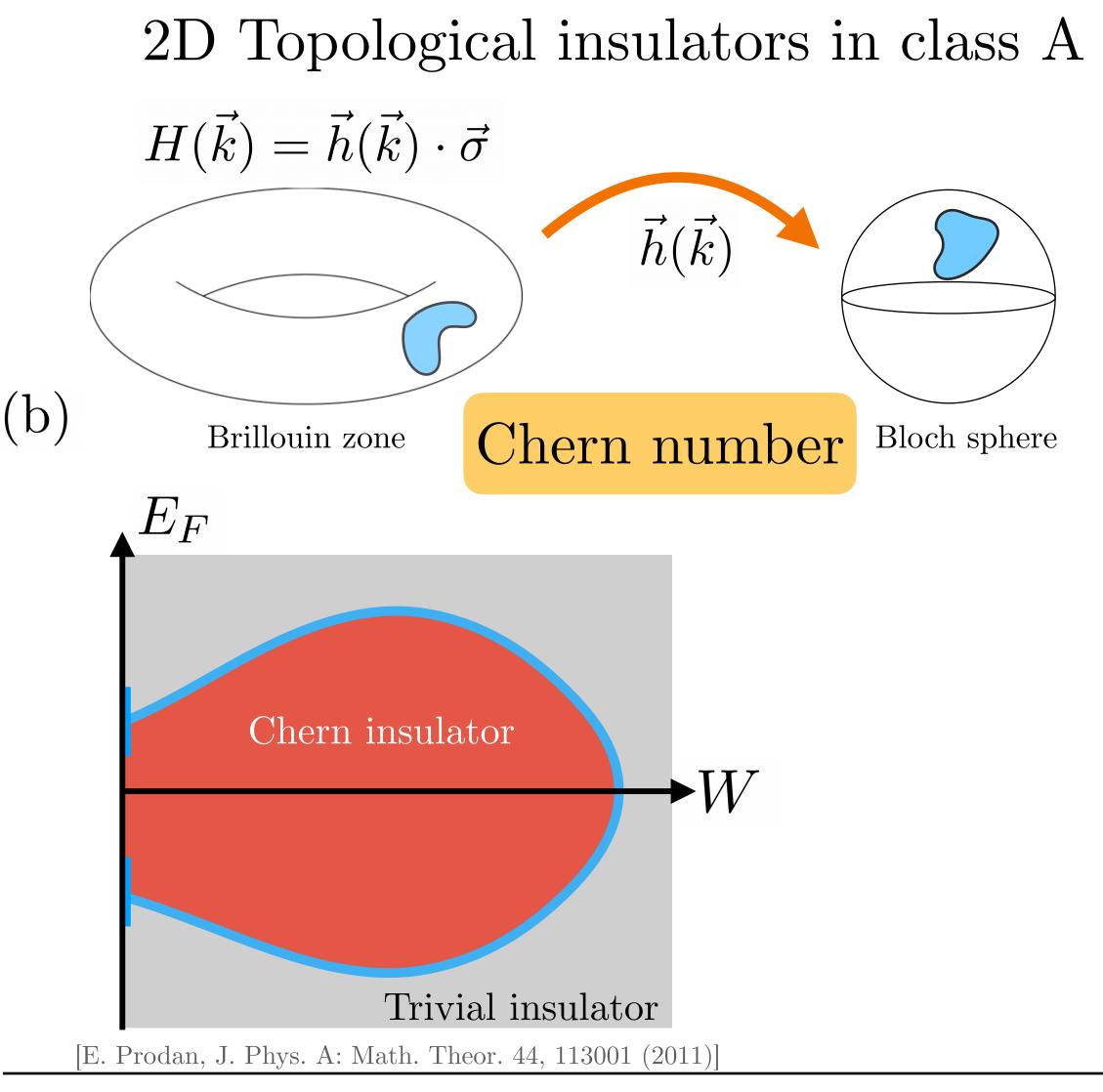




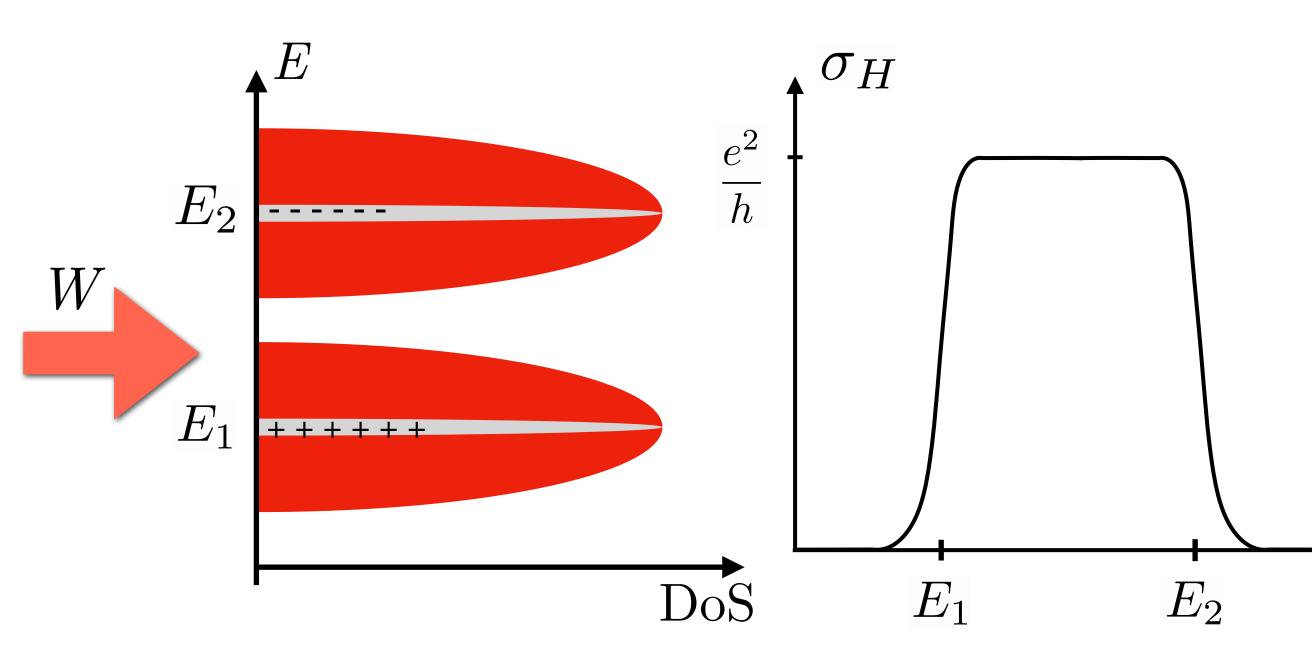


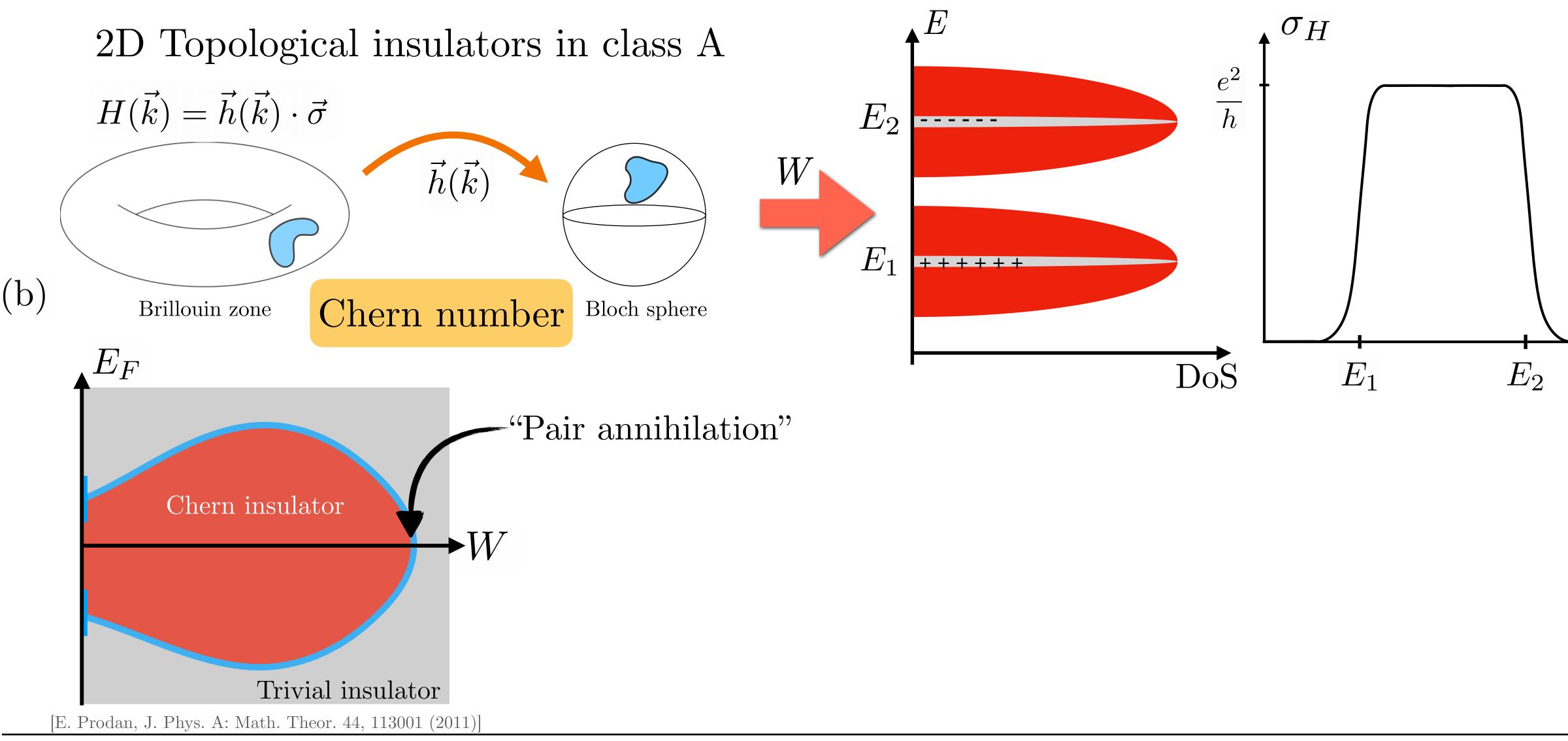




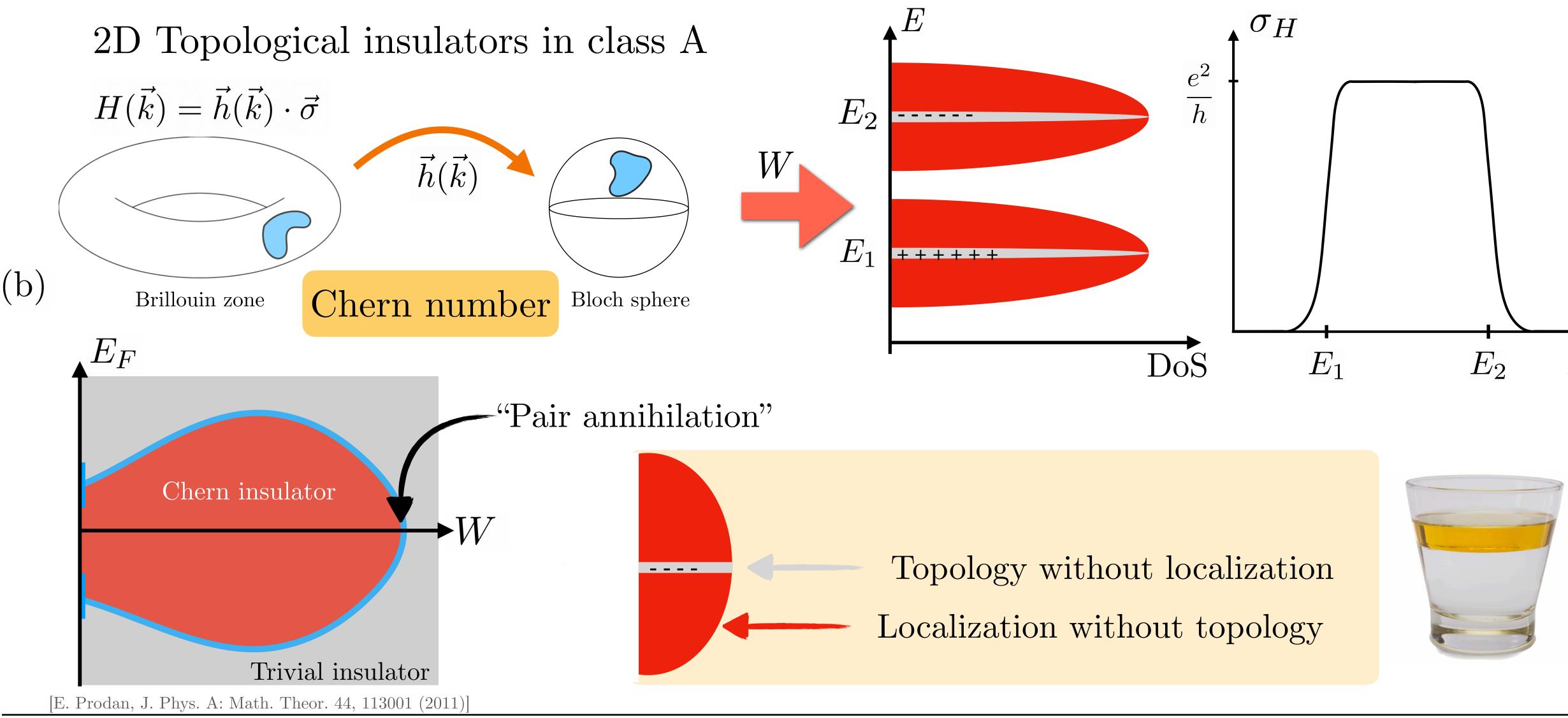


Bastien Lapierre





Bastien Lapierre

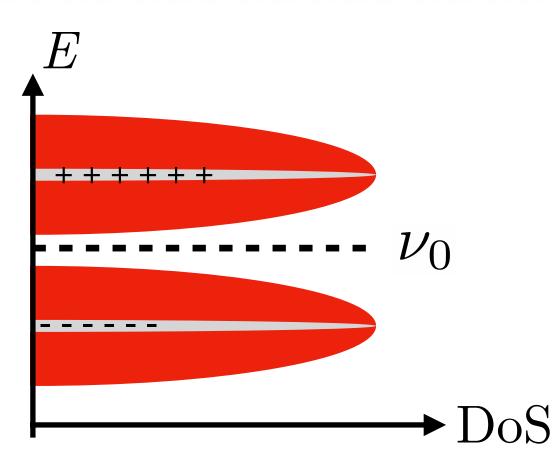


Bastien Lapierre

Chern insulators

University of Zürich

class	\mathcal{T}	\mathcal{P}	С	d = 0	d = 1	d = 2	d = 3
Α	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	Z	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



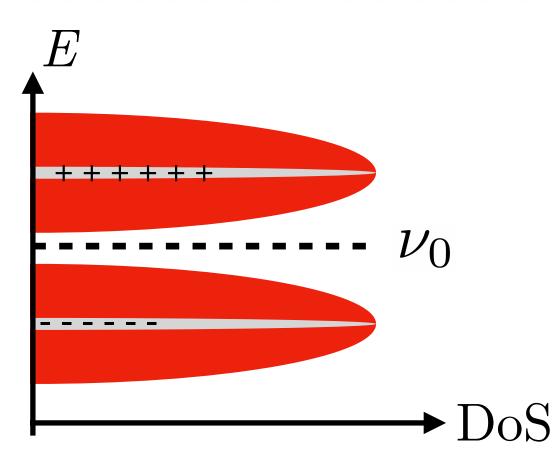
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0)

Bastien Lapierre

University of Zurich

class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d=2	d = 3
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	\mathbb{Z}	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



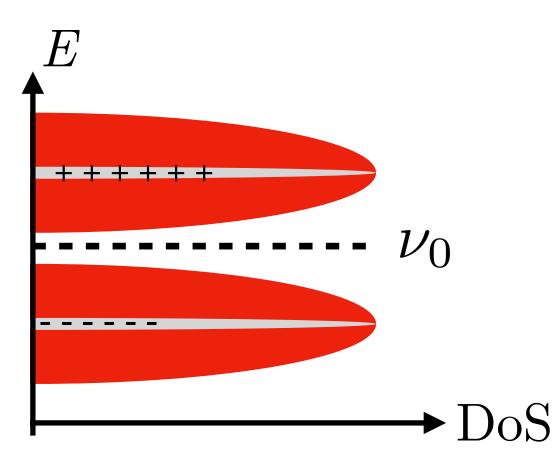
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0) Phase transition: $\sigma_{xx} \neq 0$ (For fixed filling ν_0)

Bastien Lapierre

University of Zurich

class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d = 2	d = 3
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	Z	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



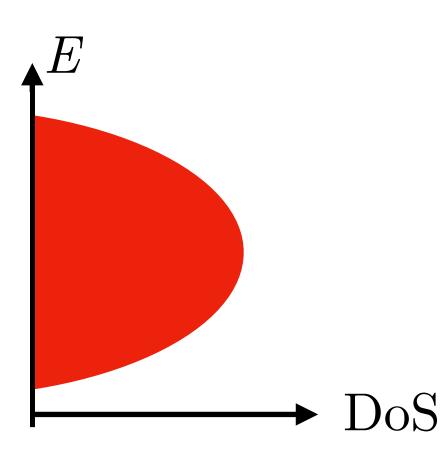
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0) Phase transition: $\sigma_{xx} \neq 0$ (For fixed filling ν_0)

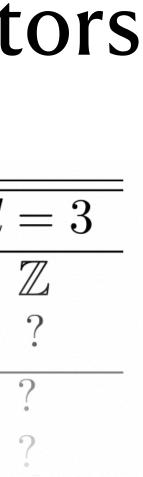
Bastien Lapierre

Topologically Localized Insulators (TLIS)

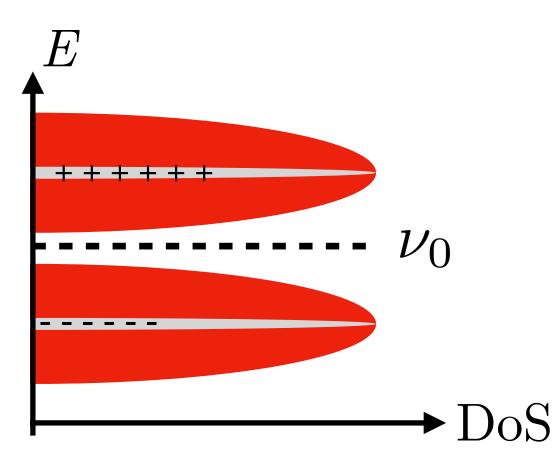
class	\mathcal{T}	\mathcal{P}	С	d = 0	d = 1	d = 2	d
А	0	0	0	?	?	?	
AIII	0	0	1	?	?	?	
AI	+	0	0	?	?	?	
BDI	-		1	?	?	?	



Full Anderson localization & non-trivial topology



class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d = 2	d = 3
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	Z	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



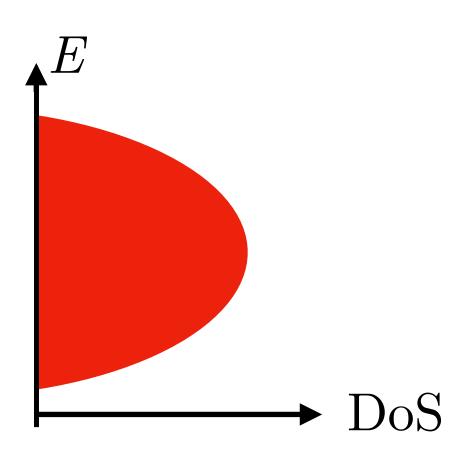
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0) Phase transition: $\sigma_{xx} \neq 0$ (For fixed filling ν_0)

Bastien Lapierre

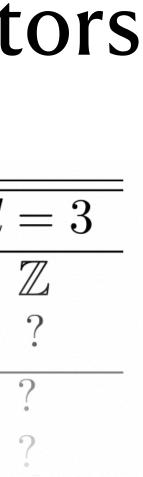
Topologically Localized Insulators (TLIS)

class	\mathcal{T}	\mathcal{P}	С	d = 0	d = 1	d = 2	d
А	0	0	0	?	?	?	
AIII	0	0	1	?	?	?	
AI	+	0	0	?	?	?	
BDI	+		1	?	?	?	

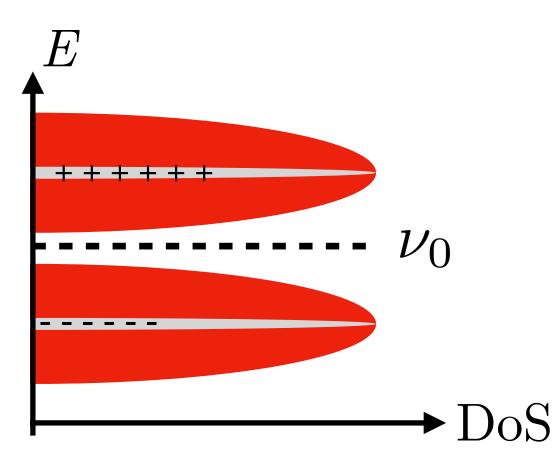


Full Anderson localization & non-trivial topology

Applies to fully localized insulators, i.e., $\sigma_{xx} = 0 \quad \forall \nu$



class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d = 2	d = 3
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	Z	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



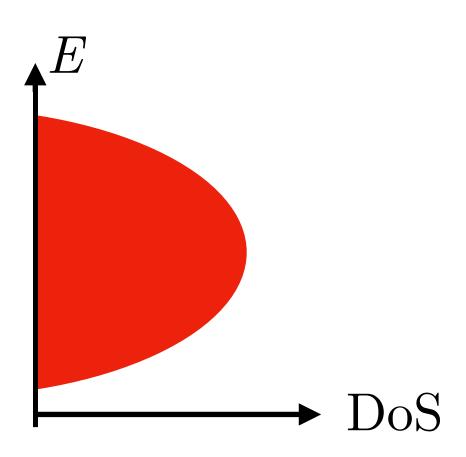
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0) Phase transition: $\sigma_{xx} \neq 0$ (For fixed filling ν_0)

Bastien Lapierre

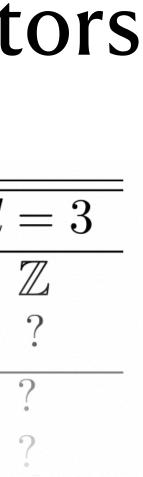
Topologically Localized Insulators (TLIS)

class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d = 2	d
А	0	0	0	?	?	?	
AIII	0	0	1	?	?	?	
AI	+	0	0	?	?	?	
BDI	+		1	?	?	?	

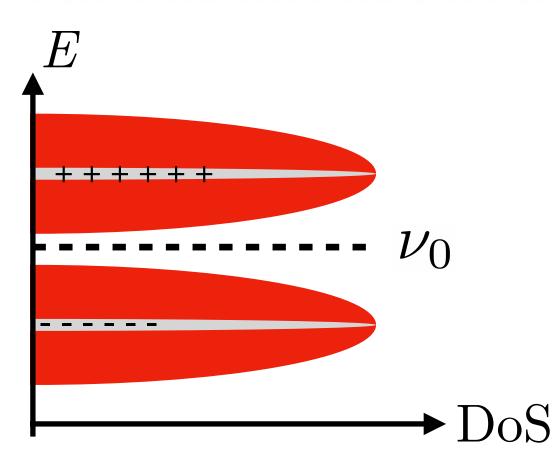


Full Anderson localization & non-trivial topology

Applies to fully localized insulators, i.e., $\sigma_{xx} = 0 \quad \forall \nu$ Phase transition: $\exists \nu$ such that $\sigma_{xx} \neq 0$



class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d=2	d = 3
А	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	\mathbb{Z}	0	\mathbb{Z}
AI	+	0	0	\mathbb{Z}	0	0	0
BDI	+		1	\mathbb{Z}_2	Z	0	0



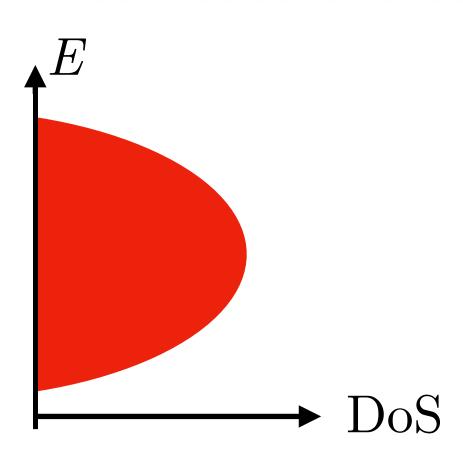
IQHE, Chern insulators, QSHE, 3D TIs...

Applies to insulators, i.e., $\sigma_{xx} = 0$ (For fixed filling ν_0) Phase transition: $\sigma_{xx} \neq 0$ (For fixed filling ν_0)

Bastien Lapierre

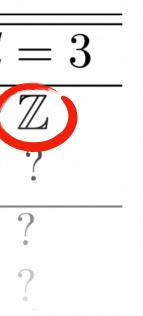
Topologically Localized Insulators (TLIS)

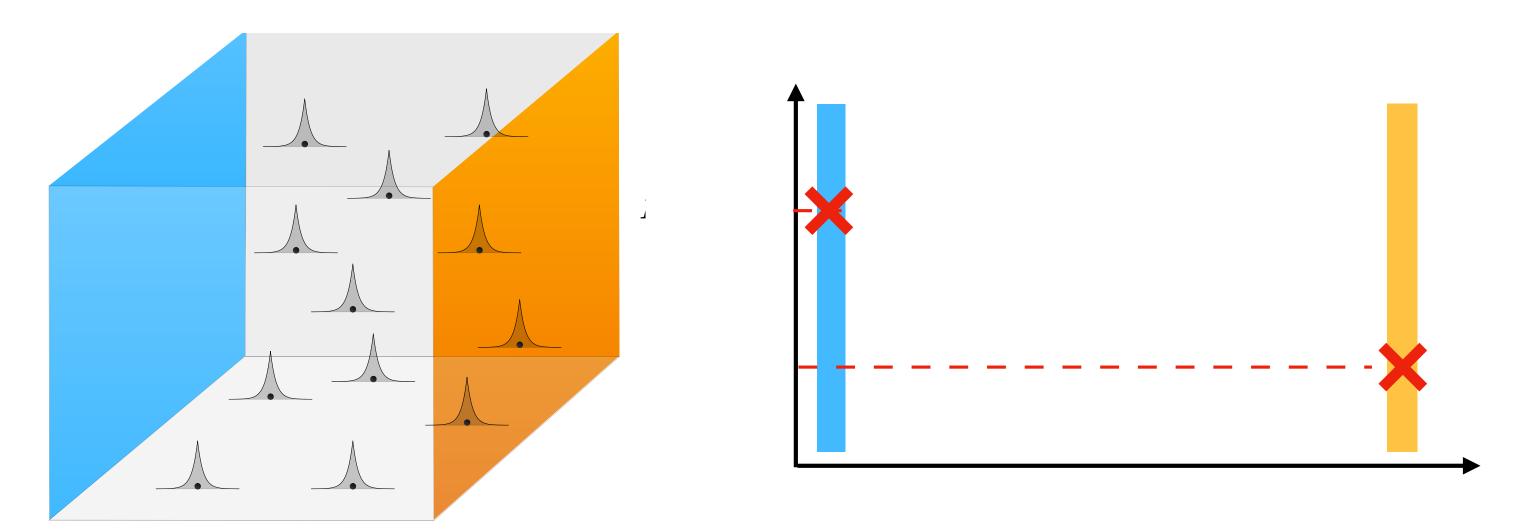
class	\mathcal{T}	\mathcal{P}	\mathcal{C}	d = 0	d = 1	d = 2	d
А	0	0	0	?	?	?	(
AIII	0	0	1	?	?	?	
AI	+	0	0	?	?	?	
BDI			1	?	?	?	



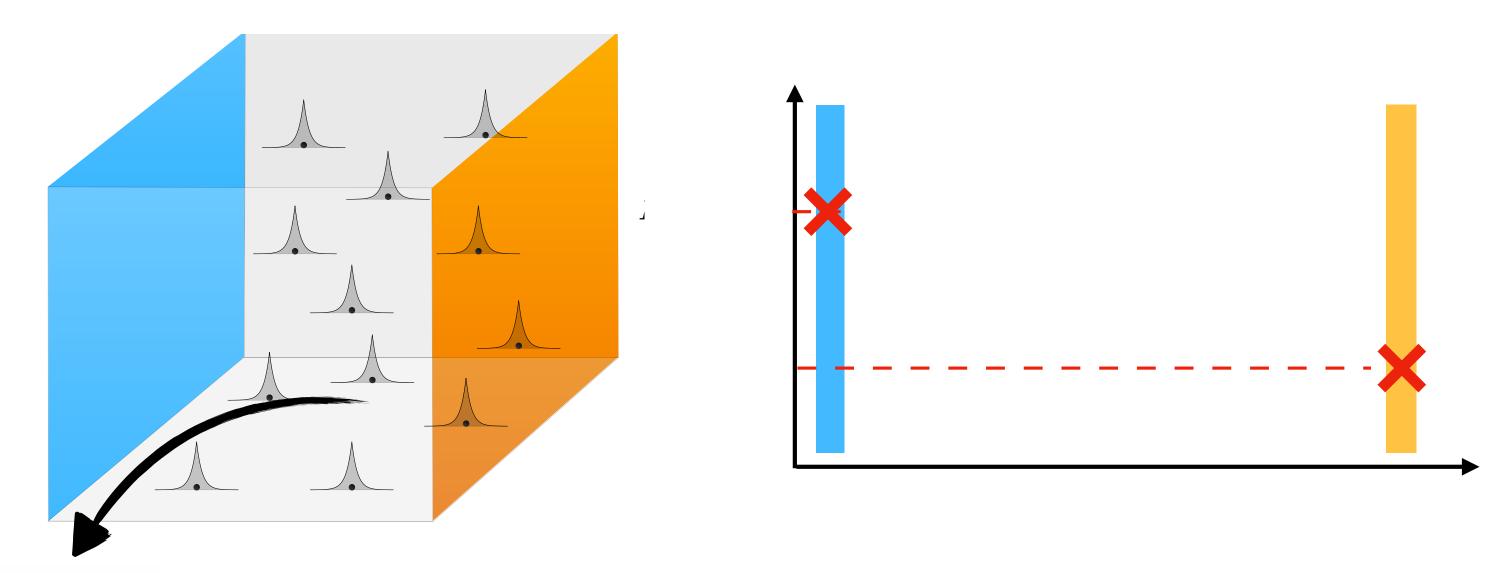
Full Anderson localization & non-trivial topology

Applies to fully localized insulators, i.e., $\sigma_{xx} = 0 \quad \forall \nu$ Phase transition: $\exists \nu$ such that $\sigma_{xx} \neq 0$



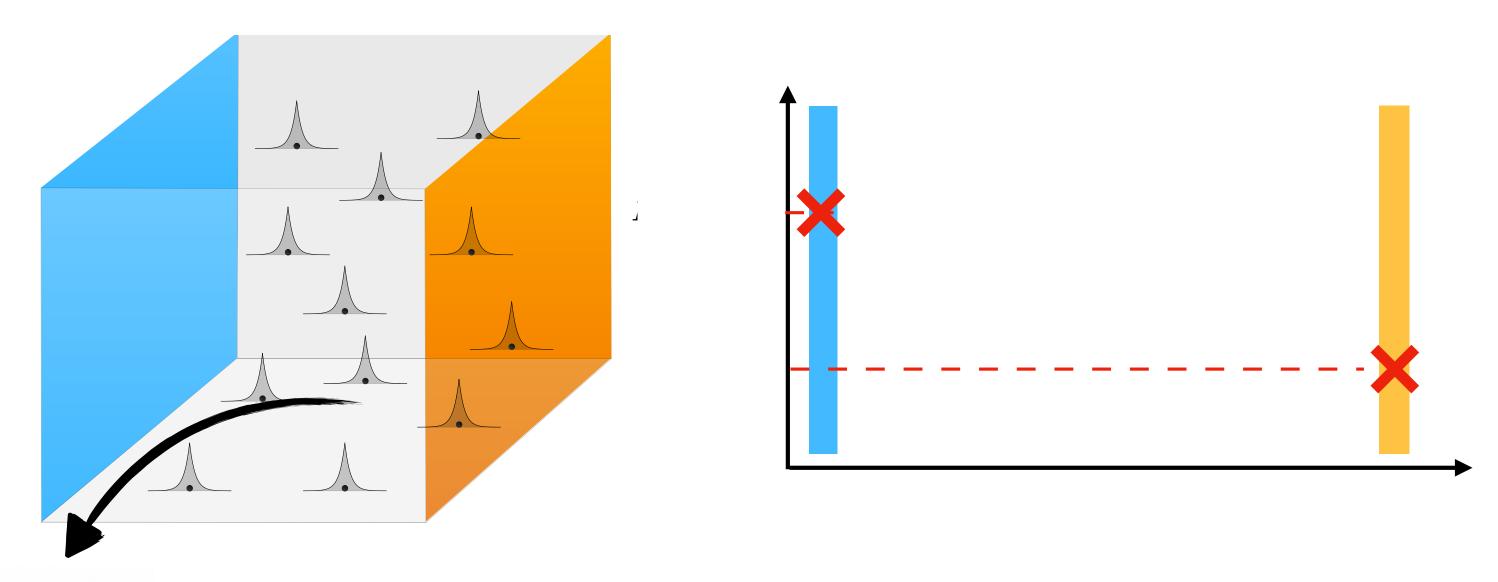


	Strong TI	TLI
Bulk	Obstruction to full localization	Fully localized
Boundary	Delocalized	Obstruction to full localization



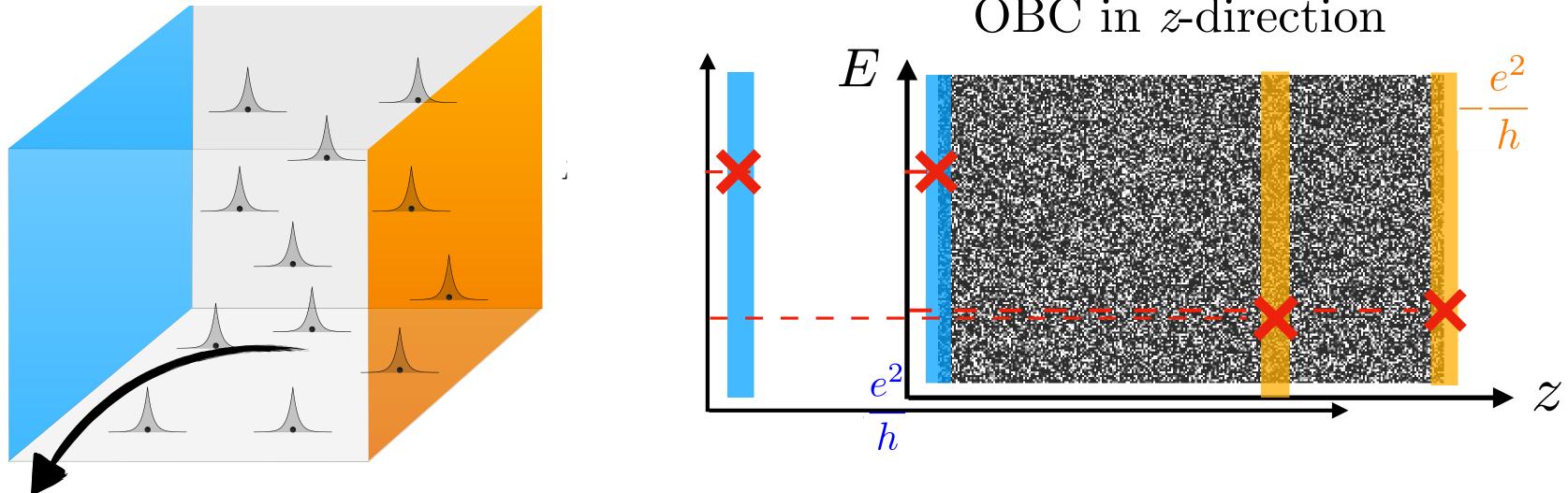
 $\vec{P} = \hat{\alpha}_{\rm ME} \vec{B}$

	Strong TI	TLI
Bulk	Obstruction to full localization	Fully localized
Boundary	Delocalized	Obstruction to full localization



$\vec{P} = \hat{\alpha}_{\rm ME}\vec{B}$ $\alpha_{\rm ME}$ quantized to integer value

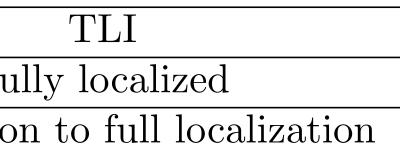
	Strong TI	TLI
Bulk	Obstruction to full localization	Fully localized
Boundary	Delocalized	Obstruction to full localization

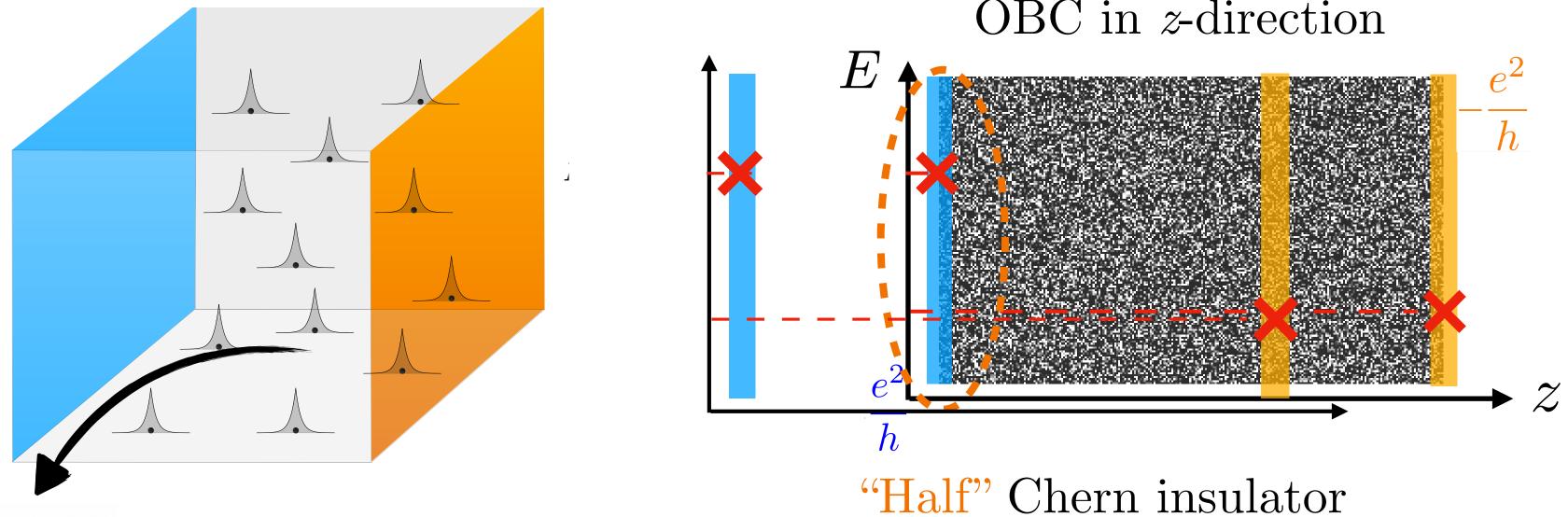


$\vec{P} = \hat{\alpha}_{\rm ME}\vec{B}$ $\alpha_{\rm ME}$ quantized to integer value

	-	
	Strong TI	
Bulk	Obstruction to full localization	Fu
Boundary	Delocalized	Obstructio

OBC in z-direction

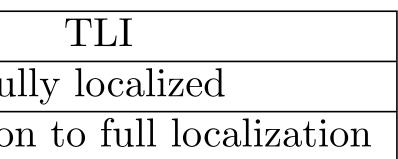


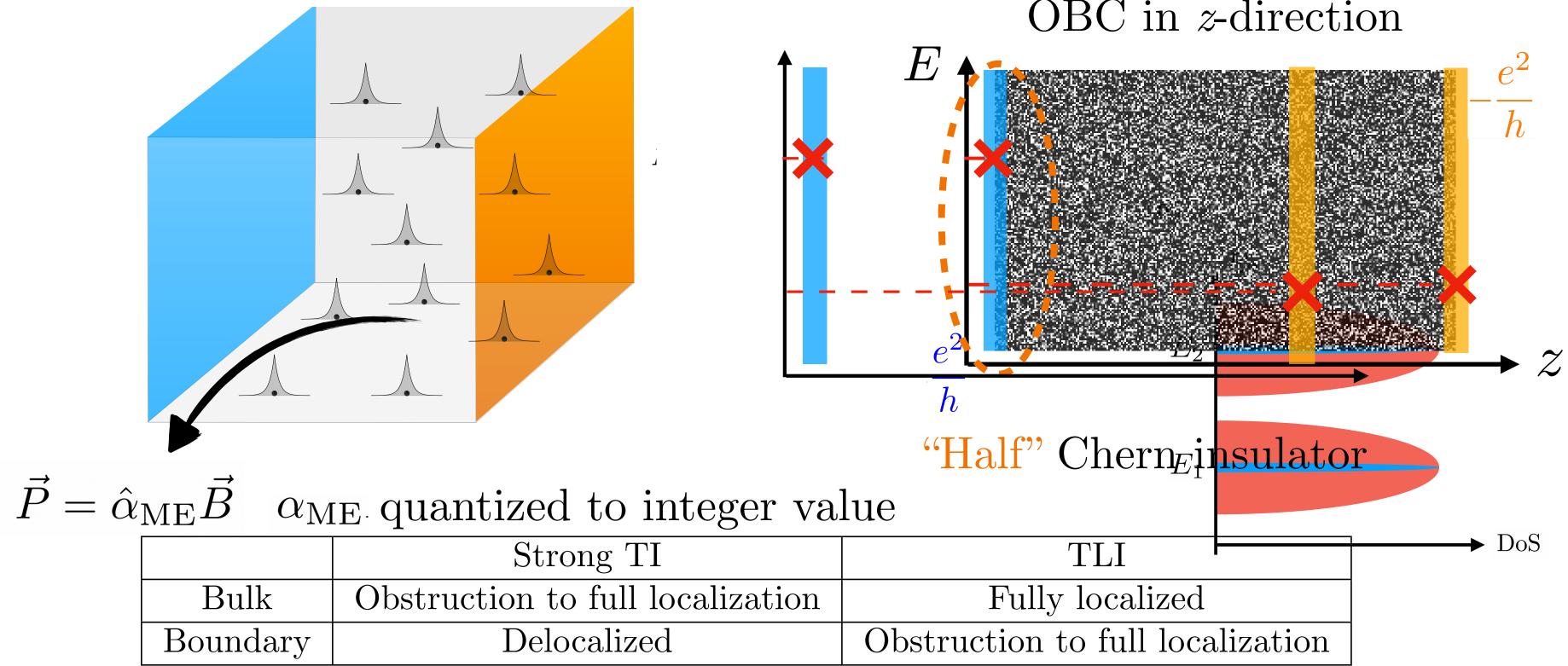


$\vec{P} = \hat{\alpha}_{\rm ME}\vec{B}$ $\alpha_{\rm ME}$ quantized to integer value

	Strong TI	
Bulk	Obstruction to full localization	Fu
Boundary	Delocalized	Obstructio

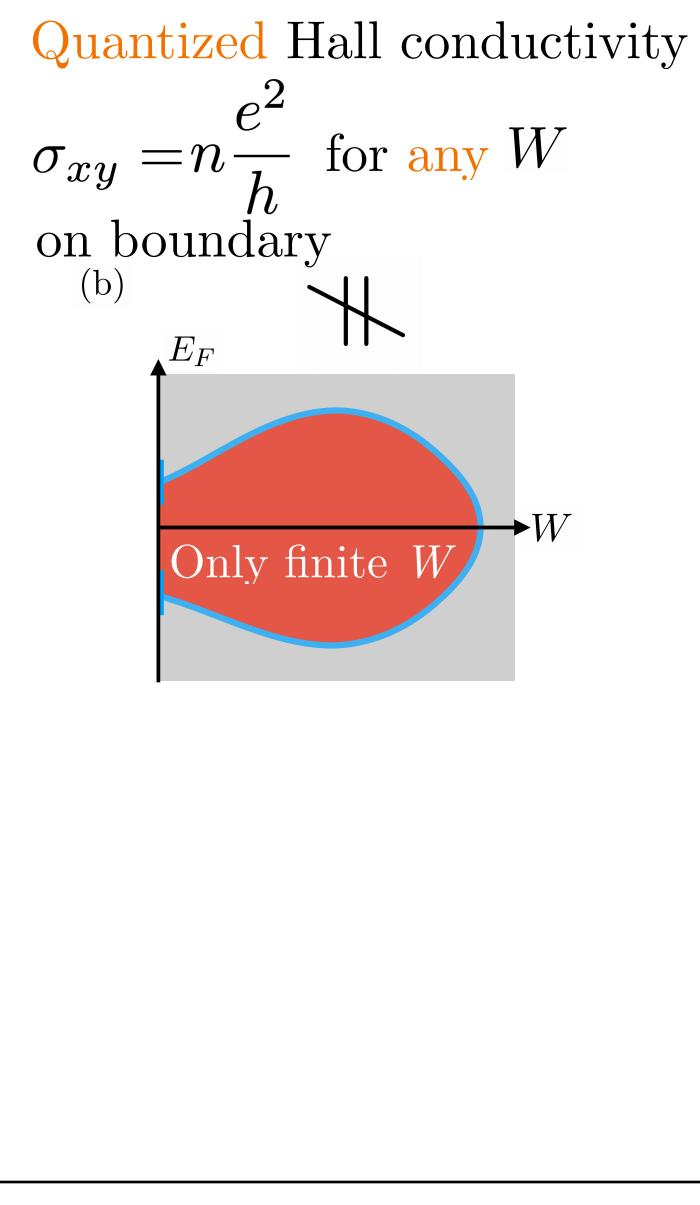
OBC in z-direction

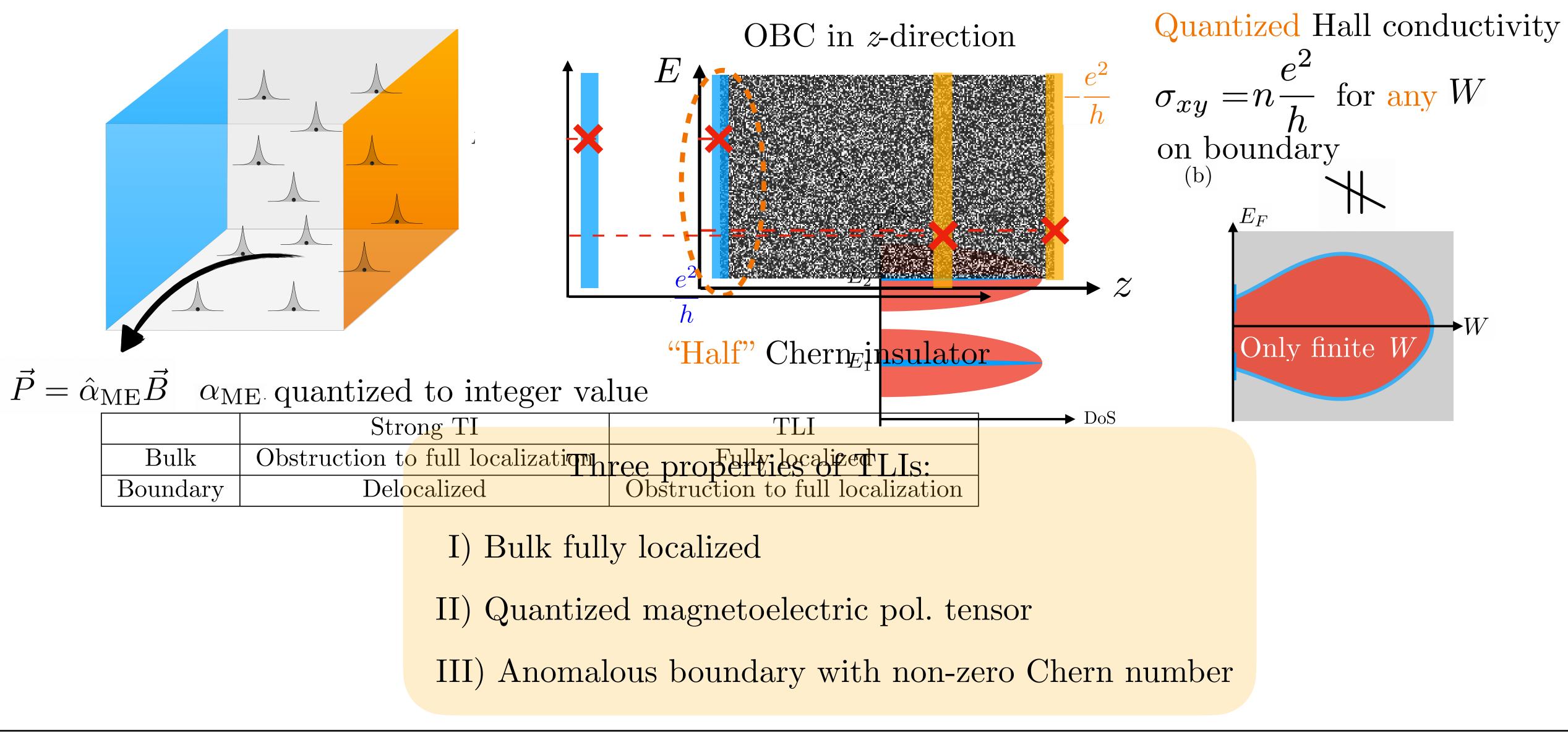




	Strong TI	
Bulk	Obstruction to full localization	Fu
Boundary	Delocalized	Obstructio

OBC in z-direction

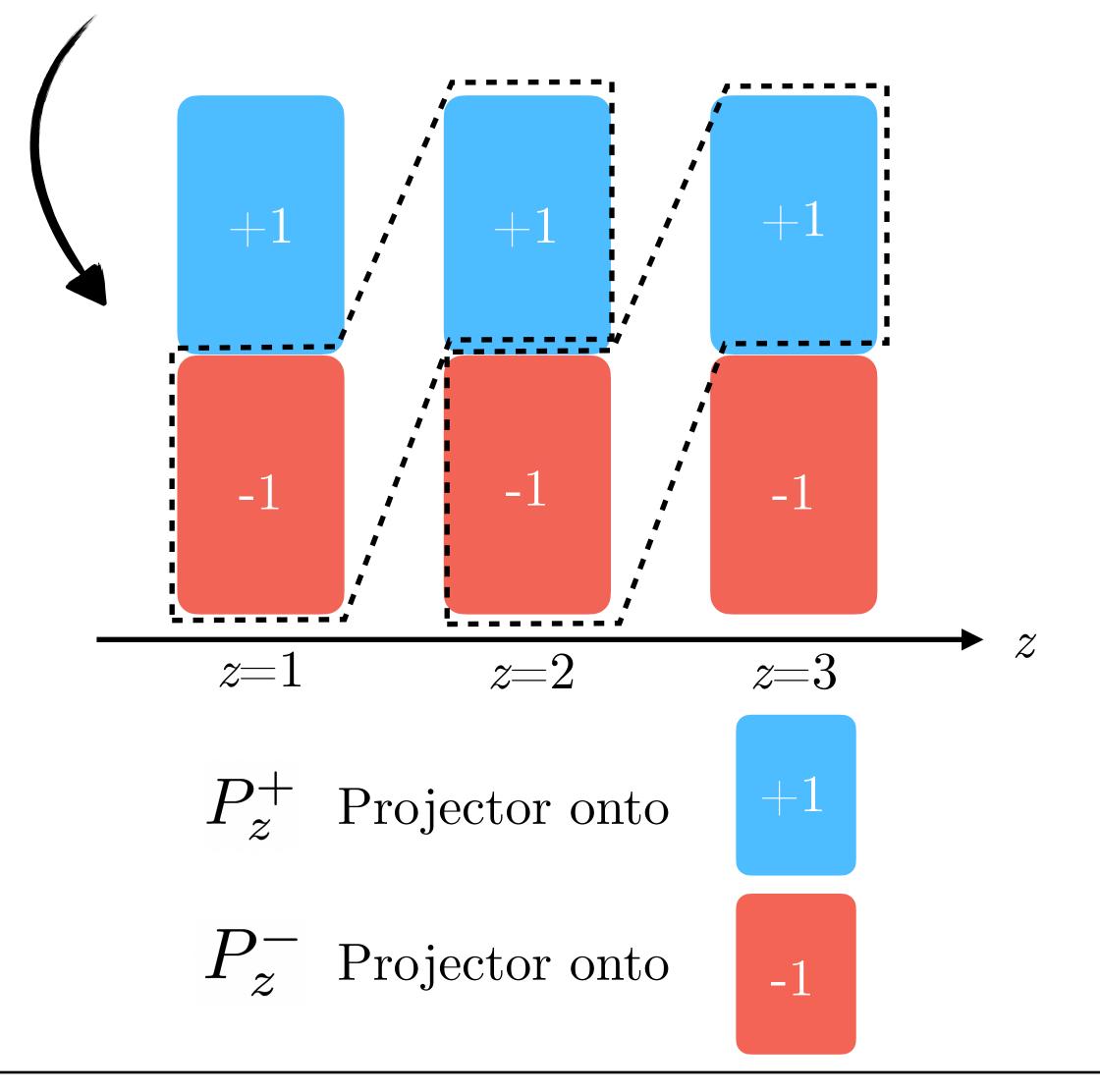




	•	
	Strong TI	
	S	
Bulk	Obstruction to full localization	ree prope
Boundary	Delocalized	Obstructio

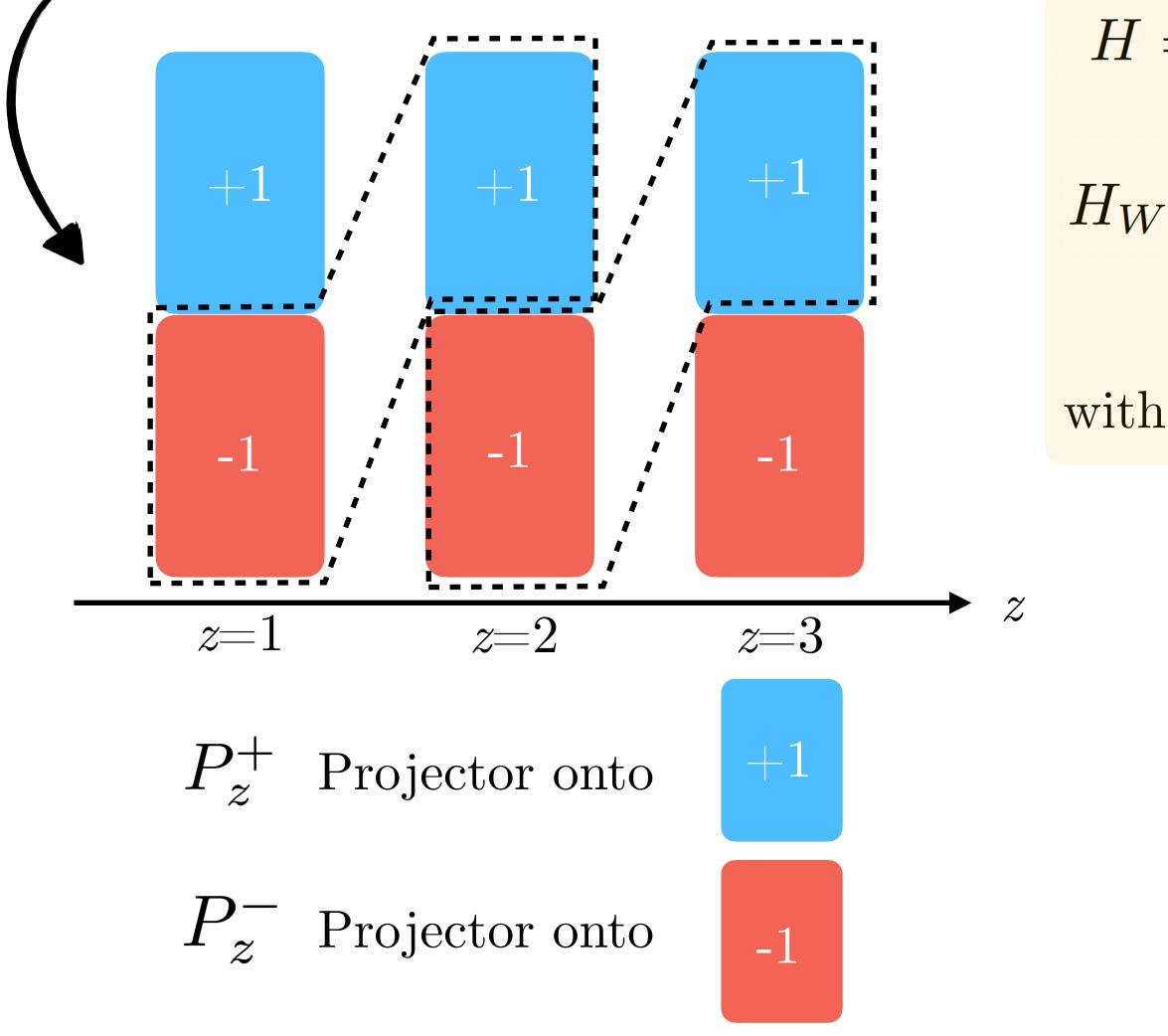
A concrete TLI model

Hilbert space of Chern insulator



A concrete TLI model

Hilbert space of Chern insulator



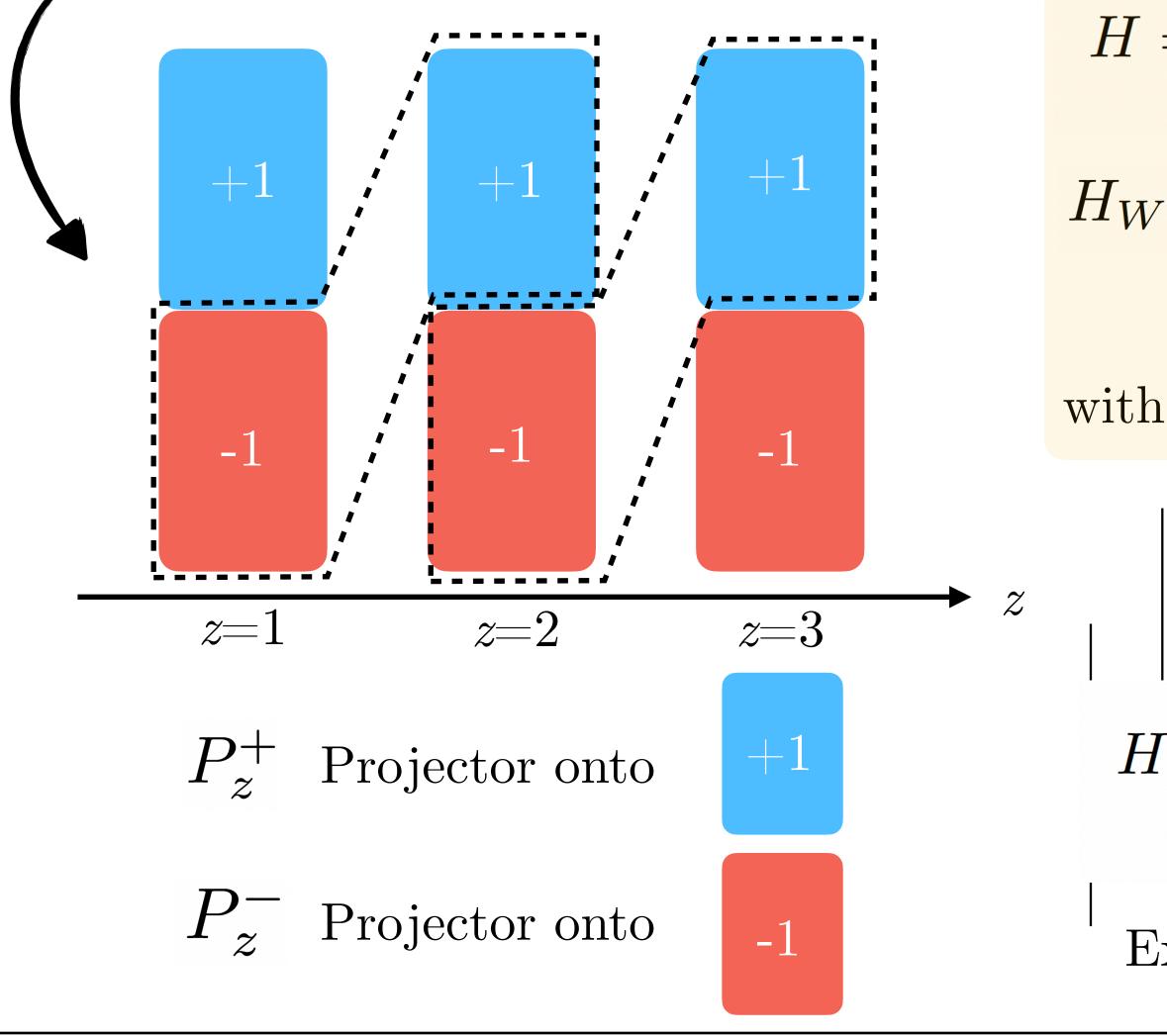
$$= \sum_{z} (P_{z}^{-} + P_{z+1}^{+}) H_{W} (P_{z}^{-} + P_{z+1}^{+})$$

$$= \sum_{\vec{R},\alpha} W_{\vec{R}\alpha} |g_{\vec{R}\alpha}\rangle \langle g_{\vec{R}\alpha}|, \qquad W_{\vec{R}\alpha} \in [-W,$$

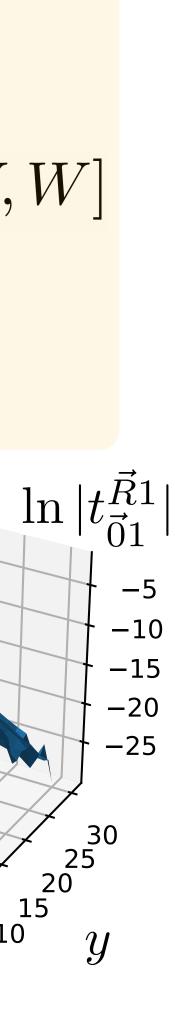
$$= |\vec{R}\alpha\rangle + |(\vec{R} + \hat{e}_{z})\alpha\rangle$$

A concrete TLI model

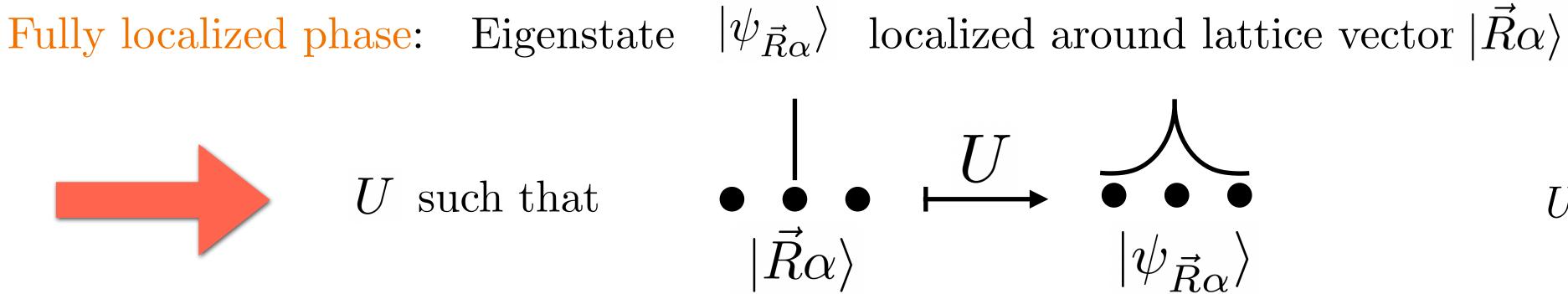
Hilbert space of Chern insulator

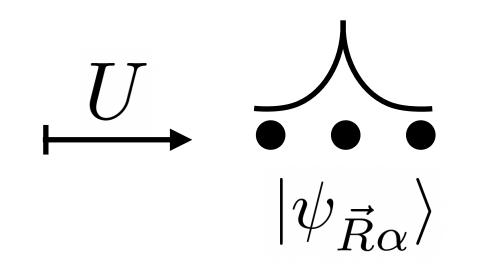


 $H = \sum (P_z^- + P_{z+1}^+) H_W (P_z^- + P_{z+1}^+)$ $H_W = \sum_{\vec{R},\alpha} W_{\vec{R}\alpha} \left| g_{\vec{R}\alpha} \right\rangle \left\langle g_{\vec{R}\alpha} \right| \,,$ $W_{\vec{R}\alpha} \in [-W, W]$ with $|g_{\vec{R}\alpha}\rangle = |\vec{R}\alpha\rangle + |(\vec{R} + \hat{e}_z)\alpha\rangle$ $H = \sum t_{\vec{R}'\alpha'}^{\vec{R}\alpha} |\vec{R}\alpha\rangle \langle \vec{R}'\alpha'|$ $\vec{R}, \alpha, \vec{R'}, \alpha'$ ⁵ 10 15 20 25 30 Exponentially decaying hoppings 10



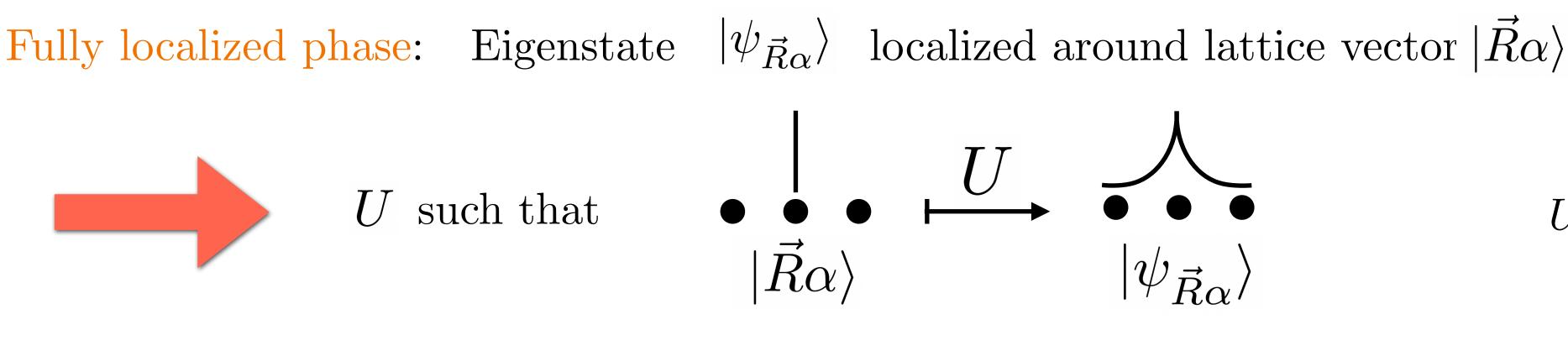
Bulk and surface topology





U is not unique!

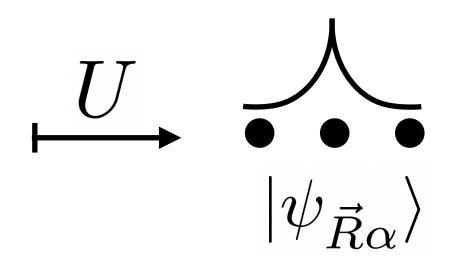
Bulk and surface topology



Bulk invariant: Third winding number of the unitary $\nu[U] = \alpha_{\rm ME}$

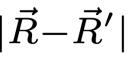
$$\nu[U] = \frac{i\pi}{3} \frac{1}{N_x N_y N_z} \epsilon^{ijk} \operatorname{tr} \left(U^{-1}[\hat{X}_i, U] U^{-1} \right)$$

Bastien Lapierre

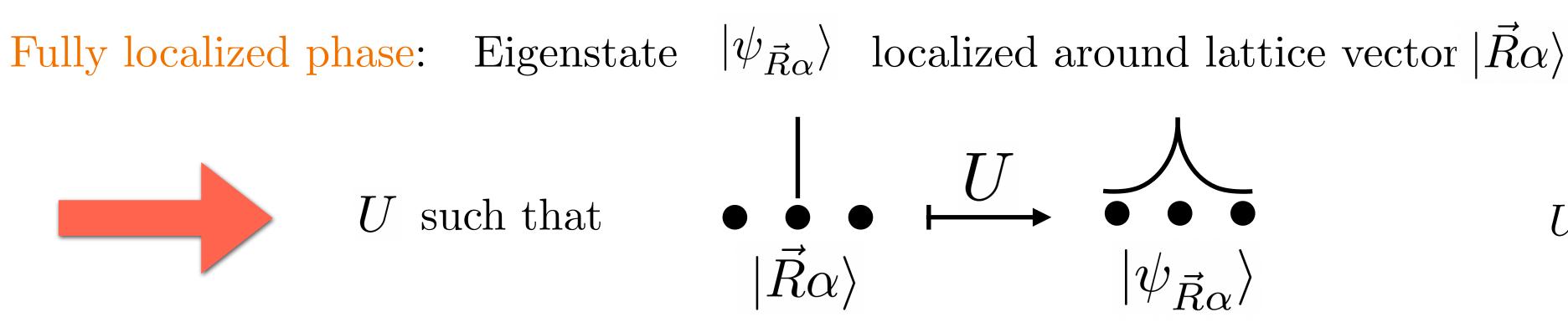


U is not unique!

 $(\hat{X}_j, U]U^{-1}[\hat{X}_k, U]) \in \mathbb{Z} \text{ if } \langle \vec{R}' \alpha' | U | \vec{R} \alpha \rangle \sim e^{-\gamma |\vec{R} - \vec{R}'|}$



Bulk and surface topology



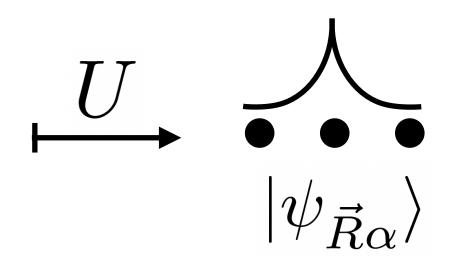
Bulk invariant: Third winding number of the unitary $\nu[U] = \alpha_{\rm ME}$

$$\nu[U] = \frac{i\pi}{3} \frac{1}{N_x N_y N_z} \epsilon^{ijk} \operatorname{tr} \left(U^{-1}[\hat{X}_i, U] U^{-1} \right)$$

Surface invariant: Chern number of the projector onto d.o.f of the surface

$$\operatorname{Ch}[\mathcal{P}] = \frac{2\pi i}{N_x N_y} \operatorname{Tr}\left(\mathcal{P}\left[\left[\hat{X}_1, \mathcal{P}\right], \left[\hat{X}_2, \mathcal{P}\right]\right]\right)$$

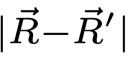
Bastien Lapierre



U is not unique!

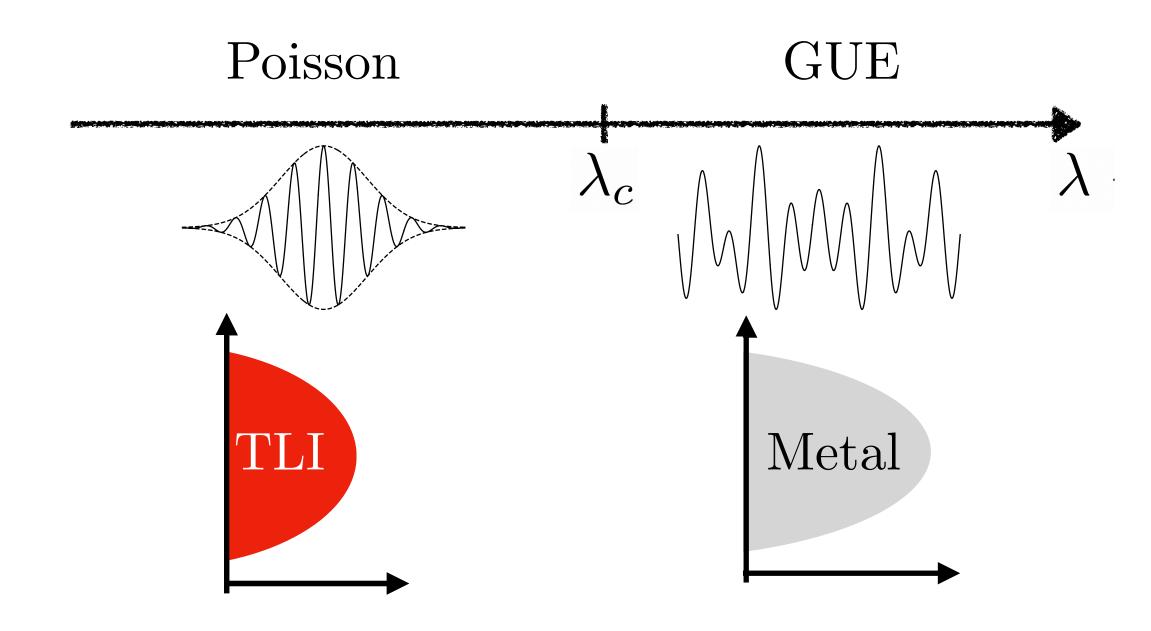
 $(\hat{X}_j, U] U^{-1}[\hat{X}_k, U] \in \mathbb{Z} \quad \text{if } \langle \vec{R}' \alpha' | U | \vec{R} \alpha \rangle \sim e^{-\gamma |\vec{R} - \vec{R}'|}$

Bulk fully localized \longrightarrow surfaces well decoupled



Nearest neighbour hopping perturbation

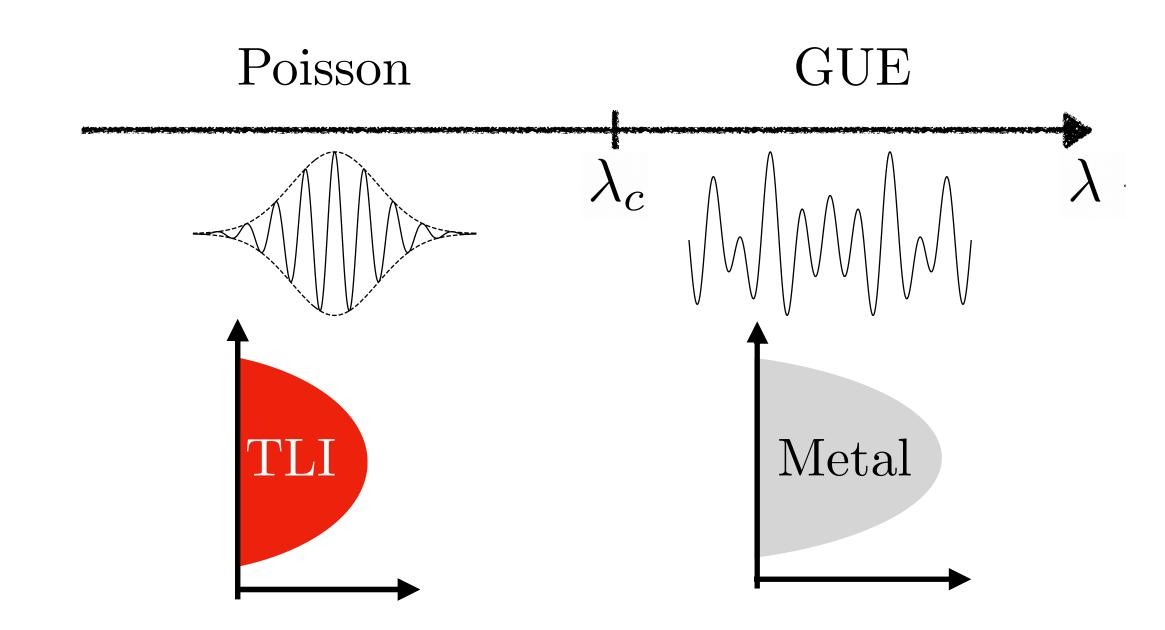
Nearest neighbour hopping perturbation



Nearest neighbour hopping perturbation

Level spacing statistics

$$s_n = E_{n+1} - E_n$$
 Level spacing ratio $r_n = \min\{s_n, s_{n+1}\} / \max\{s_n, s_{n+1}\}$
Averaged $r = \langle \langle r_n \rangle_n \rangle_W$

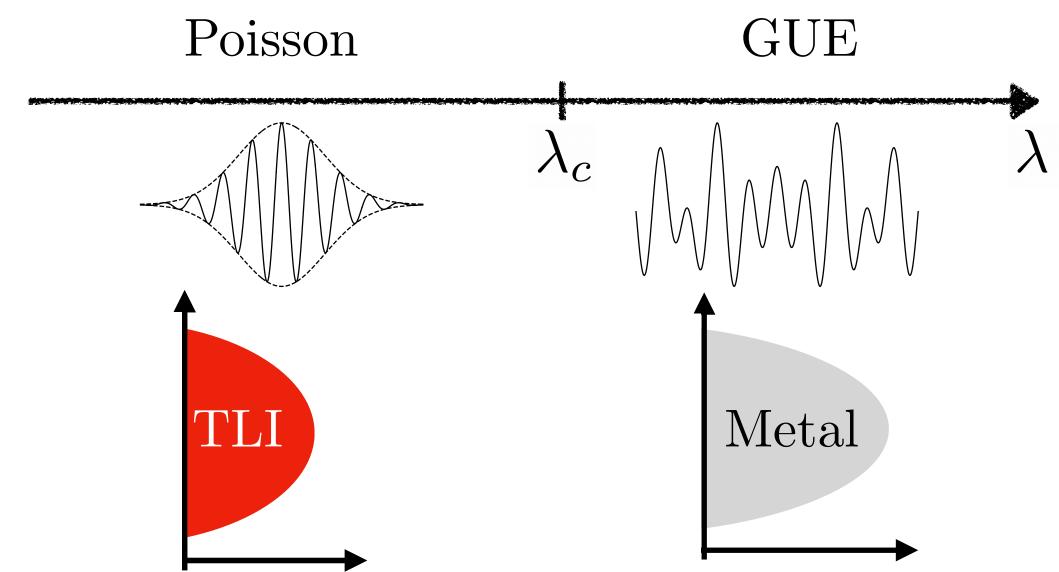


$$H_V(\lambda) = H + \lambda V$$
 3D Anderson trans

Nearest neighbour hopping perturbation

Level spacing statistics

$$s_{n} = E_{n+1} - E_{n}$$
Level spacing ratio
$$r_{n} = \min\{s_{n}, s_{n+1}\} / \max\{s_{n}, s_{n}\} / \max\{s_{n}, s_{$$

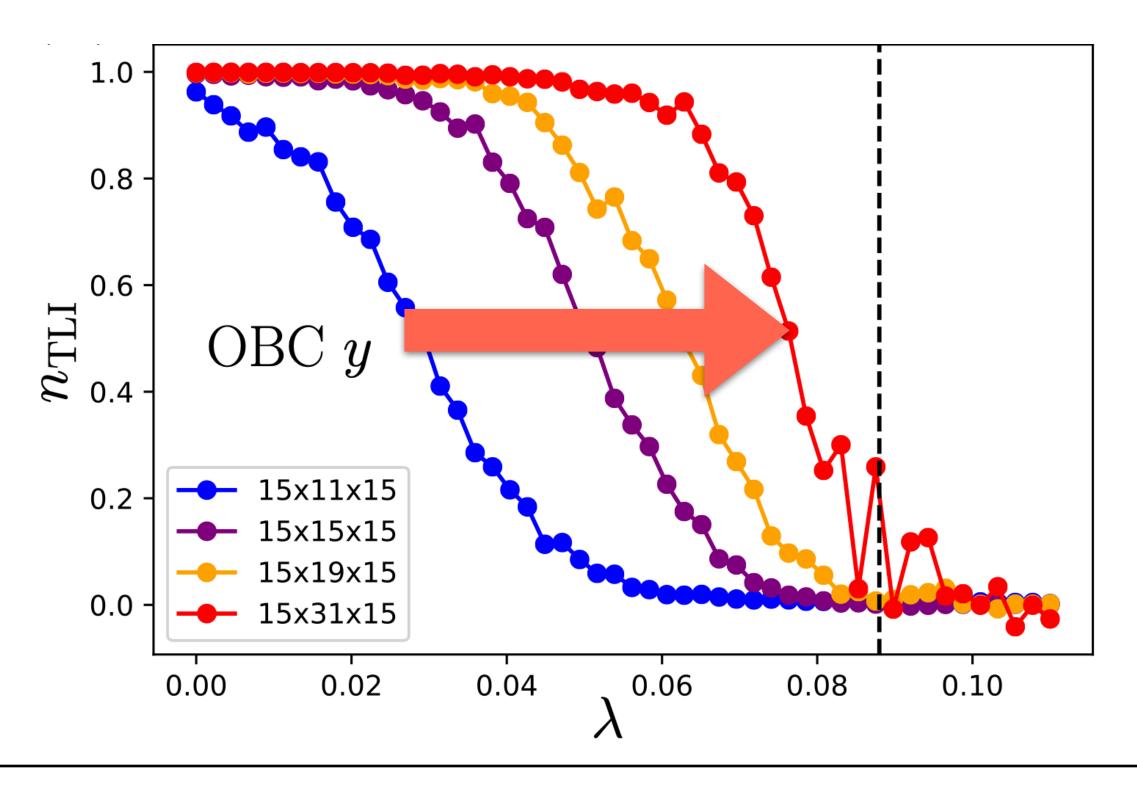


$$H_V(\lambda) = H + \lambda V$$
 3D Anderson trans

Nearest neighbour hopping $H_V(\lambda) = H + \lambda V$ 3D Anderson transition: if $\lambda < \lambda_c$, localized phase

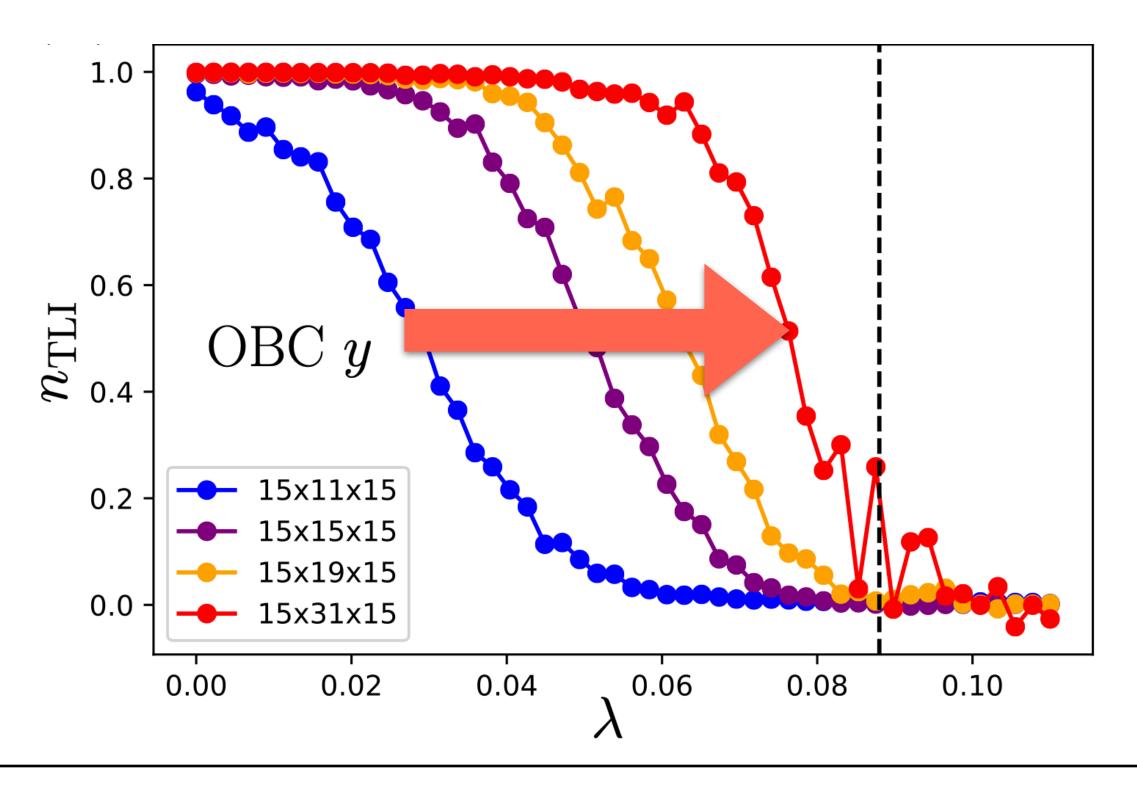
Nearest neighbour hopping $H_V(\lambda) = H + \lambda V$ 3D Anderson transition: if $\lambda < \lambda_c$, localized phase

Surface Chern number $n_{\text{TLI}} = \langle \text{Ch}[\mathcal{P}_W^{\text{surf}}] \rangle_W$

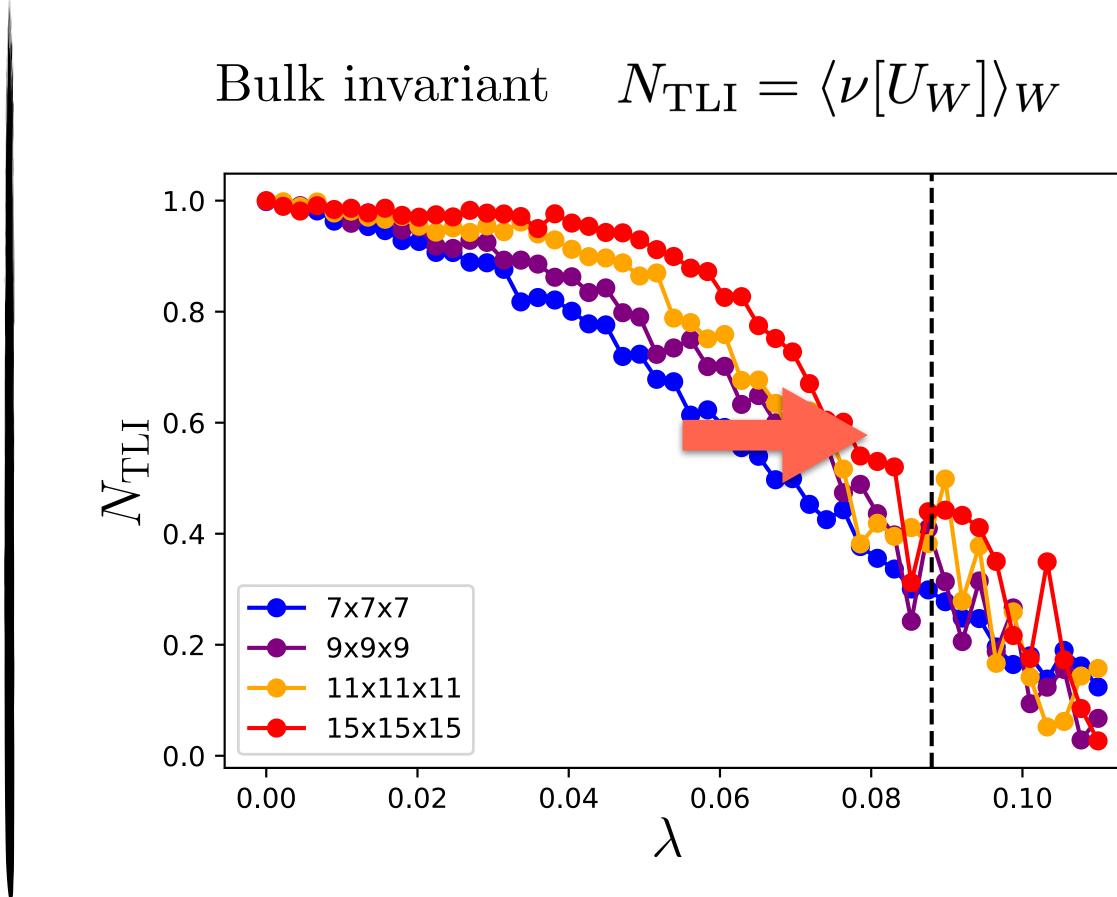


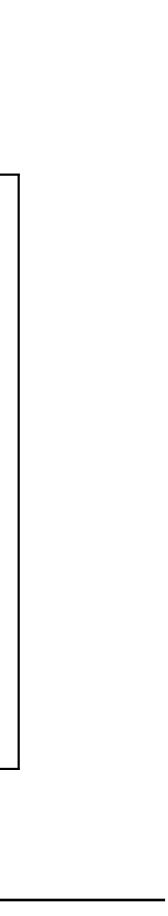
 $H_V(\lambda) = H + \lambda V$ Nearest neighbour hopping 3D Anderson transition: if $\lambda < \lambda_c$, localized phase

Surface Chern number $n_{\text{TLI}} = \langle \text{Ch}[\mathcal{P}_W^{\text{surf}}] \rangle_W$



Bastien Lapierre





Idea: associate a chiral Hamiltonian to the lo

Up to (local) permutations P of the eigenvectors and phase matrix D

B.L, T. Neupert, P. Brouwer, L. Trifunovic, To appear

Bastien Lapierre

cal unitary
$$U$$
 $\tilde{H} = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix}$ Class

(Not affecting TLI invariant)



Idea: associate a chiral Hamiltonian to the lo

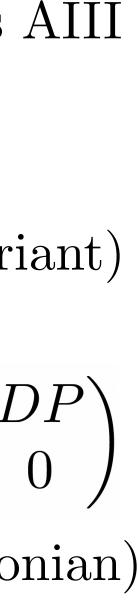
Up to (local) permutations P of the eigenvectors and phase matrix D(Not affecting TLI invariant)

TLI classifying group is $K_{\rm A}^{\rm TLI}(d) = K_{\rm AIII}(d)/K'_{\rm A\to AIII}(d)$

B.L, T. Neupert, P. Brouwer, L. Trifunovic, To

cal unitary
$$U$$
 $\tilde{H} = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix}$ Class

$$\widetilde{H}' = \begin{pmatrix} 0 & DP \\ P^{\dagger}D^{\dagger} & 0 \end{pmatrix}$$
(Dimer Hamiltonian)





Idea: associate a chiral Hamiltonian to the lo

Up to (local) permutations P of the eigenvectors and phase matrix D(Not affecting TLI invariant)

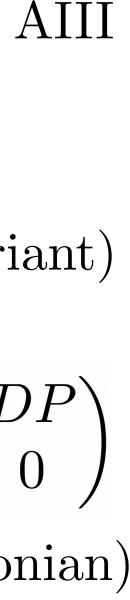
TLI classifying group is $K_{\rm A}^{\rm TLI}(d) = K_{\rm AIII}(d)/K'_{\rm A\to AIII}(d)$

$$K_{\rm A}^{\rm TLI}(d) = \begin{cases} 0 & \text{if } d = 0 \text{ or } d = 1, \\ K_{\rm AIII}(d) & \text{if } d > 1. \end{cases}$$

B.L, T. Neupert, P. Brouwer, L. Trifunovic, To appear

cal unitary
$$U$$
 $\tilde{H} = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix}$ Class

 $\widetilde{H}' = \begin{pmatrix} 0 & DP \\ P^{\dagger}D^{\dagger} & 0 \end{pmatrix}$ (Dimer Hamiltonian)





Idea: associate a chiral Hamiltonian to the lo

(Not affecting TLI invariant) Up to (local) permutations P of the eigenvectors and phase matrix D

TLI classifying group is $K_{A}^{TLI}(d) = K_{AIII}$

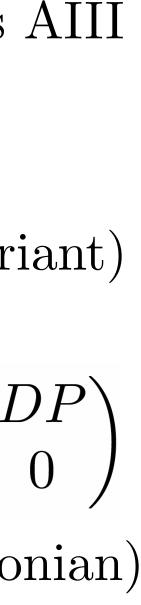
$$K_{\rm A}^{\rm TLI}(d) = \begin{cases} 0 & \text{if } d = 0 \text{ or } d = 1, \\ K_{\rm AIII}(d) & \text{if } d > 1. \end{cases}$$

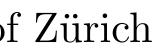
B.L, T. Neupert, P. Brouwer, L. Trifunovic, To appear

Bastien Lapierre

cal unitary
$$U$$
 $\tilde{H} = \begin{pmatrix} 0 & U \\ U^{\dagger} & 0 \end{pmatrix}$ Class

Non-trivial TLIs in d = 3, 5, 7, 9, etc.





Classification of topologically localized phases

Topologically localized insulators and superconductors (not captured by the tenfold way):

AZ	\mathcal{T}	\mathcal{P}	\mathcal{C}	1	2	3	4	5	6	7	8
А	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AIII	0	0	1	0	0	\mathbb{Z}	0	\mathbb{Z}	0	\mathbb{Z}	0
AI	1	0	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
BDI	1	1	1	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	\mathbb{Z}_2
D	0	1	0	0	0	0	0	\mathbb{Z}	0	\mathbb{Z}_2	0
DIII	-1	1	1	0	0	0	0	\mathbb{Z}	0	0	0
AII	-1	0	0	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
CII	-1	-1	1	0	0	\mathbb{Z}_2	\mathbb{Z}_2	\mathbb{Z}	0	0	0
								$2\mathbb{Z}$		0	0
CI								$2\mathbb{Z}$		0	0

B.L, T. Neupert, P. Brouwer, L. Trifunovic, To appear

