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2D bilayer geometry

For layers j € {1,2}, we define the Bravais lattice
R;={Ajn: neZ?%

where A; is a 2 x 2 invertible matrix whose columns are primitive lattice vectors.
We define the unit cell for layer j as

M ={Ax: xe[0,1)}.

Reciprocal lattice: R} := {2rA-Tn:neZ?}.
Brillouin Zone: '} := BZ; := {27TAJ-_TX . x € [0,1)2}.

Represent multilattices by Ry x A; and Ry x A,
where A; denotes the set of orbitals associated with each lattice point in layer i.
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Tight-Binding Model
Tight-binding parameterizes the Hamiltonian into interactions between localized
(Wannier) basis functions:

haa’(R - Rl) ~ <¢(R,a)|H|¢(R’,a’)>-

R — R’ can take any value in R; for Ra€ R; x Aj, R'a’ € R; x Aj, but
R — R’ can take any value in R? for Rao € Ry x A1, R'a’ € Ry x A».

We can formally define an operator H such that

HR(I,R'OLI = haa’(R - Rl)

)

and an eigenproblem
Hy = Eq.

The operator H does not have translation symmetry and thus cannot diagonalized
by a Bloch transform if Ry u R, is not periodic.

» We assume an exponential localization of the Hamiltonian entries:

|haar (x)] < Ce™ T,
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Computing time of DFT versus Tight-Binding

Approximately 10,000 atoms per moiré cell.
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Electronic-structure methods for twisted moiré layers. Carr, S., Fang, S. & Kaxiras, E. Nat Rev Mater 5,
748-763 (2020).
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Transform to Momentum Space
The multilayer wave function Vg o = (YR,a1, VRoa,) OF ¥ 1= (1P1,1)2) is defined on
Q:leuﬂnglelu'Rngz
Define the Bloch transform for each sheet
%(q) = |r7|71/2 Z UJ@(yjefiRj'q, qeBZ;, aje A
RieR;
Transform the Hamiltonian to momentum space

Hiti(q) = Ghy(a)Us(a),  qeBZ,
Hie(@) = Y, cuhu(a+ G)i(a+G),  j+k qeBZ;,

GEeR¥

1/2
|/7 Cjk:Cj'Ckaand

where ¢; = |I'J*
hjj(q) = |r7|71/2 Z haj(yj(Rj)eiiRj.q, Qaj € Aj, qe€E BZJ',
RieR;
—~ 1 _
hi(q) = o / hoor(x)e™™dx,  j#k, o€ A, ap € Ay , g€ R?

The proof follows from the Poisson summation formula:

P > R = 3 6(g+G), qeR
Ri€R; GeRF
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Interlayer Scattering
Transform the Hamiltonian to momentum space

Hibi(q) = ghy(@)dy(q),  qeBZ;,

Hiti(q) = ), Gikhi(q+ G)Uu(a+ G),  j#k, qeBZ;.
GEeR

We thus see that

1/jj(q) scatters to %(q +Gj) = 1\/J/k(q + G —Gy), GeR}, GreRg.
No periodicity if lattices are incommensurate!
Bilayer:

1(q) scatters to Yn(q + Gy — Go), Gy e R¥, Gy e RE.
%(q + Gy — G) scatters to %(q + (G — G) + (G — GY))
= 1(g+(Gi— G}) — (G — Gy)), GyeRE, Gl eRi.
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Interlayer Scattering
Transform the Hamiltonian to momentum space

I_m( )=¢ JJ( )7/)1( ), q € BZ;,

Hii(q) = Y, cuhu(a+ G)ou(q+G),  j#k, qeBZ;.
GER

We can substitute g by g + G, above to obtain

Hiti(q + Ge) = ghy(q + G)dj(g+ Go),  j #k,

Hiti(q+ G = > cuhila+ G+ G)l(a+ G, j# k.
GeR}

We can thus define the momentum Hamiltonian centered at g

[’LIJ'j(q)]G,”G; = cihy(q+ Gk)égk,gly if j # k, Gk, G € R,
[Hi(@)]6..6, = cihix(q + G + Gy, if j # k, G e R}, Ge Ry,
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Momentum Space Hamilton

We can thus define the momentum Hamiltonian centered at g

[Hi(@)l6,.c = Ghila+ G)dg, o if j # k, Gy, G € R,
[@(Q)]Gk@ = Cjk@(q + Gj + Gy), if j # k, GeR}, GxeRE.

We then have the following theorem based on the ergodicity property:

Theorem

’

2
Trg(H) = Trg(H(O) =v* ) 3, /*[go F(@)]oa.00-

where

1
V*=[|r§|'|A1|+|FT|'|Azl] |

Incommensurate heterostructures in momentum space. Daniel Massatt, Stephen Carr, Mitchell Luskin, and
Christoph Ortner. Multiscale Model. Simul., 16:429-451, 2018.
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Incommensurate Band Structure — Local Momentum DoS

[The electronic properties of graphene, Neto, Geim, et al, Rev. Mod. Phys]
[Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,Cao, Jarillo-Herroro, et al, Nature]

Figure: L: Monolayer graphene bands at the Fermi level. The Dirac cone.
R: Band structure for non-interacting twisted bilayer graphene.
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Figure: Twisted bilayer graphene momentum local DoS
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Choice of Truncation

We add buffer region of radius r in

momentum space We map to truncated reciprocal lattice region.
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Momentum Space Hamiltonian Domain Reduction

Figure: Low energy momenta in momentum space (left) and reciprocal space (right).
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Disregistry
The disregistry of an atom Ry of layer 1 with respect to layer 2 is given by

blﬁz(Rl) = moer(R1)7 Rl € Rl.
Since A2A1’1R1 € R», we can smoothly interpolate to R? by
b1-s2(x) = modr, [(1 — A2A; H)x].

Real space , e ® Configuration space
L 3

= &
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Moiré Unit Cell and Superlattice

b1_,2(x) and by_,1(x) are isomorphisms

5 Fam —To,
2 x o (1= AATYx = (1= AAT )x + Ag(er + &) = Ax(A — ATD)x,

rM - r17
by 1 1 1
x> (1= AA; )x = A(A] — Ay )X,

where [ is the periodic moiré cell:
M= R? /R = Am[0,1)? = (AT — AZH)7H0,1)?,
and R is the moiré superlattice given by
R = AmZ? = (AT — A 1Z2.
Reciprocal moiré lattice is then given by

Riyg = 2nA 72 = 2n(ATT — A T)Z2.
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Ergodicity of Disregistries for Incommensurate 2D Layers
For h € Coer(I'2), we thus have that h(Ry) = h(bi2(R1)) and

1 1
e O hR)= g Y] h(bia(R) — = [ A(b)db.
#R10 B RiERLAB, #R10 B, RiERLAB, N2 Jr,
Real space L Te Te ” 5 Configuration space
NN I
Yk
0y ° ') * 'Y 0
000 10 2 30 |/ 0 1 2 3
r (&) . b (A)

Generalized Kubo formulas for the transport properties of incommensurate 2D atomic heterostructures. E.
Cancés, P. Cazeaux, and M. Luskin. Journal of Mathematical Physics, 58:063502, 2017.

Electronic density of states for incommensurate layers. Daniel Massatt, Mitchell Luskin, and Christoph Ortner.
SIAM J. Multiscale Modeling & Simulation, 15:476-499, 2017.

Mitchell Luskin (University of Minnesota) July 21, 2023



Energy landscape in twisted bilayer graphene
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Strain solitons and topological defects in bilayer graphene. PNAS, 2013, Alden, ..., McEuen
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Continuum Model for Relaxation of Incommensurate 2D Bilayers

The relation between displacement in configuration space coordinates and real
space coordinates is assumed to be given by

Ul(X) = Ul(bl_,Q(X)) and UQ(X) = Ug(bz_,l(X)),

where uy is periodic on ', and wy is periodic on I'y. Since by_,2(x) and by_,1(x) are
isomorphisms

rM g r27 rM - r17
b1 : . brs1 1
x = (I = AAT )X, x> (I = AlA; V)X,

we have that U;(x) and Us(x) are periodic on Iy and

Etot(U17 UQ) = / dx[gmtrd(vul(x)) + glntra(vuz( ))

JT a4
25111f91(b1—’2(x) + Ul(X) - UZ(X)) 2glnter(b2—’1(x) + U2(X) - Ul(X))]

where EL. . :To — R is the relaxed Generalized Stacking Fault Energy.

Energy minimization of 2D incommensurate heterostructures. P. Cazeaux , M. Luskin, and D. Massatt. Arch.
Rat. Mech. Anal., 235:1289-1325, 2019.
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Generalized Stacking Fault Energy
The interlayer energy density of layer 2 with respect to layer 1 can be accurately
modeled by the Generalized Stacking Fault Energy, Fesre,

Ener(bams1(x) + Ua(x) = Ur(x)) = Fasre(bams1(x) + Ua(x) — Us(x)),

1

where by_,1(x) is the disregistry. Fgsee can be fit by DFT.
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Figure: How the Generalized Stacking Fault Energy, which represents the interlayer
coupling energy, depends on the disregistry b for three different materials.
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Bilayer Graphene or MoS, Configuration Space Model

For bilayer graphene or MoSy, Eintra = Ebyrn = E7

s Since the intralayer energy is
isotropic and

gilntcr(bl*ﬂ(x)) = 5i2ntcr(b2*>1 (X))
by symmetry.

We can then obtain from the uniqueness of solutions to the energy minimization
problem that U; = —U, and Us is the minimum displacement for the energy

EtoL(U) = =

dx[Eintra(VU(X)) + Efnger (b12(x) 4+ 2U(x))].
ITml Jr,,

Rescale to Iy := 25sin(6/2)I o4 to get Ginzburg-Landau type equation:

Evon(U) = / dx[Emera(VU()) + mam(bbz( x) +20(x))].

o

Hence,

|Vuy(b)|* db < CO2, / |V Uy (x)]?dx < CO2.
M2 I m
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Regularity of Displacement
/ |Vuy(b)|* db < CO2, / |V Uy (x)]?dx < CO2.

I am

Graphene GSFF (meV) 0° oSy GSFE (meV)
5 0 B W0

180° Mo, GSFE (meV)
= n

b (A

Figure: Relaxation results for twisted bilayers with five incommensurate twist angles each.
The left panel of each column shows Fgsre(b + 2u(b)) over I' (the relaxation pattern in
configuration space) and the right panel shows Fgsre(r) (over real space).

Relaxation and Domain Formation in Incommensurate 2D Heterostructures. S. Carr, D. Massatt, S. B. Torrisi, P.

Cazeaux, M. Luskin and E. Kaxiras). Physical Review B, page 224102 (7 pp), 2018.

Relaxation and domain wall structure of bilayer moiré systems. Paul Cazeaux, Drake Clark, Rebecca Engelke,
Philip Kim, and Mitchell Luskin. Journal of Elasticity, 2023.
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Hamiltonian for Relaxed Bilayer Structures
We assume that the relaxed position for an atom on site R; € R4 is given by
Ry — Ry + u1 (Ry), U1 € Goer(M2).
If R € Ry and R € Ry, we have by periodicity of u; and w»:

H;%hR2 = hu(Rl + ul(Rl) — Ry — UPZ(R2))
= h12(R1 — Ry + U1(R1 — Rg) — U2(R2 — Rl))
= h2(R1 — R),

where the relaxed interlayer coupling function is
hiy(x) = h1a(x + u1(x) — ua(—x)).
For intralayer coupling, R, R € R;,
Hi g = hj(R + 4j(R) = R' — uj(R’)),

which is not periodic!
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Momentum Space Relaxed Hamiltonian

The shifted Hamiltonian has the same structure for interlayer coupling:
['E/“(Cl)]cl,c2 = C12/A7f2(q + G + Gp) if GLe Ry, GoeR5.
For intralayer coupling, R, Ri € Ry,

H g = m(Ri+ u(Ry) — R, — ui(R}))

is not periodic! How to apply Bloch transform?

We propose to approximate the Hamiltonian HY with so that we can compute the
intralayer scattering due to relaxation.
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Approximation of Intralayer Coupling

For Ri, R, € Ry
o r = ma(Ry+ un(R) — R, — ui(R;))
= h(Ry = Ry + 1y (Ry) — iy (Rl + (R, - R1))
~ (R = RY) + Vhia (R = Ry) - (un ((Ru = R) + Ry) = u(RY)) -

We thus define the approximate Hamiltonian H" as

le

[H"]r,.R, = hi5(RL — R2),
[A]g k= Ma(Ru — Ry)

+Vhi(R - R))- (ul ((Rl — R+ R;) - ul(R;)) :

Rl € Rl, R2 € R27

if Ri, R, € Ry.

Mitchell Luskin (University of Minnesota)
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Scattering from Relaxation

Recall that uy is periodic on ;. The Fourier coefficients of uy(by) are

ang = |F2|_1 / ul(bg)e_icz'b? dbz, G2 € R;,
Jr,

and the Fourier coefficients of u;(by + (Ry — Ry)) are thus eiGZ'(leR{)f/le. It
follows that

w(R) = m(R) = 3 (50 R) —1) ot

GQGR;:
and thus
[F*)g, g = h1a(Ry = Ry)

+ Vhll(Rl — Ri) . Z (eiGz'(leRl) _ 1) Z\IIGQGIGZ'RI,
GQER;:
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Approximate Momentum Space Relaxed Intralayer Hamiltonian

Since
[HU]RI,R; = hiy (R — Ry)

+ th(Rl — R;) . Z (eiGz~(R1—R1) _ 1) LAIIGQeiGTR17
GQER;:

we have that the Bloch transform of 3 ./ [Flu]Rl,R' Y1 (R is

(@%@ + Y, [Vhula - G) - Vhu(q)| o di(a - ).
Gy #0
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Electronic band structure: unrelaxed vs. relaxed
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Figure: Electronic band structure along high-symmetry lines of the moiré Brillouin zone at
a single monolayer K valley for 0.3° (top), 1.1° (middle), and 3.0° (bottom).

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, arXiv:2109.15296v3, 2021
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unrelaxed and relaxed 2D bilayers
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Figure: Interlayer coupling for small twist angle = 0.3° in real and momentum space.
Real space methods suffer a loss of regularity with respect to configuration, while
momentum space suffers with slower reciprocal space localization.

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, MMS, to appear.
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Energy Window & Momenta

> We fix a small energy window of interest, 7 strength of relaxation & interlayer
coupling.

» Weak Van der Waals forces allow all scattering hoppings to be considered
‘perturbative.
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Low Energy Reciprocal Latttice Approximation

to reciprocal lattice space (right)

left)

(

Reciprocal lattice TB model forms isolated small matrix pockets, allowing band

Mapping from momentum space
structure.
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Convergence of Electronic Structure
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Figure: The relative error for the -point electron eigenvalue closest to the Fermi energy as
a function of the momentum basis truncation radius A and interlayer truncation radius 7.
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Convergence of Electronic Structure

Error estimate for the band structure (local density of states) as a function of the
momentum basis truncation radius A and interlayer truncation radius 7 :

er(N7) —er| Se ™ + e*V"/\7

where the exponential rates of convergence for the unrelaxed structure is

<1, <o,

and the exponential rates of convergence for the relaxed structure since
Yh s 07 YA S 17

since

/ |Vuy(b)|* db < CO2, / |V Uy (x)]?dx < CO2.

M2 PV

Electronic Observables for Relaxed Bilayer 2D Heterostructures in Momentum Space, Daniel Massatt, Stephen
Carr, Mitchell Luskin, MMS, to appear.
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Dirac points for Graphene

Physically relevant part of dispersion relation is ~ 0 frequency, at Brillouin zone
corners Dirac points K, K’ (green triangles).
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Dirac points for Graphene

Physically relevant part of dispersion relation is ~ 0 frequency, at Brillouin zone
corners Dirac points K, K’ (green triangles).

«

Can we derive an effective description of dynamics at these points?
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Dirac dynamics for Graphene

Theorem (Fefferman-Weinstein CMP 2014 [simplified])

Consider the tight-binding model of graphene i0y) = Hi, with initial data a
wave-packet localized at K, with spectral width ¢ < 1

. Ale
0a(0) = ch(cR) T, i(eR) = (R
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Dirac dynamics for Graphene

Theorem (Fefferman-Weinstein CMP 2014 [simplified])

Consider the tight-binding model of graphene i0y) = Hi, with initial data a
wave-packet localized at K, with spectral width ¢ < 1

. Ale
0a(0) = ch(cR) T, i(eR) = (R

The solution evolves as a wave-packet up to t ~ ¢2%° (any § > 0)

Vr(t) = ef (R, et)e’®R 4+ 0p(e2t), f(eR, et) = (;ggzg Zg) ’

Mitchell Luskin (University of Minnesota)
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Dirac dynamics for Graphene

Theorem (Fefferman-Weinstein CMP 2014 [simplified])

Consider the tight-binding model of graphene i0y) = Hi, with initial data a
wave-packet localized at K, with spectral width ¢ < 1

. Ale
0n(0) = ef(eRIN T, heR) = ([ R))

The solution evolves as a wave-packet up to t ~ ¢2%° (any § > 0)

Yr(t) = ef (eR, et)e™ R + 0p(&t), f(eR,et) := (?2%22’23) ;

envelopes modulated by the massless Dirac equation (D := —i0)

, 0 Dx, — iD
iorf =Df, f(0)=fo, D:= (DX T Dy % 0’ Xz).
1 2

Mitchell Luskin (University of Minnesota)
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Tight-binding model for twisted bilayer graphene

Define the bilayer Hilbert space H := ¢?(A1; C?) @ 2(Ny; C?),

A
v = <1i;> o Vi = (YR)Ren, VR = (ig) , e {l,2}.

Mitchell Luskin (University of Minnesota) July 21, 2023



Tight-binding model for twisted bilayer graphene

Define the bilayer Hilbert space H := ¢?(A1; C?) @ 2(Ny; C?),

A
v = <1i;> o Vi = (YR)Ren, VR = (ig) , e {l,2}.

We consider the model id;1) = H, with

() =G ) ().

so that diagonal = intralayer, off-diagonal = interlayer terms.

Mitchell Luskin (University of Minnesota) July 21, 2023



Tight-binding model for twisted bilayer graphene

For the intralayer terms, we take the monolayer Hamiltonian with nearest-neighbor

hopping.
el ® . ° . ° o
100 P © 0 0 0 0 O e o o
(H12’(/J2 Z Z (\/|R1 + Tl + EZ) w%;’

R2eN; o E{A B}

July 21, 2023
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Tight-binding model for twisted bilayer graphene

For the intralayer terms, we take the monolayer Hamiltonian with nearest-neighbor
hopping.

150 Lo
L] L] L] @ lul
15 .
e e L
o e o o
’ o, °
wl o Y °
ol @ L] [
e e

For the interlayer terms, we take, for o € {A, B} and Ry € Ay,

v = 3% bV

R2eN; o E{A B}

+ﬁ)wg,

where h: Ryo — R decays, and £ > 0 is the interlayer distance.
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Tight-binding model for twisted bilayer graphene

For the intralayer terms, we take the monolayer Hamiltonian with nearest-neighbor
hopping.

150 Lo
L] L] L] @ lul
15 .
e e L
o e o o
’ o, °
wl o Y °
ol @ L] [
e e

For the interlayer terms, we take, for o € {A, B} and Ry € Ay,

v = 3% bV

R2eN; o E{A B}

+ﬁ)wg,

where h: Ryo — R decays, and £ > 0 is the interlayer distance.

We emphasize that H is aperiodic for generic (irrational) 6!
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Key assumption
Consider the two-dimensional Fourier transform of the interlayer hopping function,

depending on interlayer distance £ > 0

he: ) = /R 26’5"h( Ir? +e2) ar.

July 21, 2023
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Key assumption

Consider the two-dimensional Fourier transform of the interlayer hopping function,
depending on interlayer distance £ > 0

he: ) = /R 26’5"h( Ir? +e2) ar.

Assumption (roughly stated) R
h(¢&;¢) is Lipschitz in &, and |h(&; )| ~ e "I¢l J
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Key assumption

Consider the two-dimensional Fourier transform of the interlayer hopping function,
depending on interlayer distance £ > 0

he: ) = /R ze’f"h( Ir? +£2) ar.

Assumption (roughly stated) R
h(¢&;¢) is Lipschitz in &, and |h(&; )| ~ e "I¢l J

Lipschitz + upper bound provable under mild assumptions on h (Cauchy's
theorem); lower bound verified for e.g. h(¢) = e~¢.

Mitchell Luskin (University of Minnesota) July 21, 2023



Main theorem

Theorem (Watson-Kong-MacDonald-Luskin, JFM, 2023 [simplified])

Consider the tight-binding model of twisted bilayer graphene id:p = Hvy, with

wave-packet initial data 1(0) = 1o localized at K; in layer i, with spectral width
e 1.

Mitchell Luskin (University of Minnesota)
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Main theorem

Theorem (Watson-Kong-MacDonald-Luskin, JFM, 2023 [simplified])

Consider the tight-binding model of twisted bilayer graphene id:p = Hvy, with

wave-packet initial data 1(0) = 1o localized at K; in layer i, with spectral width
e 1.

Suppose h satisfies the assumption, and ¢ and 6 satisfy

(KOl ~e O<e

Mitchell Luskin (University of Minnesota) July 21, 2023



Main theorem

Theorem (Watson-Kong-MacDonald-Luskin, JFM, 2023 [simplified])

Consider the tight-binding model of twisted bilayer graphene id:p = Hvy, with
wave-packet initial data 1(0) = 1o localized at K; in layer i, with spectral width
e« 1.

Suppose h satisfies the assumption, and ¢ and 6 satisfy
(K| )l ~ €, 0 <e

Then, 9(t) evolves as wave-packet up to t ~ e~2*° (any § > 0), with envelopes
f= (B £ £B)T modulated by

iorf = Hgmf, Hpm:= (U T(T_(;)V) o -7(—(—’})V)) ,

o = (01, 02) vector of Pauli matrices, T(r) moiré potential.
See also E. Cancés, L. Garrigue, and D. Gontier, “A simple derivation of moiré-scale continuous models for
twisted bilayer graphene,” Phys. Rev. B 107, 155403, 2023.
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Moiré potential

Difficult part: simplifying interlayer terms using properties of momentum space
interlayer hopping h to moiré potential

T(r) = h(|K|;0) (Toe™" + Toe™" + T3e'7),
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Relevance to for twisted bilayer graphene

Given the estimated physical value of h(|k/|; ), and 0 near to the first magic angle,
does there exist a range of € values, with € < 1, such that both conditions of our

theorem hold
[h(|K]; 0)| ~€, O <e.

The interlayer hopping energy and monolayer graphene 7-band energy scale is

h(IKI:L)
I

~ 110 meV, h% ~ 2.6 eV,

so .
~ bh(K][;L) _ 110 meV

(Il; ) Il (hg) 2.6 eV

On the other hand, the first magic angle is at

0 ~ 1° ~ 0.017 radians.

July 21, 2023
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Relevance to strongly-correlated (many-body) electronic phases in TBG

Coulomb e-e interactions in hBN (which typically encapsulates TBG in experiments)
at the magic angle moiré scale has energy scale

e

———— x 23 meV,
4enpN (g) me

where epg is the permittivity of hBN & 5¢p. The interlayer hopping energy 110
meV suggests that e-e interaction terms couple only states that are described
accurately by the BM model.

Coulomb e-e interactions do significantly affect the dynamics in TBG's flat moiré
bands since their width can be as small as ~ 10 meV.

Similar considerations apply to lattice-mediated interactions between electrons,
which are characterized by a smaller energy scale ~ 1 meV .

Bistritzer-MacDonald dynamics in twisted bilayer graphene, Alexander B. Watson,
Tianyu Kong, Allan H. MacDonald, and Mitchell Luskin. J. Math. Phys, 64:031502
(38pp), 2023.
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