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Motivation

• Goal: Focus, trap, guide, manipulate and control waves at subwavelength scales.
• Why 1D?

– Explicit calculations are possible;
– Only neighboring resonators interact with each other;
– Analogies with quantum mechanical phenomena (tight-binding approximation for quantum

systems) ⇒ connects the field of high-contrast metamaterials to condensed-matter theory.
• Why time-modulated?

– Formation of k-gaps;
– Many wave operations such as signal amplification/compression, spacetime cloaking, ...

• Applications: Wireless communications, biomedical superresolution imaging, quantum
computing.

• Tools: PDE model, capacitance matrix
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Problem Formulation
Geometric Setup

• Subwavelength resonators: Objects exhibiting resonant phenomena in response to wavelengths
much greater than their size. Subwavelength = size of resonators is much smaller than the
operating wavelength.

• Unit cell: An interval Y := (0, L) containing N resonators Di := (x−
i , x+

i ), ∀ i = 1, . . . , N , each
of length ℓi and spacing ℓi(i+1) between Di and Di+1.

• Infinite system: Infinitely many contiguous unit cells covering R, the regime taken up by the
resonators is denoted by D + LZ := {x + kL : x ∈ D, k ∈ Z}, where D :=

⋃N

i=1 Di.
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Problem Formulation
Material Parameters

• Time-dependency: Periodic in x with period L and in t with period T := 2π/Ω, given by

κ(x, t) =
{

κ0, x /∈ D,

κrκi(t), x ∈ Di,

1
κi(t)

=
M∑

n=−M

ki,neinΩt,

ρ(x, t) =
{

ρ0, x /∈ D,

ρrρi(t), x ∈ Di,

1
ρi(t)

=
M∑

n=−M

ri,neinΩt.

• High contrast assumption: δ := ρr/ρ0 ≪ 1.
• Wave speed: v0 :=

√
κ0/ρ0 outside D and vr :=

√
κr/ρr inside D.

• Difficulty: Folding of resonant frequencies into the first Brillouin zone in time. ⇒ Only consider
resonant frequencies corresponding to eigenmodes essentially supported in the subwavelength
regime. ⇒ subwavelength quasifrequencies
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Problem Formulation
Goal

• Goal: For Ω = O(δ1/2) find ω = O(δ1/2) s.t.
(

∂

∂t

1
κ(x, t)

∂

∂t
− ∂

∂x

1
ρ(x, t)

∂

∂x

)
u(x, t) = 0, x ∈ R, t ∈ R,

u(x, t)e−iωt is T −periodic,

u(x, t)e−iαx is L−periodic,

has a non-trivial solution u(x, t).
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Problem Formulation
Governing Equations

• Fourier expansion + Floquet-Bloch in time domain + superposition of Bloch waves:
u(x, t) = eiωt

∞∑
n=−∞

∫ π/L

−π/L
v̂n(x, α)eiαx dα einΩt, where α is the momentum.

• Coupled Helmholtz equations: Find vn(x, α) := v̂n(x, α)eiαx s.t.

d2

dx2 vn + ρ0(ω + nΩ)2

κ0
vn = 0 in (0, L) \D,

d2

dx2 v∗
i,n + ρr(ω + nΩ)2

κr
v∗∗

i,n = 0 in Di,

vn|−
(
x±

i

)
= vn|+

(
x±

i

)
for all 1 ≤ i ≤ N,

dv∗
i,n

dx

∣∣∣∣
±

(
x∓

i

)
= δ

dvn

dx

∣∣∣
∓

(
x∓

i

)
for all 1 ≤ i ≤ N,

where

v∗
i,n(x, α) =

∞∑
m=−∞

ri,mvn−m(x, α), v∗∗
i,n(x, α) =

∞∑
m=−∞

ki,m
ω + (n − m)Ω

ω + nΩ vn−m(x, α).
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Numerical Solution and Approximation
Exterior Solution

Lemma (Exterior Solution) [FCA23, Lemma 2.1]
The following exponential Ansatz solves the Helmholtz equation in R\D:

vn(x) = αn
i eiknx + βn

i e−iknx, ∀ x ∈
(
x+

i , x−
i+1
)

,

for all i = 1, . . . , N − 1. The coefficients (αn
i , βn

i )N
i=1 ⊂ R2 can be determined in terms of the boundary

values v through [
αn

i

βn
i

]
= −1

2i sin
(
knℓi(i+1)

) [ eiknx−
i+1 −e−iknx+

i

−eiknx−
i+1 eiknx+

i

][
vn(x+

i )
vn(x−

i+1)

]
,

for all i = 1, . . . , N and for all n ∈ Z.

To do: determine (αn
i , βn

i )N
i=1 ⊂ C2, ∀ n ∈ Z, i.e. determine the boundary values of vn.
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Numerical Solution and Approximation
Interior Solution

Lemma (Interior Solution) [ACHR23, Lemma 3.3]
For each resonator Di, for i = 1, . . . , N , the interior problem can be written as an
infinitely-dimensional system of ODEs ∆vi + Civi = 0 with the unknown
vi(x, α) := [vn(x, α)]n∈Z ∈ C∞ for all x ∈ Di, for fixed α. Let {λ̃i

n}n∈Z be the set of all eigenvalues of
Ci with corresponding eigenvectors {f n,i}n∈Z. Using the square-roots ±λi

n of the eigenvalues λ̃i
n, the

solution to the interior problem over Di takes the form

vi =
∞∑

n=−∞

(
an

i eiλi
nx + bn

i e−iλi
nx
)

f n,i, ∀ x ∈
(
x−

i , x+
i

)
,

for coefficients {(an
i , bn

i )}n∈Z ⊂ C2.

To do: determine {(an
i , bn

i )}n∈Z ⊂ C2, ∀ i = 1, . . . , N .

Truncation: choose K ∈ N and truncate the solution, vi =
K∑

n=−K

(
an

i eiλi
j x + bn

i e−iλi
j x
)

f n,i, ∀ x ∈ Di.
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Numerical Solution and Approximation
Dirichlet-to-Neumann Map

Definition (Dirichlet-to-Neumann Map) [FCA23, Definition 2.1]
For any kn ∈ C, for fixed n ∈ Z, which is not of the form mπ/ℓi(i+1) for some m ∈ Z\{0} and
1 ≤ i ≤ N − 1, the Dirichlet-to-Neumann map with wave number kn := (ω + nΩ)/v0 is the linear
operator T kn,α : C2N,α → C2N,α defined by

T kn,α[(v±
i )1≤i≤N ] :=

(
±dvn

dx
(x±

i )
)

1≤i≤N
,

where vn is the unique solution to the exterior Helmholtz equation and (v±
i )N

i=1 ⊂ C2N,α is a sequence
of quasi-periodic boundary data defined s.t. v±

i+N = eiαLv±
i .

The Dirichlet-to-Neumann map can be expressed explicitly through a matrix-vector multiplication,
where we denote the matrix by T kn,α ∈ C2N×2N .

Transmission condition: dv∗
i,n

dx

∣∣∣
±

(
x∓

i

)
= δ dvn

dx

∣∣
∓

(
x∓

i

)
⇒ ± d

dx
v∗

i,n(x±
i , α) = δT kn,α[vn]±i
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Numerical Solution and Approximation
Numerical Solution

Lemma (Transmission Condition) [ACHR23, Theorem 3.4]
The subwavelength quasifrequencies ω are approximately satisfying, as δ → 0, the following truncated
system of non-linear equations:

K∑
j=−K

(
Gn,j − δT kn,α × Vn,j

)
wj = 0, ∀ −K ≤ n ≤ K, wj :=

[
aj

i

bj
i

]
1≤i≤N

∈ C2N , ∀ −K ≤ j ≤ K,

and the matrices Gn,j = Gn,j(ω) and Vn,j = Vn,j(ω) are given by

Gn,j := diag

(
M∑

m=−M

ri,mf j,i
K+1−n+m

[
−iλi

jeiλi
j x−

i iλi
je−iλi

j x−
i

iλi
jeiλi

j x+
i −iλi

je−iλi
j x+

i

])
1≤i≤N

∈ C2N×2N ,

Vn,j := diag

(
f j,i

K+1−n

[
eiλi

j x−
i e−iλi

j x−
i

eiλi
j x+

i e−iλi
j x+

i

])
1≤i≤N

∈ C2N×2N .
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Numerical Solution and Approximation
Numerical Solution

Theorem [ACHR23, Theorem 3.4]
The subwavelength quasifrequencies ω are approximately satisfying A(ω, δ)[wj ]−K

j=K = 0, where
A(ω, δ) ∈ C2N(2K+1)×2N(2K+1) and wj ∈ C2N are given by:

A(ω, δ) :=


GK,K − δT kK ,α × VK,K · · · GK,−K − δT kK ,α × VK,−K

...
...

G0,K − δT k0,α × V0,K · · · G0,−K − δT k0,α × V0,−K

...
...

G−K,K − δT k−K ,α × V−K,K · · · G−K,−K − δT k−K ,α × V−K,−K

 , wj :=
[

aj
i

bj
i

]
1≤i≤N

.

Use Muller’s method to find ω for which A(ω, δ) is not invertible.
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Numerical Solution and Approximation
Problems

Run-time increases with increasing N and K, K must be sufficiently large for sufficient accuracy.

The run-time depends algebraically on K. With increasing K, the absolute error decreases.

We introduce the Capacitance matrix!
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Numerical Solution and Approximation
Capacitance Matrix Approximation

Lemma [AH21, Lemma 4.1]
As δ → 0, the functions v∗

i,n(x, α) are approximately constant inside the resonator:

v∗
i,n(x, α)

∣∣
(x−

i
,x+

i
)

= ci,n + O(δ(1−γ)/2).

Define ci(t) = eiωt
∞∑

n=−∞
ci,neinΩt.

Definition [ACHR23]

For any smooth function f : R → R, we define I∂Dj [f ] by I∂Dj [f ] := df
dx

∣∣∣∣
−

(x−
j ) − df

dx

∣∣∣∣
+

(x+
j ).
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Numerical Solution and Approximation
Capacitance Matrix Approximation

Capacitance matrix: Cα :=
(
Cα

ij

)
1≤i,j≤N

(nearly tridiagonal) same as in the static case [FCA23].

Theorem [ACHR23, Theorem 5.3]
The quasifrequencies in the subwavelength regime are, at leading order, given by the
quasifrequencies of the system of ordinary differential equations

Mα(t)Ψ(t) + Ψ′′(t) = 0,

where Mα(t) = δκr
ρr

W1(t)CαW2(t) + W3(t) with W1, W2 and W3 being diagonal matrices defined as

(W1)ii =
√

κi

ℓi
, (W2)ii =

√
κi, (W3)ii =

√
κi

2
d
dt

κ′
i

κ
3/2
i

,

for i = 1, . . . , N , with

Ψ(t) =

(
ci(t)√
κi(t)

)
i=1,...,N

.
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Numerical Solution and Approximation
Numerical Simulations

Observations:
•

κi(t) = 1
1+εκ,i cos(Ωt+ϕκ,i)

• k-gaps: undesirable α
for which wave
propagation is
uncontrollable.

• ρ does not affect band
structure at leading
order.
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Conclusion & Outlook

• Solve the coupled Helmholtz equations exactly up to numerical errors.
• Capacitance matrix approximation to the subwavelength quasifrequencies in one dimension for a

quasi-periodic, time-modulated problem.
• Time-modulating ρ does not affect the subwavelength quasifrequencies at leading order.
• Time-modulating κ leads to the formation of k-gaps.
• Next step: Formulate the scattering problem in the dilute regime and let N → ∞ while the

resonators have fixed size. Derive an approximation for N = 1. Obtain an effective medium
theory.
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Additional Material

Consider the solution V α
i : R → R of the following problem:

− d2

dx2 V α
i = 0, (0, L)\D,

V α
i (x) = δij , x ∈ Dj ,

V α
i (x + mL) = eiαmLV α

i (x), m ∈ Z.

The corresponding capacitance matrix is defined by

Cα
ij =

dV α
j

dx

∣∣∣∣
−

(x−
i ) −

dV α
j

dx

∣∣∣∣
+

(x+
i )

= − 1
ℓ(j−1)j

δi(j−1) +
(

1
ℓ(j−1)j

+ 1
ℓj(j+1)

)
δij − 1

ℓj(j+1)
δi(j+1)

− δ1jδiN
e−iαL

ℓN(N+1)
− δ1iδjN

eiαL

ℓN(N+1)
,



Additional Material

or equivalently by

Cα =



1
ℓN(N+1)

+ 1
ℓ12

− 1
ℓ12

− e−iαL

ℓN(N+1)

− 1
ℓ12

1
ℓ12

+ 1
ℓ23

− 1
ℓ23

. . .
. . .

. . .

. . .
. . . − 1

ℓ(N−1)N

− eiαL

ℓN(N+1)
− 1

ℓ(N−1)N

1
ℓ(N−1)N

+ 1
ℓN(N+1)


.



Additional Material

For fixed n ∈ Z, the Dirichlet-to-Neumann map T kn,α admits the following explicit matrix
representation: for any kn ∈ C\{mπ/ℓi(i+1) : m ∈ Z\{0}, 1 ≤ i ≤ N − 1}, f ≡ (f±

i )1≤i≤N ,
T kn,α[f ] ≡ (T kn,α[f ]±i )1≤i≤N is given by


T kn,α[f ]−1
T kn,α[f ]+1

...

T kn,α[f ]−N
T kn,α[f ]+N

 =


− kn cos(knℓN(N+1))

sin(knℓN(N+1))
kn

sin(knℓN(N+1)) e−iαL

Akn

(ℓ12)
. . .

Akn

(ℓ(N−1)N )
kn

sin(knℓN(N+1)) eiαL − kn cos(knℓN(N+1))
sin(knℓN(N+1))




f−

1
f+

1
...

f−
N

f+
N

 ,

where for any ℓ ∈ R, Akn

(ℓ) denotes the 2 × 2 symmetric matrix

Akn

(ℓ) :=

[
− kn cos(knℓ)

sin(knℓ)
kn

sin(knℓ)
kn

sin(knℓ) − kn cos(knℓ)
sin(knℓ)

]
.
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