ETHzürich

Wave interaction of subwavelength resonators in one dimension

Joint work with H. Ammari, J. Cao, E.O. Hiltunen

Liora Rueff
Zurich, 17.07.2023

Outline

1. Motivation
2. Problem Formulation
3. Numerical Solution and Approximation
4. Conclusion \& Outlook

Outline

1. Motivation
2. Problem Formulation
3. Numerical Solution and Approximation
4. Conclusion \& Outlook

Motivation

- Goal: Focus, trap, guide, manipulate and control waves at subwavelength scales.
- Why 1D?
- Explicit calculations are possible;
- Only neighboring resonators interact with each other;
- Analogies with quantum mechanical phenomena (tight-binding approximation for quantum systems) \Rightarrow connects the field of high-contrast metamaterials to condensed-matter theory.
- Why time-modulated?
- Formation of k-gaps;
- Many wave operations such as signal amplification/compression, spacetime cloaking, ...
- Applications: Wireless communications, biomedical superresolution imaging, quantum computing.
- Tools: PDE model, capacitance matrix

Outline

1. Motivation

2. Problem Formulation

3. Numerical Solution and Approximation
4. Conclusion \& Outlook

Problem Formulation

Geometric Setup

- Subwavelength resonators: Objects exhibiting resonant phenomena in response to wavelengths much greater than their size. Subwavelength = size of resonators is much smaller than the operating wavelength.
- Unit cell: An interval $Y:=(0, L)$ containing N resonators $D_{i}:=\left(x_{i}^{-}, x_{i}^{+}\right), \forall i=1, \ldots, N$, each of length ℓ_{i} and spacing $\ell_{i(i+1)}$ between D_{i} and D_{i+1}.
- Infinite system: Infinitely many contiguous unit cells covering \mathbb{R}, the regime taken up by the resonators is denoted by $D+L \mathbb{Z}:=\{x+k L: x \in D, k \in \mathbb{Z}\}$, where $D:=\bigcup_{i=1}^{N} D_{i}$.

Problem Formulation

Material Parameters

- Time-dependency: Periodic in x with period L and in t with period $T:=2 \pi / \Omega$, given by

$$
\begin{gathered}
\kappa(x, t)=\left\{\begin{array}{ll}
\kappa_{0}, & x \notin D, \\
\kappa_{\mathrm{r}} \kappa_{i}(t), & x \in D_{i},
\end{array} \quad \frac{1}{\kappa_{i}(t)}=\sum_{n=-M}^{M} k_{i, n} \mathrm{e}^{\mathrm{i} n \Omega t},\right. \\
\rho(x, t)=\left\{\begin{array}{ll}
\rho_{0}, & x \notin D, \\
\rho_{\mathrm{r}} \rho_{i}(t), & x \in D_{i},
\end{array} \quad \frac{1}{\rho_{i}(t)}=\sum_{n=-M}^{M} r_{i, n} \mathrm{e}^{\mathrm{i} n \Omega t}\right.
\end{gathered}
$$

- High contrast assumption: $\delta:=\rho_{\mathrm{r}} / \rho_{0} \ll 1$.
- Wave speed: $v_{0}:=\sqrt{\kappa_{0} / \rho_{0}}$ outside D and $v_{\mathrm{r}}:=\sqrt{\kappa_{\mathrm{r}} / \rho_{\mathrm{r}}}$ inside D.
- Difficulty: Folding of resonant frequencies into the first Brillouin zone in time. \Rightarrow Only consider resonant frequencies corresponding to eigenmodes essentially supported in the subwavelength regime. \Rightarrow subwavelength quasifrequencies

Problem Formulation

Goal

- Goal: For $\Omega=O\left(\delta^{1 / 2}\right)$ find $\omega=O\left(\delta^{1 / 2}\right)$ s.t.

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t} \frac{1}{\kappa(x, t)} \frac{\partial}{\partial t}-\frac{\partial}{\partial x} \frac{1}{\rho(x, t)} \frac{\partial}{\partial x}\right) u(x, t)=0, \quad x \in \mathbb{R}, t \in \mathbb{R} \\
u(x, t) \mathrm{e}^{-\mathrm{i} \omega t} \text { is } T \text {-periodic } \\
u(x, t) \mathrm{e}^{-\mathrm{i} \alpha x} \text { is } L \text {-periodic }
\end{array}\right.
$$

has a non-trivial solution $u(x, t)$.

Problem Formulation

Governing Equations

- Fourier expansion + Floquet-Bloch in time domain + superposition of Bloch waves:
$u(x, t)=\mathrm{e}^{\mathrm{i} \omega t} \sum_{n=-\infty}^{\infty} \int_{-\pi / L}^{\pi / L} \hat{v}_{n}(x, \alpha) \mathrm{e}^{\mathrm{i} \alpha x} \mathrm{~d} \alpha \mathrm{e}^{\mathrm{i} n \Omega t}$, where α is the momentum.
- Coupled Helmholtz equations: Find $v_{n}(x, \alpha):=\hat{v}_{n}(x, \alpha) \mathrm{e}^{\mathrm{i} \alpha x}$ s.t.

$$
\left\{\begin{array}{lr}
\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} v_{n}+\frac{\rho_{0}(\omega+n \Omega)^{2}}{\kappa_{0}} v_{n}=0 & \text { in }(0, L) \backslash D \\
\frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}} v_{i, n}^{*}+\frac{\rho_{\mathrm{r}}(\omega+n \Omega)^{2}}{\kappa_{\mathrm{r}}} v_{i, n}^{* *}=0 & \text { in } D_{i}, \\
\left.v_{n}\right|_{-}\left(x_{i}^{ \pm}\right)=\left.v_{n}\right|_{+}\left(x_{i}^{ \pm}\right) & \text {for all } 1 \leq i \leq N, \\
\left.\frac{\mathrm{~d} v_{i, n}^{*}}{\mathrm{~d} x}\right|_{ \pm}\left(x_{i}^{\mp}\right)=\left.\delta \frac{\mathrm{d} v_{n}}{\mathrm{~d} x}\right|_{\mp}\left(x_{i}^{\mp}\right) & \text { for all } 1 \leq i \leq N,
\end{array}\right.
$$

where

$$
v_{i, n}^{*}(x, \alpha)=\sum_{m=-\infty}^{\infty} r_{i, m} v_{n-m}(x, \alpha), \quad v_{i, n}^{* *}(x, \alpha)=\sum_{m=-\infty}^{\infty} k_{i, m} \frac{\omega+(n-m) \Omega}{\omega+n \Omega} v_{n-m}(x, \alpha)
$$

Outline

1. Motivation

2. Problem Formulation

3. Numerical Solution and Approximation
4. Conclusion \& Outlook

Numerical Solution and Approximation

Exterior Solution

Lemma (Exterior Solution) [FCA23, Lemma 2.1]

The following exponential Ansatz solves the Helmholtz equation in $\mathbb{R} \backslash D$:

$$
v_{n}(x)=\alpha_{i}^{n} \mathrm{e}^{\mathrm{i} k^{n} x}+\beta_{i}^{n} \mathrm{e}^{-\mathrm{i} k^{n} x}, \quad \forall x \in\left(x_{i}^{+}, x_{i+1}^{-}\right),
$$

for all $i=1, \ldots, N-1$. The coefficients $\left(\alpha_{i}^{n}, \beta_{i}^{n}\right)_{i=1}^{N} \subset \mathbb{R}^{2}$ can be determined in terms of the boundary values v through

$$
\left[\begin{array}{c}
\alpha_{i}^{n} \\
\beta_{i}^{n}
\end{array}\right]=\frac{-1}{2 \mathrm{i} \sin \left(k^{n} \ell_{i(i+1)}\right)}\left[\begin{array}{cc}
\mathrm{e}^{\mathrm{i} k^{n} x_{i+1}^{-}} & -\mathrm{e}^{-\mathrm{i} k^{n} x_{i}^{+}} \\
-\mathrm{e}^{\mathrm{i} k^{n} x_{i+1}^{-}} & \mathrm{e}^{\mathrm{i} k^{n} x_{i}^{+}}
\end{array}\right]\left[\begin{array}{c}
v_{n}\left(x_{i}^{+}\right) \\
v_{n}\left(x_{i+1}^{-}\right)
\end{array}\right],
$$

for all $i=1, \ldots, N$ and for all $n \in \mathbb{Z}$.

To do: determine $\left(\alpha_{i}^{n}, \beta_{i}^{n}\right)_{i=1}^{N} \subset \mathbb{C}^{2}, \forall n \in \mathbb{Z}$, i.e. determine the boundary values of v_{n}.

Numerical Solution and Approximation

Interior Solution

Lemma (Interior Solution) [ACHR23, Lemma 3.3]

For each resonator D_{i}, for $i=1, \ldots, N$, the interior problem can be written as an infinitely-dimensional system of ODEs $\Delta \mathbf{v}_{i}+C_{i} \mathbf{v}_{i}=\mathbf{0}$ with the unknown $\mathbf{v}_{i}(x, \alpha):=\left[v_{n}(x, \alpha)\right]_{n \in \mathbb{Z}} \in \mathbb{C}^{\infty}$ for all $x \in D_{i}$, for fixed α. Let $\left\{\tilde{\lambda}_{n}^{i}\right\}_{n \in \mathbb{Z}}$ be the set of all eigenvalues of C_{i} with corresponding eigenvectors $\left\{\mathbf{f}^{n, i}\right\}_{n \in \mathbb{Z}}$. Using the square-roots $\pm \lambda_{n}^{i}$ of the eigenvalues $\tilde{\lambda}_{n}^{i}$, the solution to the interior problem over D_{i} takes the form

$$
\mathbf{v}_{i}=\sum_{n=-\infty}^{\infty}\left(a_{i}^{n} \mathrm{e}^{\mathrm{i} \lambda_{n}^{i} x}+b_{i}^{n} \mathrm{e}^{-\mathrm{i} \lambda_{n}^{i} x}\right) \mathbf{f}^{n, i}, \quad \forall x \in\left(x_{i}^{-}, x_{i}^{+}\right)
$$

for coefficients $\left\{\left(a_{i}^{n}, b_{i}^{n}\right)\right\}_{n \in \mathbb{Z}} \subset \mathbb{C}^{2}$.

To do: determine $\left\{\left(a_{i}^{n}, b_{i}^{n}\right)\right\}_{n \in \mathbb{Z}} \subset \mathbb{C}^{2}, \forall i=1, \ldots, N$.
Truncation: choose $K \in \mathbb{N}$ and truncate the solution, $\mathbf{v}_{i}=\sum_{n=-K}^{K}\left(a_{i}^{n} \mathrm{e}^{\mathrm{i} \lambda_{j}^{i} x}+b_{i}^{n} \mathrm{e}^{-\mathrm{i} \lambda_{j}^{i} x}\right) \mathbf{f}^{n, i}, \forall x \in D_{i}$.

Numerical Solution and Approximation

Dirichlet-to-Neumann Map

Definition (Dirichlet-to-Neumann Map) [FCA23, Definition 2.1]

For any $k^{n} \in \mathbb{C}$, for fixed $n \in \mathbb{Z}$, which is not of the form $m \pi / \ell_{i(i+1)}$ for some $m \in \mathbb{Z} \backslash\{0\}$ and $1 \leq i \leq N-1$, the Dirichlet-to-Neumann map with wave number $k^{n}:=(\omega+n \Omega) / v_{0}$ is the linear operator $\mathcal{T}^{k^{n}, \alpha}: \mathbb{C}^{2 N, \alpha} \rightarrow \mathbb{C}^{2 N, \alpha}$ defined by

$$
\mathcal{T}^{k^{n}, \alpha}\left[\left(v_{i}^{ \pm}\right)_{1 \leq i \leq N}\right]:=\left(\pm \frac{\mathrm{d} v_{n}}{\mathrm{~d} x}\left(x_{i}^{ \pm}\right)\right)_{1 \leq i \leq N}
$$

where v_{n} is the unique solution to the exterior Helmholtz equation and $\left(v_{i}^{ \pm}\right)_{i=1}^{N} \subset \mathbb{C}^{2 N, \alpha}$ is a sequence of quasi-periodic boundary data defined s.t. $v_{i+N}^{ \pm}=\mathrm{e}^{\mathrm{i} \alpha L} v_{i}^{ \pm}$.

The Dirichlet-to-Neumann map can be expressed explicitly through a matrix-vector multiplication, where we denote the matrix by $\mathcal{T}^{k^{n}, \alpha} \in \mathbb{C}^{2 N \times 2 N}$.

Transmission condition: $\left.\frac{\mathrm{d} v_{i, n}^{*}}{\mathrm{~d} x}\right|_{ \pm}\left(x_{i}^{\mp}\right)=\left.\delta \frac{\mathrm{d} v_{n}}{\mathrm{~d} x}\right|_{\mp}\left(x_{i}^{\mp}\right) \Rightarrow \pm \frac{\mathrm{d}}{\mathrm{d} x} v_{i, n}^{*}\left(x_{i}^{ \pm}, \alpha\right)=\delta \mathcal{T}^{k^{n}, \alpha}\left[v_{n}\right]_{i}^{ \pm}$

Numerical Solution and Approximation

Numerical Solution

Lemma (Transmission Condition) [ACHR23, Theorem 3.4]

The subwavelength quasifrequencies ω are approximately satisfying, as $\delta \rightarrow 0$, the following truncated system of non-linear equations:
$\sum_{j=-K}^{K}\left(\mathcal{G}^{n, j}-\delta \mathcal{T}^{k^{n}, \alpha} \times \mathcal{V}^{n, j}\right) \mathbf{w}_{j}=\mathbf{0}, \forall-K \leq n \leq K, \quad \mathbf{w}_{j}:=\left[\begin{array}{c}a_{i}^{j} \\ b_{i}^{j}\end{array}\right]_{1 \leq i \leq N} \in \mathbb{C}^{2 N}, \forall-K \leq j \leq K$,
and the matrices $\mathcal{G}^{n, j}=\mathcal{G}^{n, j}(\omega)$ and $\mathcal{V}^{n, j}=\mathcal{V}^{n, j}(\omega)$ are given by

$$
\begin{gathered}
\mathcal{G}^{n, j}:=\operatorname{diag}\left(\sum_{m=-M}^{M} r_{i, m} f_{K+1-n+m}^{j, i}\left[\begin{array}{cc}
-\mathrm{i} \lambda_{j}^{i} \mathrm{e}^{\mathrm{i} \lambda_{j}^{i} x_{i}^{-}} & \mathrm{i} \lambda_{j}^{i} \mathrm{e}^{-\mathrm{i} \lambda_{j}^{i} x_{i}^{-}} \\
\mathrm{i} \lambda_{j}^{i} \mathrm{e}^{\mathrm{i} \lambda_{j}^{i} x_{i}^{+}} & -\mathrm{i} \lambda_{j}^{i} \mathrm{e}^{-\mathrm{i} \lambda_{j}^{i} x_{i}^{+}}
\end{array}\right]\right)_{1 \leq i \leq N} \in \mathbb{C}^{2 N \times 2 N}, \\
\mathcal{V}^{n, j}:=\operatorname{diag}\left(f_{K+1-n}^{j, i}\left[\begin{array}{cc}
\mathrm{e}^{\mathrm{i} \lambda_{j}^{i} x_{i}^{-}} & \mathrm{e}^{-\mathrm{i} \lambda_{j}^{i} x_{i}^{-}} \\
\mathrm{e}^{\mathrm{i} \lambda_{j}^{i} x_{i}^{+}} & \mathrm{e}^{-\mathrm{i} \lambda_{j}^{i} x_{i}^{+}}
\end{array}\right]\right)_{1 \leq i \leq N} \in \mathbb{C}^{2 N \times 2 N} .
\end{gathered}
$$

Numerical Solution and Approximation

Numerical Solution

Theorem [ACHR23, Theorem 3.4]

The subwavelength quasifrequencies ω are approximately satisfying $\mathcal{A}(\omega, \delta)\left[\mathbf{w}_{j}\right]_{j=K}^{-K}=\mathbf{0}$, where $\mathcal{A}(\omega, \delta) \in \mathbb{C}^{2 N(2 K+1) \times 2 N(2 K+1)}$ and $\mathbf{w}_{j} \in \mathbb{C}^{2 N}$ are given by:

$$
\mathcal{A}(\omega, \delta):=\left[\begin{array}{ccc}
\mathcal{G}^{K, K}-\delta \mathcal{T}^{k^{K}, \alpha} \times \mathcal{V}^{K, K} & \cdots & \mathcal{G}^{K,-K}-\delta \mathcal{T}^{k^{K}, \alpha} \times \mathcal{V}^{K,-K} \\
\vdots & & \vdots \\
\mathcal{G}^{0, K}-\delta \mathcal{T}^{k^{0}, \alpha} \times \mathcal{V}^{0, K} & \cdots & \mathcal{G}^{0,-K}-\delta \mathcal{T}^{k^{0}, \alpha} \times \mathcal{V}^{0,-K} \\
\vdots & & \vdots \\
\mathcal{G}^{-K, K}-\delta \mathcal{T}^{k^{-K}, \alpha} \times \mathcal{V}^{-K, K} & \cdots & \mathcal{G}^{-K,-K}-\delta \mathcal{T}^{k^{-K}, \alpha} \times \mathcal{V}^{-K,-K}
\end{array}\right], \mathbf{w}_{j}:=\left[\begin{array}{l}
a_{i}^{j} \\
b_{i}^{j}
\end{array}\right]_{1 \leq i \leq N} .
$$

Use Muller's method to find ω for which $\mathcal{A}(\omega, \delta)$ is not invertible.

Numerical Solution and Approximation

Problems

Run-time increases with increasing N and K, K must be sufficiently large for sufficient accuracy.

The run-time depends algebraically on K.

With increasing K, the absolute error decreases.
(i): We introduce the Capacitance matrix!

Numerical Solution and Approximation

Capacitance Matrix Approximation

Lemma [AH21, Lemma 4.1]

As $\delta \rightarrow 0$, the functions $v_{i, n}^{*}(x, \alpha)$ are approximately constant inside the resonator:

$$
\left.v_{i, n}^{*}(x, \alpha)\right|_{\left(x_{i}^{-}, x_{i}^{+}\right)}=c_{i, n}+O\left(\delta^{(1-\gamma) / 2}\right)
$$

Define $c_{i}(t)=\mathrm{e}^{\mathrm{i} \omega t} \sum_{n=-\infty}^{\infty} c_{i, n} \mathrm{e}^{\mathrm{i} n \Omega t}$.

Definition [ACHR23]

For any smooth function $f: \mathbb{R} \rightarrow \mathbb{R}$, we define $I_{\partial D_{j}}[f]$ by $I_{\partial D_{j}}[f]:=\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{-}\left(x_{j}^{-}\right)-\left.\frac{\mathrm{d} f}{\mathrm{~d} x}\right|_{+}\left(x_{j}^{+}\right)$.

Numerical Solution and Approximation

Capacitance Matrix Approximation
Capacitance matrix: $C^{\alpha}:=\left(C_{i j}^{\alpha}\right)_{1 \leq i, j \leq N}$ (nearly tridiagonal) same as in the static case [FCA23].

Theorem [ACHR23, Theorem 5.3]

The quasifrequencies in the subwavelength regime are, at leading order, given by the quasifrequencies of the system of ordinary differential equations

$$
M^{\alpha}(t) \Psi(t)+\Psi^{\prime \prime}(t)=0,
$$

where $M^{\alpha}(t)=\frac{\delta \kappa_{\mathrm{r}}}{\rho_{\mathrm{r}}} W_{1}(t) C^{\alpha} W_{2}(t)+W_{3}(t)$ with W_{1}, W_{2} and W_{3} being diagonal matrices defined as

$$
\left(W_{1}\right)_{i i}=\frac{\sqrt{\kappa_{i}}}{\ell_{i}}, \quad\left(W_{2}\right)_{i i}=\sqrt{\kappa_{i}}, \quad\left(W_{3}\right)_{i i}=\frac{\sqrt{\kappa_{i}}}{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \frac{\kappa_{i}^{\prime}}{\kappa_{i}^{3 / 2}},
$$

for $i=1, \ldots, N$, with

$$
\Psi(t)=\left(\frac{c_{i}(t)}{\sqrt{\kappa_{i}(t)}}\right)_{i=1, \ldots, N}
$$

Numerical Solution and Approximation

Numerical Simulations

Observations:

$\kappa_{i}(t)=\frac{1}{1+\varepsilon_{\kappa, i} \cos \left(\Omega t+\phi_{\kappa, i}\right)}$

- k-gaps: undesirable α for which wave propagation is uncontrollable.
- ρ does not affect band structure at leading order.

Outline

1. Motivation

2. Problem Formulation
3. Numerical Solution and Approximation

4. Conclusion \& Outlook

Conclusion \& Outlook

- Solve the coupled Helmholtz equations exactly up to numerical errors.
- Capacitance matrix approximation to the subwavelength quasifrequencies in one dimension for a quasi-periodic, time-modulated problem.
- Time-modulating ρ does not affect the subwavelength quasifrequencies at leading order.
- Time-modulating κ leads to the formation of k-gaps.
- Next step: Formulate the scattering problem in the dilute regime and let $N \rightarrow \infty$ while the resonators have fixed size. Derive an approximation for $N=1$. Obtain an effective medium theory.

ETHzürich

References

[ACHR23] Ammarı Habib, Cao Jinghao, Hiltunen Erik Orvehed, and Rueff Liora, Transmission properties of time-dependent one-dimensional metamaterials, 2023, arXiv: 2301.09983 [math. AP] [3.
[AH21] Ammari Habib and Hiltunen Erik Orvehed, "Time-dependent high-contrast subwavelength resonators", in: J. Comput. Phys. 445 (2021), p. 110594, DOI: https://doi.org/10.1016/j.jcp.2021.110594 ■
[FCA23] Feppon Florian, Cheng Zijian, and Ammarı Habib, "Subwavelength Resonances in One-Dimensional High-Contrast Acoustic Media", in: SIAM Journal on Applied Mathematics 83.2 (2023), pp. 625-665, Doו: 10.1137/22M1503841 [T, eprint: https://doi.org/10.1137/22M1503841.

ETHzürich

Liora Rueff
PhD Student
liora.rueff@sam.math.ethz.ch
ETH Zurich
D-MATH, Seminar for Applied Mathematics
HG G 53.2
Rämistrasse 101
8092 Zurich, Switzerland

ETHzürich

Additional Material

Consider the solution $V_{i}^{\alpha}: \mathbb{R} \rightarrow \mathbb{R}$ of the following problem:

$$
\begin{cases}-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}} V_{i}^{\alpha}=0, & (0, L) \backslash D \\ V_{i}^{\alpha}(x)=\delta_{i j}, & x \in D_{j} \\ V_{i}^{\alpha}(x+m L)=\mathrm{e}^{\mathrm{i} \alpha m L} V_{i}^{\alpha}(x), & m \in \mathbb{Z}\end{cases}
$$

The corresponding capacitance matrix is defined by

$$
\begin{aligned}
C_{i j}^{\alpha}= & \left.\frac{\mathrm{d} V_{j}^{\alpha}}{\mathrm{d} x}\right|_{-}\left(x_{i}^{-}\right)-\left.\frac{\mathrm{d} V_{j}^{\alpha}}{\mathrm{d} x}\right|_{+}\left(x_{i}^{+}\right) \\
= & -\frac{1}{\ell_{(j-1) j}} \delta_{i(j-1)}+\left(\frac{1}{\ell_{(j-1) j}}+\frac{1}{\ell_{j(j+1)}}\right) \delta_{i j}-\frac{1}{\ell_{j(j+1)}} \delta_{i(j+1)} \\
& \quad-\delta_{1 j} \delta_{i N} \frac{\mathrm{e}^{-\mathrm{i} \alpha L}}{\ell_{N(N+1)}}-\delta_{1 i} \delta_{j N} \frac{\mathrm{e}^{\mathrm{i} \alpha L}}{\ell_{N(N+1)}}
\end{aligned}
$$

ETHzürich

Additional Material

or equivalently by

ETHzürich

Additional Material

For fixed $n \in \mathbb{Z}$, the Dirichlet-to-Neumann map $\mathcal{T}^{k^{n}, \alpha}$ admits the following explicit matrix representation: for any $k^{n} \in \mathbb{C} \backslash\left\{m \pi / \ell_{i(i+1)}: m \in \mathbb{Z} \backslash\{0\}, 1 \leq i \leq N-1\right\}, f \equiv\left(f_{i}^{ \pm}\right)_{1 \leq i \leq N}$, $\mathcal{T}^{k^{n}, \alpha}[f] \equiv\left(\mathcal{T}^{k^{n}, \alpha}[f]_{i}^{ \pm}\right)_{1 \leq i \leq N}$ is given by

$$
\left[\begin{array}{c}
\mathcal{T}^{k^{n}, \alpha}[f]_{1}^{-} \\
\mathcal{T}^{k^{n}, \alpha}[f]_{1}^{+} \\
\vdots \\
\mathcal{T}^{k^{n}, \alpha}[f]_{N}^{-} \\
\mathcal{T}^{k^{n}, \alpha}[f]_{N}^{+}
\end{array}\right]=\left[\begin{array}{ccccc}
-\frac{k^{n} \cos \left(k^{n} \ell_{N(N+1)}\right)}{\sin \left(k^{n} \ell_{N(N+1)}\right)} & A^{k^{n}}\left(\ell_{12}\right) & & & \\
& & \ddots & & \\
& & & A^{k^{n}\left(\ell_{(N-1) N}\right)} & \\
\frac{\left.k^{n} \ell_{N(N+1)}\right)}{} \mathrm{e}^{-\mathrm{i} \alpha L} \\
\frac{k^{n}}{\sin \left(k^{n} \ell_{N(N+1)}\right)} \mathrm{e}^{\mathrm{i} \alpha L} & & & & -\frac{k^{n} \cos \left(k^{n} \ell_{N(N+1)}\right.}{\sin \left(k^{n} \ell_{N(N+1)}\right)}
\end{array}\right]\left[\begin{array}{c}
f_{1}^{-} \\
f_{1}^{+} \\
\vdots \\
f_{N}^{-} \\
f_{N}^{+}
\end{array}\right],
$$

where for any $\ell \in \mathbb{R}, A^{k^{n}}(\ell)$ denotes the 2×2 symmetric matrix

$$
A^{k^{n}}(\ell):=\left[\begin{array}{cc}
-\frac{k^{n} \cos \left(k^{n} \ell\right)}{\sin \left(k^{n} \ell\right)} & \frac{k^{n}}{\operatorname{kin}^{n}\left(k^{n} \ell\right)} \\
\frac{k^{n}\left(n^{n}\right)}{\sin \left(k^{n} \ell\right)} & -\frac{k^{n} \cos \left({ }^{n} \ell\right)}{\sin \left(k^{n} \ell\right)}
\end{array}\right] .
$$

