

Adiabatic Lindbladian Evolution with Small Dissipators*

Alain Joye

* CMP '22

Mathematical Aspects of Condensed Matter Physics, ETH Zurich, 17–21/7/23

• State (density matrix): \mathscr{H} , Hilbert space $\rho \in \mathscr{T}(\mathscr{H})$ s.t. $\rho = \rho^* \ge 0$, tr $\rho = 1$

• State (density matrix): \mathscr{H} , Hilbert space $\rho \in \mathscr{T}(\mathscr{H})$ s.t. $\rho = \rho^* \ge 0$, tr $\rho = 1$

• Evolution of states: $H = H^* \in \mathscr{B}(\mathscr{H})$ Hamiltonian

$$\begin{cases} i\dot{\rho} = [H,\rho] \\ \rho|_{t=0} = \rho_0 \in \mathcal{T}(\mathcal{H}) \end{cases} \implies \rho(t) = e^{-itH}\rho_0 e^{itH} \in \mathcal{T}(\mathcal{H})$$

• State (density matrix): \mathscr{H} , Hilbert space $\rho \in \mathscr{T}(\mathscr{H})$ s.t. $\rho = \rho^* \ge 0$, tr $\rho = 1$

• Evolution of states: $H = H^* \in \mathcal{B}(\mathcal{H})$ Hamiltonian

$$\begin{cases} i\dot{\rho} = [H,\rho] \\ \rho|_{t=0} = \rho_0 \in \mathcal{T}(\mathcal{H}) \end{cases} \implies \rho(t) = e^{-itH}\rho_0 e^{itH} \in \mathcal{T}(\mathcal{H}) \end{cases}$$

• Open Quantum Systems: Effect of Environment

 \rightsquigarrow Approx. evolution eq. for $\rho \in \mathcal{T}(\mathcal{H})$

 $\dot{\rho} = \mathscr{L}(\rho), \, \rho(0) = \rho_0$ a state: $\rho_0 \ge 0, \, \operatorname{Tr} \rho_0 = 1.$

 $\dot{\rho} = \mathscr{L}(\rho), \, \rho(0) = \rho_0$ a state: $\rho_0 \ge 0, \, \operatorname{Tr} \rho_0 = 1.$

Lindblad, Gorini, Kossakowski, Sudarshan, '76

• CPTP norm continuous semigroup $(e^{t\mathscr{L}})_{t\geq 0}$

 $\dot{\rho} = \mathscr{L}(\rho), \, \rho(0) = \rho_0$ a state: $\rho_0 \ge 0, \, \operatorname{Tr} \rho_0 = 1.$

Lindblad, Gorini, Kossakowski, Sudarshan, '76

• CPTP norm continuous semigroup $(e^{t\mathscr{L}})_{t\geq 0}$

 $e^{t\mathscr{L}}: \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H})$ contraction on $\mathscr{T}(\mathscr{H})$

 $\dot{\rho} = \mathscr{L}(\rho), \, \rho(0) = \rho_0$ a state: $\rho_0 \ge 0, \, \operatorname{Tr} \rho_0 = 1.$

Lindblad, Gorini, Kossakowski, Sudarshan, '76

• CPTP norm continuous semigroup $(e^{t\mathcal{L}})_{t\geq 0}$

 $e^{t\mathscr{L}}:\mathscr{B}(\mathscr{H})\to\mathscr{B}(\mathscr{H})$ contraction on $\mathscr{T}(\mathscr{H})$

$$\mathcal{L}(\rho) = -i[H,\rho] + \underbrace{\sum_{j} \Gamma_{j} \rho \Gamma_{j}^{*} - \frac{1}{2} \{\Gamma_{j}^{*} \Gamma_{j},\rho\}}_{j}$$

dissipator $\mathcal{D}(\rho)$

$$H=H^*\in \mathcal{B}(\mathcal{H}), \ \Gamma_j\in \mathcal{B}(\mathcal{H})$$

s.t. $0 \in \sigma(\mathscr{L})$ & $\rho(t) = e^{t\mathscr{L}}\rho_0$ is a state

• Time dep. operators:

 $[0,1] \ni t \mapsto H(t) = H(t)^* \in \mathscr{B}(\mathscr{H}) \qquad \text{smooth}$ $[0,1] \ni t \mapsto \Gamma_j(t) \in \mathscr{B}(\mathscr{H}) \qquad \text{(const. is OK)}$

 $[0,1] \ni t \mapsto H(t) = H(t)^* \in \mathscr{B}(\mathscr{H}) \qquad \text{smooth}$ $[0,1] \ni t \mapsto \Gamma_j(t) \in \mathscr{B}(\mathscr{H}) \qquad \text{(const. is OK)}$

• Small dissipator: Coupling $0 \le g \to 0$ $\mathscr{L}_{t}^{[g]}(\cdot) = -i[H(t), \cdot] + g \sum_{j} \Gamma_{j}(t) \cdot \Gamma_{j}^{*}(t) - \frac{1}{2} \{\Gamma_{j}^{*}(t)\Gamma_{j}(t), \cdot\}$ $\equiv \mathscr{L}_{t}^{0}(\cdot) + g \mathscr{L}_{t}^{1}(\cdot)$

 $[0,1] \ni t \mapsto H(t) = H(t)^* \in \mathscr{B}(\mathscr{H}) \qquad \text{smooth}$ $[0,1] \ni t \mapsto \Gamma_j(t) \in \mathscr{B}(\mathscr{H}) \qquad \text{(const. is OK)}$

- Small dissipator: Coupling $0 \le g \to 0$ $\mathscr{L}_{t}^{[g]}(\cdot) = -i[H(t), \cdot] + g \sum_{j} \Gamma_{j}(t) \cdot \Gamma_{j}^{*}(t) - \frac{1}{2} \{\Gamma_{j}^{*}(t)\Gamma_{j}(t), \cdot\}$ $\equiv \mathscr{L}_{t}^{0}(\cdot) + g \mathscr{L}_{t}^{1}(\cdot)^{j}$
- Adiabatic regime: Time scale $1/\epsilon \to \infty$

$$\begin{cases} \boldsymbol{\epsilon}\dot{\boldsymbol{\rho}} = \mathcal{L}_t^{[\boldsymbol{g}]}(\boldsymbol{\rho}), & t \in [0,1] \\ \boldsymbol{\rho}|_{t=0} = \boldsymbol{\rho}_0 \in \mathcal{T}(\mathcal{H}) \end{cases} \quad \text{as} \quad (\boldsymbol{\epsilon}, \boldsymbol{g}) \to (0,0) \end{cases}$$

• Two-param. Evolution op.: as $(e,g) \rightarrow (0,0)$ $\begin{cases} \boldsymbol{\epsilon}\partial_{t}\mathcal{U}(t,s) = (\mathcal{L}_{t}^{0} + \boldsymbol{g}\mathcal{L}_{t}^{1})(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad \mathbf{S.t.} \quad \rho(t) = \mathcal{U}(t,0)(\rho_{0}) \end{cases}$

 $\mathcal{U}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H})),$ contraction on $\mathcal{T}(\mathcal{H})$

• Two-param. Evolution op.: as $(\epsilon, g) \to (0,0)$ $\begin{cases} \epsilon \partial_t \mathcal{U}(t,s) = (\mathcal{L}_t^0 + g \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases}$ s.t. $\rho(t) = \mathcal{U}(t,0)(\rho_0)$

 $\mathscr{U}(t,s) \in \mathscr{B}(\mathscr{B}(\mathscr{H})),$ contraction on $\mathscr{T}(\mathscr{H})$

• Simplified Spectral Assumptions: $H(t) = \sum_{1 \le j \le d} e_j(t)P_j(t)$ Unif. gap: $P_j(t) = P_j^2(t) = P_j^*(t)$ spect. proj.

• Two-param. Evolution op.: as $(\epsilon, g) \to (0,0)$ $\begin{cases} \epsilon \partial_t \mathcal{U}(t,s) = (\mathcal{L}_t^0 + g \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases}$ s.t. $\rho(t) = \mathcal{U}(t,0)(\rho_0)$

 $\mathscr{U}(t,s) \in \mathscr{B}(\mathscr{B}(\mathscr{H})),$ contraction on $\mathscr{T}(\mathscr{H})$

• Simplified Spectral Assumptions: $H(t) = \sum_{1 \le j \le d} e_j(t)P_j(t)$ Unif. gap: $P_j(t) = P_j^2(t) = P_i^*(t)$ spect. proj.

• Kato Operator:

 $\begin{cases} \partial_t W(t,s) = \sum_l P'_l(t) P_l(t) W(t,s), \\ W(s,s) = \mathbb{I}, \ 0 \le s, t \le 1 \end{cases}$

s.t. $W(t,0)P_l(0) = P_l(t)W(t,0) \ \forall l$

Transition probabilities

• Typical Question:

Let $\rho_j = P_j(0)\rho_j P_j(0)$ be a state and $\rho(t) = \mathcal{U}(t,0)(\rho_j)$

determine $\operatorname{tr}(P_k(t)\mathcal{U}(t,0)(\rho_j))$ as $(\epsilon, g) \to (0,0)$, for $k \neq j$

Transition probabilities

• Typical Question:

Let $\rho_j = P_j(0)\rho_j P_j(0)$ be a state and $\rho(t) = \mathcal{U}(t,0)(\rho_j)$ determine $\operatorname{tr}(P_k(t)\mathcal{U}(t,0)(\rho_j))$ as $(\epsilon, g) \to (0,0)$, for $k \neq j$

• Unperturbed Case: g = 0 $\begin{cases} \epsilon \partial_t \mathcal{U}^0(t, s) = -i[H(t), \mathcal{U}^0(t, s)], \\ \mathcal{U}^0(s, s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases}$ "Adiabatic Thm of QM"

Transition probabilities

• Typical Question:

Let $\rho_j = P_j(0)\rho_j P_j(0)$ be a state and $\rho(t) = \mathcal{U}(t,0)(\rho_j)$ determine $\operatorname{tr}(P_k(t)\mathcal{U}(t,0)(\rho_j))$ as $(\epsilon, g) \to (0,0)$, for $k \neq j$

• Unperturbed Case: g = 0 $\begin{cases} \epsilon \partial_t \mathcal{U}^0(t, s) = -i[H(t), \mathcal{U}^0(t, s)], \\ \mathcal{U}^0(s, s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases}$ "Adiabatic Thm of QM"

$$\operatorname{tr}\left(P_{k}(t)\mathcal{U}^{0}(t,0)(\rho_{j})\right) = \epsilon^{2}\operatorname{tr}\left(\frac{P_{k}(t)P_{k}'(t)\tilde{\rho}_{j}(t)P_{k}'(t)P_{k}(t)}{(e_{j}(t)-e_{k}(t))^{2}}\right) + O(\epsilon^{3})$$
 Kato '50

 $\tilde{\rho}_{j}(t) = W(t,0)\rho_{j}W(0,t) \equiv P_{j}(t)\tilde{\rho}_{j}(t)P_{j}(t)$

Perturbative Regime Thm: if $g \ll \epsilon \ll 1$ for $\rho_j = P_j(0)\rho_j P_j(0)$ a state

Perturbative Regime
Thm: if
$$g \ll \epsilon \ll 1$$
 for $\rho_j = P_j(0)\rho_jP_j(0)$ a state
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = \epsilon^2 \text{tr} \left(\frac{P_k(t)P'_k(t)\tilde{\rho}_j(t)P'_k(t)P_k(t)}{(e_j(t) - e_k(t))^2} \right)$
 $+g/\epsilon \sum_l \int_0^t \text{tr} (P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s)) \, ds + O\left(\epsilon^3 + g + (g/\epsilon)^2\right)$

Perturbative Regime
Thm: if
$$g \ll \epsilon \ll 1$$
 for $\rho_j = P_j(0)\rho_jP_j(0)$ a state
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = \epsilon^2 \text{tr} \left(\frac{P_k(t)P'_k(t)\tilde{\rho}_j(t)P'_k(t)P_k(t)}{(e_j(t) - e_k(t))^2} \right)$
 $+g/\epsilon \sum_l \int_0^t \text{tr} (P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s)) \, ds + O\left(\epsilon^3 + g + (g/\epsilon)^2\right)$
Remarks:

• $g = \epsilon^3$: both terms are $O(\epsilon^2)$, with error $O(\epsilon^3)$

Perturbative Regime
Thm: if
$$g \ll e \ll 1$$
 for $\rho_j = P_j(0)\rho_j P_j(0)$ a state
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = e^2$ tr $\left(\frac{P_k(t)P'_k(t)\tilde{\rho}_j(t)P'_k(t)P_k(t)}{(e_j(t) - e_k(t))^2}\right)$
 $+g/e\sum_l \int_0^t \text{tr } (P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s)) \, ds + O\left(e^3 + g + (g/e)^2\right)$
Remarks:

• $g = \epsilon^3$: both terms are $O(\epsilon^2)$, with error $O(\epsilon^3)$

• $\epsilon^3 \ll g \ll \epsilon$: $\operatorname{tr}(P_k(t)\mathcal{U}(t,0)(\rho_j)) = g/\epsilon \sum_l \int_0^t \operatorname{tr}(P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s))\,ds + O\left(\epsilon^2 + g + (g/\epsilon)^2\right)$

Perturbative Regime
Thm: if
$$g \ll \epsilon \ll 1$$
 for $\rho_j = P_j(0)\rho_jP_j(0)$ a state
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = e^2$ tr $\left(\frac{P_k(t)P'_k(t)\tilde{\rho}_j(t)P'_k(t)P_k(t)}{(e_j(t) - e_k(t))^2}\right)$
 $+g/\epsilon \sum_l \int_0^t \text{tr} (P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s)) \, ds + O\left(e^3 + g + (g/\epsilon)^2\right)$
Remarks:

• $g = \epsilon^3$: both terms are $O(\epsilon^2)$, with error $O(\epsilon^3)$

•
$$e^3 \ll g \ll e$$
:
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = g/e \sum_l \int_0^t \text{tr} (P_k(s)\Gamma_l(s)\tilde{\rho}_j(s)\Gamma_l^*(s)P_k(s)) \, ds + O\left(e^2 + g + (g/e)^2\right)$
• $g \ll e^3$: tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = e^2$ tr $\left(\frac{P_k(t)P_k'(t)\tilde{\rho}_j(t)P_k'(t)P_k(t)}{(e_j(t) - e_k(t))^2}\right) + o(e^2)$

€ ≪ *g* ≪ 1

Hyp1:

 $\sigma(H(t))$ simple, distinct Bohr freq. $\{e_j(t) - e_k(t)\}_{j \neq k}$

• $\epsilon \ll g \ll 1$

Hyp1:

 $\sigma(H(t))$ simple, distinct Bohr freq. $\{e_j(t) - e_k(t)\}_{j \neq k}$

 $\operatorname{Ker} \mathscr{L}_t^0(\,\cdot\,) = \operatorname{Ker} \left[H(t), \,\cdot\, \right] = \operatorname{Span} \left\{ P_j(t), \, 1 \le j \le d \right\}$

• $\epsilon \ll g \ll 1$

Hyp1:

 $\sigma(H(t))$ simple, distinct Bohr freq. $\{e_j(t) - e_k(t)\}_{j \neq k}$

 $\operatorname{Ker} \mathscr{L}_t^0(\,\cdot\,) = \operatorname{Ker} \left[H(t), \,\cdot\, \right] = \operatorname{Span} \left\{ P_j(t), \, 1 \le j \le d \right\}$

Let $\mathscr{P}_0(t): \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H})$ spect. proj. onto $\operatorname{Ker} \mathscr{L}_t^0 \subset \mathscr{B}(\mathscr{H})$ $\mathscr{P}_0(t)(A) = \sum_{1 \le j \le d} P_j(t)AP_j(t)$

• $\epsilon \ll g \ll 1$

Hyp1:

 $\sigma(H(t))$ simple, distinct Bohr freq. $\{e_j(t) - e_k(t)\}_{j \neq k}$

 $\operatorname{Ker} \mathscr{L}_t^0(\,\cdot\,) = \operatorname{Ker} \left[H(t), \,\cdot\, \right] = \operatorname{Span} \left\{ P_j(t), \, 1 \le j \le d \right\}$

Let $\mathscr{P}_0(t): \mathscr{B}(\mathscr{H}) \to \mathscr{B}(\mathscr{H})$ spect. proj. onto $\operatorname{Ker} \mathscr{L}_t^0 \subset \mathscr{B}(\mathscr{H})$ $\mathscr{P}_0(t)(A) = \sum_{1 \le j \le d} P_j(t)AP_j(t)$

• Kato Operator: on $\mathcal{B}(\mathcal{H})$

 $\begin{cases} \partial_t \mathcal{W}_0(t,s) = [\mathcal{P}'_0(t), \mathcal{P}_0(t)] \mathcal{W}_0(t,s), \\ \mathcal{W}_0(s,s) = \mathbb{I}, \ 0 \le s, t \le 1 \end{cases} \quad \mathbf{S.t.} \quad \mathcal{W}_0(t,0) \mathcal{P}_0(0) = \mathcal{P}_0(t) \mathcal{W}_0(t,0) \end{cases}$

• Perturbation of $0 \in \sigma(\mathscr{L}_t^0)$ by $g\mathscr{L}_t^1$ governed by $\widetilde{\mathscr{L}}_t^1 := \mathscr{P}_0(t)\mathscr{L}_t^1\mathscr{P}_0(t)$

- Perturbation of $0 \in \sigma(\mathscr{L}_t^0)$ by $g\mathscr{L}_t^1$ governed by $\widetilde{\mathscr{L}}_t^1 := \mathscr{P}_0(t)\mathscr{L}_t^1\mathscr{P}_0(t)$
 - Hyp2: maximal splitting

$$\sigma(\widetilde{\mathscr{L}}_t^1|_{\operatorname{Ker}\mathscr{L}_t^0}) \quad \text{is simple} \quad \forall t \in [0,1]$$

- Perturbation of $0 \in \sigma(\mathscr{L}_t^0)$ by $g\mathscr{L}_t^1$ $\sigma(\mathscr{L}_t^{[g]})$ governed by $\widetilde{\mathscr{L}}_t^1 := \mathscr{P}_0(t)\mathscr{L}_t^1\mathscr{P}_0(t)$
 - Hyp2: maximal splitting $\widetilde{\sigma(\mathscr{Z}_t^1|_{\operatorname{Ker}\mathscr{L}_t^0})} \text{ is simple } \forall t \in [0,1]$

 $\exists ! \text{ state } \tilde{\nu}_0(t) = \mathscr{P}_0(t)\tilde{\nu}_0(t) \in \mathscr{B}(\mathscr{H}) \text{ s.t. } \widetilde{\mathscr{L}}_t^1(\tilde{\nu}_0(t)) = 0$

Hyp2:

Thm:

 $\mathcal{U}(t,0)(P_i(0)) = \tilde{\nu}_0(t) + O(g^2/\epsilon + \epsilon/g)$ • Actually:

Hyp2:

Thm:

• $g \ll \epsilon^{1/2} \ll 1$

Define the Reduced Dynamics: $\Psi_{\delta}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$

Define the Reduced Dynamics: $\Psi_{\delta}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$

$$\begin{cases} \delta \partial_t \Psi_{\delta}(t,s) = \mathcal{W}_0(0,t) \widetilde{\mathscr{L}}_t^1 \mathcal{W}_0(t,0) \Psi_{\delta}(t,s), \\ \Psi_{\delta}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad \text{where} \quad \delta > 0 \end{cases}$$

Define the Reduced Dynamics: $\Psi_{\delta}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$

$$\begin{cases} \delta \partial_t \Psi_{\delta}(t,s) = \mathcal{W}_0(0,t) \widetilde{\mathscr{L}}_t^1 \mathcal{W}_0(t,0) \Psi_{\delta}(t,s), \\ \Psi_{\delta}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad \text{where} \quad \delta > 0 \end{cases}$$

Prop: $[\Psi_{\delta}(t,s), \mathcal{P}_{0}(0)] \equiv 0$,

Define the Reduced Dynamics: $\Psi_{\delta}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$

$$\begin{cases} \delta \partial_t \Psi_{\delta}(t,s) = \mathscr{W}_0(0,t) \widetilde{\mathscr{L}}_t^1 \mathscr{W}_0(t,0) \Psi_{\delta}(t,s), \\ \Psi_{\delta}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad \text{where} \quad \delta > 0 \end{cases}$$

Prop: $[\Psi_{\delta}(t,s), \mathcal{P}_{0}(0)] \equiv 0$, $\Psi_{\delta}(t,0)|_{\mathcal{P}_{0}(0)\mathcal{B}(\mathcal{H})}$ is CPTP

Define the Reduced Dynamics: $\Psi_{\delta}(t,s) \in \mathcal{B}(\mathcal{B}(\mathcal{H}))$

$$\begin{cases} \delta \partial_t \Psi_{\delta}(t,s) = \mathscr{W}_0(0,t) \widetilde{\mathscr{L}}_t^1 \mathscr{W}_0(t,0) \Psi_{\delta}(t,s), \\ \Psi_{\delta}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad \text{where} \quad \delta > 0 \end{cases}$$

Prop: $[\Psi_{\delta}(t,s), \mathcal{P}_{0}(0)] \equiv 0$, $\Psi_{\delta}(t,0)|_{\mathcal{P}_{0}(0)\mathcal{B}(\mathcal{H})}$ is CPTP

Thm: if $g \ll \epsilon^{1/2} \ll 1$ $\mathscr{U}(t,0)\mathscr{P}_0(0) = \mathscr{W}_0(t,0)\Psi_{\epsilon/g}(t,0)\mathscr{P}_0(0) + O(\epsilon + g + g^2/\epsilon)$

Rem: dim $P_j(t)$ arbitrary

ETH Zurich, 17-21/7/23

Thm: if
$$g \ll e^{1/2} \ll 1$$
 for $\rho_j = P_j(0)\rho_j P_j(0)$ a state

 $\operatorname{tr}\left(P_{k}(t)\mathcal{U}(t,0)(\rho_{j})\right) = \operatorname{tr}\left(P_{k}(0)\Psi_{\epsilon/g}(t,0)(\rho_{j})\right) + O(\epsilon + g + g^{2}/\epsilon)$

Thm: if
$$g \ll e^{1/2} \ll 1$$
 for $\rho_j = P_j(0)\rho_j P_j(0)$ a state

 $\operatorname{tr}\left(P_{k}(t)\mathcal{U}(t,0)(\rho_{j})\right) = \operatorname{tr}\left(P_{k}(0)\Psi_{\epsilon/g}(t,0)(\rho_{j})\right) + O(\epsilon + g + g^{2}/\epsilon)$

Remarks:

•
$$g = \epsilon$$
: $\Psi_{\epsilon/g}(t,0) = \Psi_1(t,0)$ s.t.
tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = \text{tr} (P_k(0)\Psi_1(t,0)(\rho_j)) + O(\epsilon)$

Thm: if
$$g \ll e^{1/2} \ll 1$$
 for $\rho_j = P_j(0)\rho_j P_j(0)$ a state

 $\operatorname{tr}\left(P_{k}(t)\mathcal{U}(t,0)(\rho_{j})\right) = \operatorname{tr}\left(P_{k}(0)\Psi_{\epsilon/g}(t,0)(\rho_{j})\right) + O(\epsilon + g + g^{2}/\epsilon)$

Remarks:

• $g = \epsilon$: $\Psi_{\epsilon/g}(t,0) = \Psi_1(t,0)$ s.t. $\operatorname{tr}(P_k(t)\mathcal{U}(t,0)(\rho_j)) = \operatorname{tr}(P_k(0)\Psi_1(t,0)(\rho_j)) + O(\epsilon)$ • $\Psi_{\epsilon/g}(t,0)$ "recovers" $\begin{cases} \text{perturbative} & g \ll \epsilon \ll 1 \\ \text{slow drive} & \epsilon \ll g \ll \epsilon^{1/2} \end{cases}$ regimes

e^{1/2}

Thm: if
$$g \ll \epsilon^{1/2} \ll 1$$
 for $\rho_j = P_j(0)\rho_j P_j(0)$ a state

 $\operatorname{tr}\left(P_{k}(t)\mathcal{U}(t,0)(\rho_{j})\right) = \operatorname{tr}\left(P_{k}(0)\Psi_{\epsilon/g}(t,0)(\rho_{j})\right) + O(\epsilon + g + g^{2}/\epsilon)$

Remarks:

• $g = \epsilon$: $\Psi_{\epsilon/g}(t,0) = \Psi_1(t,0)$ s.t. tr $(P_k(t)\mathcal{U}(t,0)(\rho_j)) = \text{tr }(P_k(0)\Psi_1(t,0)(\rho_j)) + O(\epsilon)$ • $\Psi_{\epsilon/g}(t,0)$ "recovers" $\begin{cases} \text{perturbative} & g \ll \epsilon \ll 1 \\ \text{slow drive} & \epsilon \ll g \ll \epsilon^{1/2} \end{cases}$ regimes

• Natural Markov Process: if $\text{Dim } P_j(t) \equiv 1$ $\mathbb{P}(X_t = k | X_0 = j) = \text{tr}(P_k(0)\Psi_{e/g}(t,0)(P_j(0)))$

ETH Zurich, 17-21/7/23

<u>~</u>1/2

• Approximation of the evolution op. $\mathcal{U}(t,s)$

$$\begin{cases} \boldsymbol{\epsilon} \partial_t \mathcal{U}(t,s) = (\mathcal{L}_t^0 + \boldsymbol{g} \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad (\boldsymbol{\epsilon}, \boldsymbol{g}) \to (0,0) \end{cases}$$

• Approximation of the evolution op. $\mathcal{U}(t,s)$

$$\begin{cases} \boldsymbol{\epsilon} \partial_t \mathcal{U}(t,s) = (\mathcal{L}_t^0 + \boldsymbol{g} \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases} \quad (\boldsymbol{\epsilon}, \boldsymbol{g}) \to (0,0) \end{cases}$$

• Dyson series in the perturbative regime $g \ll \epsilon \ll 1$

• Approximation of the evolution op. $\mathcal{U}(t,s)$

$$\begin{aligned} \boldsymbol{\epsilon} \partial_t \mathcal{U}(t,s) &= (\mathcal{L}_t^0 + \boldsymbol{g} \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) &= \mathbb{I}, \ 0 \le s \le t \le 1 \end{aligned}$$
 $(\boldsymbol{\epsilon}, \boldsymbol{g}) \to (0,0)$

• Dyson series in the perturbative regime $g \ll \epsilon \ll 1$

• Integration by parts in the slow drive regime $\epsilon \ll g \ll 1$

• Approximation of the evolution op. $\mathcal{U}(t,s)$

$$\begin{cases} \boldsymbol{\epsilon} \partial_t \mathcal{U}(t,s) = (\mathcal{L}_t^0 + \boldsymbol{g} \mathcal{L}_t^1)(\mathcal{U}(t,s)), \\ \mathcal{U}(s,s) = \mathbb{I}, \ 0 \le s \le t \le 1 \end{cases}$$
 $(\boldsymbol{\epsilon}, \boldsymbol{g}) \to (0,0)$

• Dyson series in the perturbative regime $g \ll \epsilon \ll 1$

• Integration by parts in the slow drive regime $\epsilon \ll g \ll 1$

• Perturbation theory in the transition regime $g \ll \epsilon^{1/2}$

Concluding remarks

• Literature:

Adiabatics for open quantum systems

Davies-Spohn '78, Abou Salem-Fröhlich '05, J. '07, Teufel-Wachsmuth '12, Benoist-Fraas-Jaksic-Pillet '17, J.-Merkli-Spehner '20, Jaksic-Pillet-Tauber `22, J.-Merkli '23,...

Adiabatics for dephasing Lindbladians

Avron, Fraas, Graf, Grech '11, '12, Fraas, Hänggli '17,...

Perturbative results for Lindbladian dynamics

Ballestros, Crowford, Fraas, Fröhlich, Schubnel '21, Haack-J. '21, Benoist, Bernardin, Chétrite, Chhaibi, Najnudel, Pellegrini '21,...

Concluding remarks

• Literature:

Adiabatics for open quantum systems

Davies-Spohn '78, Abou Salem-Fröhlich '05, J. '07, Teufel-Wachsmuth '12, Benoist-Fraas-Jaksic-Pillet '17, J.-Merkli-Spehner '20, Jaksic-Pillet-Tauber `22, J.-Merkli '23,...

Adiabatics for dephasing Lindbladians

Avron, Fraas, Graf, Grech '11, '12, Fraas, Hänggli '17,...

Perturbative results for Lindbladian dynamics

Ballestros, Crowford, Fraas, Fröhlich, Schubnel '21, Haack-J. '21, Benoist, Bernardin, Chétrite, Chhaibi, Najnudel, Pellegrini '21,...

Thank you!

• Generator: $\mathscr{G}_t := \mathscr{W}_0(0,t)\mathscr{P}_0(t)\mathscr{L}_t^1\mathscr{P}_0(t)\mathscr{W}_0(t,0)$ $\{P_1(0), P_2(0), \dots, P_d(0)\}$ basis of $\mathscr{P}_0(0)\mathscr{B}(\mathscr{H})$ where $P_j(t) = |\varphi_j(t)\rangle\langle\varphi_j(t)|$ s.t. $H(t)\varphi_j(t) = e_j(t)\varphi_j(t)$

$$\sum_{l} \begin{bmatrix} |\langle \varphi_{1} | \Gamma_{l} \varphi_{1} \rangle|^{2} - ||\Gamma_{l} \varphi_{1} ||^{2} & |\langle \varphi_{1} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{1} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{2} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{2} | \Gamma_{l} \varphi_{2} \rangle|^{2} - ||\Gamma_{l} \varphi_{2} ||^{2} & |\langle \varphi_{2} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ \end{bmatrix}$$

Corollary:

 $\Psi_{\delta}(t,0)|_{\text{Span}\{P_1(0),\ldots,P_d(0)\}}$ transp. of a stochastic matrix

$$\sum_{l} \begin{bmatrix} |\langle \varphi_{1} | \Gamma_{l} \varphi_{1} \rangle|^{2} - ||\Gamma_{l} \varphi_{1} ||^{2} & |\langle \varphi_{1} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{1} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{2} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{2} | \Gamma_{l} \varphi_{2} \rangle|^{2} - ||\Gamma_{l} \varphi_{2} ||^{2} & |\langle \varphi_{2} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} - ||\Gamma_{l} \varphi_{d} ||^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{1} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} \\ |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{2} \rangle|^{2} & |\langle \varphi_{d} | \Gamma_{l} \varphi_{d} \rangle|^{2} - ||\Gamma_{l} \varphi_{d} ||^{2} \end{pmatrix}$$

Corollary:

 $\Psi_{\delta}(t,0)|_{\text{Span}\{P_1(0),\ldots,P_d(0)\}}$ transp. of a stochastic matrix

• Cont. Markov Process:

 $\begin{array}{ll} (X_t)_{t \geq 0} & \text{on classical state space} & \{P_1(0), \cdots, P_d(0)\} \equiv \{1, 2, \dots, d\} \\ \text{s.t.} & \mathbb{P}(X_t = k \,|\, X_0 = j) = \mathrm{tr} \big(P_k(0) \Psi_{\delta}(t, 0) (P_j(0)) \big) \end{array}$

Example for
$$d = 2$$

Assume $\sum_{l} |\langle \varphi_1(t) | \Gamma_l(t) \varphi_2(t) \rangle|^2 = \sum_{l} |\langle \varphi_2(t) | \Gamma_l(t) \varphi_1(t) \rangle|^2 := \gamma(t)$
 $\Rightarrow \delta \partial_t \Psi_{\delta}(t,s) = \gamma(t) \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Psi_{\delta}(t,s)$

Example for
$$d = 2$$

Assume
$$\sum_{l} |\langle \varphi_{1}(t) | \Gamma_{l}(t) \varphi_{2}(t) \rangle|^{2} = \sum_{l} |\langle \varphi_{2}(t) | \Gamma_{l}(t) \varphi_{1}(t) \rangle|^{2} := \gamma(t)$$

$$\Rightarrow \delta \partial_{t} \Psi_{\delta}(t,s) = \gamma(t) \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Psi_{\delta}(t,s)$$

$$\Psi_{\delta}(t,0) |_{\text{Span}\{P_{1}(0),P_{2}(0)\}} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{e^{-\frac{2}{\delta} \int_{0}^{t} \gamma(s) ds}}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Example for
$$d = 2$$

Assume $\sum_{l} |\langle \varphi_{1}(t) | \Gamma_{l}(t)\varphi_{2}(t) \rangle|^{2} = \sum_{l} |\langle \varphi_{2}(t) | \Gamma_{l}(t)\varphi_{1}(t) \rangle|^{2} := \gamma(t)$
 $\Rightarrow \delta \partial_{t} \Psi_{\delta}(t,s) = \gamma(t) \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Psi_{\delta}(t,s)$
 $\Psi_{\delta}(t,0) |_{\text{Span}\{P_{1}(0),P_{2}(0)\}} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{e^{-\frac{2}{\delta} \int_{0}^{t} \gamma(s) ds}}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$
For $\rho_{0} = P_{1}(0)$
 $\mathcal{U}(t,0)(P_{1}(0)) = r_{1}(t)P_{1}(t) + r_{2}(t)P_{2}(t) + O(\epsilon + g + g^{2}/\epsilon)$ if $g \ll \epsilon^{1/2} \ll 1$

where $r_1(t) = (1 + e^{-\frac{2g}{\epsilon} \int_0^t \gamma(s) ds})/2$, $r_2(t) = (1 - e^{-\frac{2g}{\epsilon} \int_0^t \gamma(s) ds})/2$

$$\begin{aligned} & \underset{\text{Assume }}{\sum_{l}} \quad \text{Example for } d = 2 \\ & \underset{l}{\text{Assume }} \sum_{l} |\langle \varphi_{1}(t) | \Gamma_{l}(t)\varphi_{2}(t) \rangle|^{2} = \sum_{l} |\langle \varphi_{2}(t) | \Gamma_{l}(t)\varphi_{1}(t) \rangle|^{2} := \gamma(t) \\ & \Rightarrow \quad \delta \partial_{t} \Psi_{\delta}(t,s) = \gamma(t) \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \Psi_{\delta}(t,s) \\ & \Psi_{\delta}(t,0) |_{\text{Span}\{P_{1}(0),P_{2}(0)\}} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \frac{e^{-\frac{2}{\sigma}\int_{0}^{t}\gamma(s)ds}}{2} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \end{aligned} \\ & \text{For } \rho_{0} = P_{1}(0) \\ & \mathcal{U}(t,0)(P_{1}(0)) = r_{1}(t)P_{1}(t) + r_{2}(t)P_{2}(t) + O(\epsilon + g + g^{2}/\epsilon) \quad \text{if } g \ll \epsilon^{1/2} \ll 1 \\ & \text{where } r_{1}(t) = (1 + e^{-\frac{2g}{c}\int_{0}^{t}\gamma(s)ds})/2, \quad r_{2}(t) = (1 - e^{-\frac{2g}{c}\int_{0}^{t}\gamma(s)ds})/2 \\ & \Rightarrow \\ & \mathcal{U}(t,0)(P_{1}(0)) = \begin{cases} P_{1}(t) - g/\epsilon \int_{0}^{t}\gamma(s)ds((P_{1}(t) - P_{2}(t)) + O(\epsilon + g^{2}/\epsilon^{2}), \quad g \ll \epsilon \\ & \frac{1}{2}(P_{1}(t) + P_{2}(t)) + O(g^{2}/\epsilon^{2} + (\epsilon/g)^{\infty}), \quad \epsilon \ll g \ll \epsilon^{1/2} \end{aligned}$$