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Mode-shell correspondance in short

Topological property of 
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the modes in phase space

Phase space (x,k)

position + wavenumber → Wigner-Weyl transform
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𝑥′
2

𝐻 𝑥 −
𝑥′
2 𝑒−𝑖𝑘𝑥′
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The chiral number of zero modes

We restrict to the case of hamiltonian with 

chiral symmetry

𝐻 = 0 ℎ†

ℎ 0
 መ𝐶 =

1 0
0 −1

 መ𝐶 𝐻 + 𝐻 መ𝐶 = 0

A topological invariant: 

the chiral number of zero modes 𝐼𝑚𝑜𝑑𝑒𝑠 = 𝑑𝑖𝑚 ker( ℎ) − 𝑑𝑖𝑚 ker ℎ† = 𝐼𝑛𝑑( ℎ)

Zero modes of positive chirality

Zero modes of negative chirality

Zero modes has positive/negative chirality



The chiral number of zero modes

𝐼𝑚𝑜𝑑𝑒𝑠 = 𝑇𝑟( መ𝐶 1 − 𝐻𝐹
2 መ𝜃𝛤)

Generalisation of the index:

• More robust in finite system

• Coincide for infinite system

• Selection in phase space
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flattening of the 
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Selection in phase 

space by a cut-off

መ𝜃𝛤 = 𝑒
−

𝑥2

𝛤2 𝛤 → ∞



The cut-off can be anything

𝑘

𝜃

𝑥

𝜋/𝑎

−𝜋/𝑎

shell

𝑘

𝜃

𝑥𝐿

2
−

𝐿

2

shell

𝑥

𝑦

𝑘𝑥 𝑘𝑦

𝜃 shell

𝑥

𝑘

𝜃 shell

Shell: Transition region of the cut-off.

𝐼𝑚𝑜𝑑𝑒𝑠 = 𝑇𝑟( መ𝐶 1 − 𝐻𝐹
2 መ𝜃𝛤)

መ𝜃𝛤 = 𝑒
−

𝑥2

𝛤2 መ𝜃𝛤 = 𝑒
𝜕𝑥

2

𝛤2 ≈ 𝑒
−

𝑘2

𝛤2

መ𝜃𝛤 = 𝑒
−𝑥2+𝜕𝑥

2

𝛤2

 ≈ 𝑒
−

𝑥2+𝑘2

𝛤2

መ𝜃𝛤 = 𝑒
−

𝑥2+𝑦2

𝛤2



The mode-shell correspondance

Up to a rearrangement of the terms, the index 

can be re-expressed as a quantity on the shell  

𝐼𝑚𝑜𝑑𝑒𝑠 = 𝑇𝑟 መ𝐶 1 − 𝐻𝐹
2 መ𝜃𝛤   

            = 𝑇𝑟 መ𝐶 መ𝜃𝛤 +
1

2
𝑇𝑟( መ𝐶 𝐻𝐹[ መ𝜃𝛤, 𝐻𝐹]) ≝ 𝐼𝑠ℎ𝑒𝑙𝑙

መ𝜃 ≈ 1

መ𝜃 ≈ 0

[ መ𝜃, መ𝐴] ≈ 0

[ መ𝜃, መ𝐴] ≈ 0[ መ𝜃, መ𝐴] ≠ 0

Supported 

on the shell

summed chirality of site/d.o.f 

weighted by the cut-off. Often zero



𝜆∈𝑑.𝑜.𝑓

𝐶𝜆 𝜆 መ𝜃𝛤 𝜆



Semi-classical approximation

𝐼𝑠ℎ𝑒𝑙𝑙
𝑠𝑐 𝑙𝑖𝑚

2 𝐷 !

2𝐷 ! (2𝑖𝜋)𝐷 න
𝑠ℎ𝑒𝑙𝑙

𝑇𝑟𝑖𝑛𝑡((𝑈†𝑑𝑈)2𝐷−1) =  𝑤2𝐷−1

Semi-classical approximation:
𝑊 መ𝐴 𝐵 𝑥, 𝑘 ≈ 𝐴 𝑥, 𝑘 𝐵(𝑥, 𝑘)

𝑊 [ 𝐴, 𝐵] 𝑥, 𝑘 ≈ 𝐴 𝑥, 𝑘 , 𝐵(𝑥, 𝑘)

When 𝐻(𝑥, 𝑘) varies slowly in 𝑥 or in 𝑘 in the shell

→ shell invariant reduced to a (higher) winding number 

𝜃 shell

Where 𝑈 is defined as 𝐻𝐹(𝑥, 𝑘) = 0 𝑈†

𝑈 0
(𝑥, 𝑘)



Bulk-edge correspondance
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A B A B A B A B A B

Dimer (SSH) model
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Bulk-edge correspondance

𝜋

𝐿

𝑘

−𝜋

𝑥

𝛤0
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Bulk-edge correspondance

𝜋

𝐿

𝑘

−𝜋

𝑥

𝛤0

A B A B A B A B A B

Dimer (SSH) model

Zero-mode localised 

in position

Equal to the winding 

in the bulk

Zero mode of 

opposite chirality in 

finite lattice

𝑤 = 1



Low-high wavenumber correspondance

𝐻 =
0 𝑉 𝑥 + 𝜀𝑐(𝑥)𝜕𝑥

𝑉 𝑥 − 𝜀𝜕𝑥  𝑐(𝑥) 0

Wave system with a periodic local wave velocity 

𝑐 𝑥 = sin 𝑥 and potential 𝑉 𝑥 =  cos 𝑥

𝜋

𝑥

−𝜋

𝑘

𝛤

−𝛤



Low-high wavenumber correspondance

𝐻 =
0 𝑉 𝑥 + 𝜀𝑐(𝑥)𝜕𝑥

𝑉 𝑥 − 𝜀𝜕𝑥  𝑐(𝑥) 0

Wave system with a periodic local wave velocity 

𝑐 𝑥 = sin 𝑥 and potential 𝑉 𝑥 =  cos 𝑥

𝜋

𝑥

−𝜋

𝑘

𝛤

−𝛤

Zero modes of positive 

chirality at low-wave number



Low-high wavenumber correspondance

𝐻 =
0 𝑉 𝑥 + 𝜀𝑐(𝑥)𝜕𝑥

𝑉 𝑥 − 𝜀𝜕𝑥  𝑐(𝑥) 0

Wave system with a periodic local wave velocity 

𝑐 𝑥 = sin 𝑥 and potential 𝑉 𝑥 =  cos 𝑥

𝜋

𝑥

−𝜋

𝑘

𝛤

−𝛤

Zero modes of positive 

chirality at low-wave number

𝐼 = 𝑤+ − 𝑤− = 2

𝑤− = −1

𝑤+ = 1



Low-high wavenumber correspondance

𝐻 =
0 𝑉 𝑥 + 𝜀𝑐(𝑥)𝜕𝑥

𝑉 𝑥 − 𝜀𝜕𝑥  𝑐(𝑥) 0

Wave system with a periodic local wave velocity 

𝑐 𝑥 = sin 𝑥 and potential 𝑉 𝑥 =  cos 𝑥

𝜋

𝜋/𝑎

−𝜋/𝑎

𝑥

−𝜋

𝑘

𝛤

−𝛤

Zero modes of positive 

chirality at low-wave number

𝐼 = 𝑤+ − 𝑤− = 2

Zero modes of 

opposite chirality

Protection from 

separation in 

wavenumber

𝑤− = −1

𝑤+ = 1



Mixed correspondance in position/wavenumber

𝐻 =
0 𝑥 + 𝜕𝑥

𝑥 − 𝜕𝑥  0

Jackiw-Rebbi model

→ Continuous system with constant local 

wave velocity but unbounded in position

𝑥

𝑘

𝛤

𝛤



Mixed correspondance in position/wavenumber

𝐻 =
0 𝑥 + 𝜕𝑥

𝑥 − 𝜕𝑥  0

Jackiw-Rebbi model

→ Continuous system with constant local 

wave velocity but unbounded in position

𝑥

𝑘

𝛤

𝛤

zero mode localised in 

position and wavenumber



Mixed correspondance in position/wavenumber

𝐻 =
0 𝑥 + 𝜕𝑥

𝑥 − 𝜕𝑥  0

Jackiw-Rebbi model

→ Continuous system with constant local 

wave velocity but unbounded in position

𝑥

𝑘

𝛤

𝛤

zero mode localised in 

position and wavenumber

Equal to the winding on 

the phase space circle

𝑤 = 1



Mixed correspondance in position/wavenumber

𝐻 =
0 𝑥 + 𝜕𝑥

𝑥 − 𝜕𝑥  0

Jackiw-Rebbi model

→ Continuous system with constant local 

wave velocity but unbounded in position

𝐿/2

𝜋/𝑎

−𝜋/𝑎

𝑥

−𝐿/2

𝑘

𝛤

𝛤

zero mode localised in 

position and wavenumber

Equal to the winding on 

the phase space circle

In finite approximation of the  system, zero 

modes appear elsewhere in phase space

𝑤 = 1



Mixed correspondance in position/wavenumber

𝐻 =
0 𝑥 + 𝜕𝑥

𝑥 − 𝜕𝑥  0

Jackiw-Rebbi model

→ Continuous system with constant local 

wave velocity but unbounded in position

𝐿/2

𝜋/𝑎

−𝜋/𝑎

𝑥

−𝐿/2

𝑘

𝛤

𝛤𝐿/2

𝜋/𝑎

−𝜋/𝑎

𝑥

−𝐿/2

𝑘

𝛤

𝛤 𝐿/2

𝜋/𝑎

−𝜋/𝑎

𝑥

−𝐿/2

𝑘

𝛤

𝛤

zero mode localised in 

position and wavenumber

Equal to the winding on 

the phase space circle

In finite approximation of the  system, zero 

modes appear elsewhere in phase space

𝑤 = 1



A higher-order correspondance

𝐻 =

0
𝑥 − 𝜕𝑥 𝑦 − 𝜕𝑦

−(𝑦 + 𝜕𝑦) 𝑥 + 𝜕𝑥

𝑥 + 𝜕𝑥 −(𝑦 − 𝜕𝑦)

𝑦 + 𝜕𝑦 𝑥 − 𝜕𝑥
0

𝑥

𝑦
𝛤

𝛤 𝑘𝑥

𝑘𝑦𝛤

𝛤
𝑥

𝑦

𝑘𝑥

𝑘𝑦

2D model: zero-mode localised in position 

and wavenumber in 4D phase space

shell



A higher-order correspondance

𝐻 =

0
𝑥 − 𝜕𝑥 𝑦 − 𝜕𝑦

−(𝑦 + 𝜕𝑦) 𝑥 + 𝜕𝑥

𝑥 + 𝜕𝑥 −(𝑦 − 𝜕𝑦)

𝑦 + 𝜕𝑦 𝑥 − 𝜕𝑥
0

𝑥

𝑦
𝛤

𝛤 𝑘𝑥

𝑘𝑦𝛤

𝛤
𝑥

𝑦

𝑘𝑥

𝑘𝑦

2D model: zero-mode localised in position 

and wavenumber in 4D phase space

𝑈 𝑥, 𝑘 =
𝑥 − 𝑖𝑘𝑥 𝑦 − 𝑖𝑘𝑦

𝑦 + 𝑖𝑘𝑦 𝑥 + 𝑖𝑘𝑥
 

𝑊2𝐷−1 =
−1

24𝜋2 න
𝑆3

𝑇𝑟𝑖𝑛𝑡((𝑈†𝑑𝑈)3)

shell

→higher winding number on 

the 3D sphere in phase space



Conclusion

I𝑚𝑜𝑑𝑒𝑠 = Tr( መ𝐶(1 − 𝐻𝐹
2) መ𝜃𝛤) 𝐼𝑛𝑑 ℎ = 𝑑𝑖𝑚 𝐾𝑒𝑟 ℎ − 𝑑𝑖𝑚 𝐾𝑒𝑟( ℎ†)

Infinite size limit

𝜃 shell

0−modes
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Mode-shell 
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Semi-classical limit

𝐼𝑛𝑑 ℎ = 𝑑𝑖𝑚 𝐾𝑒𝑟 ℎ − 𝑑𝑖𝑚 𝐾𝑒𝑟( ℎ†)
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Infinite size limit

𝜃 shell
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shell

Mode-shell 
correspondence



Conclusion

I𝑚𝑜𝑑𝑒𝑠 = Tr( መ𝐶(1 − 𝐻𝐹
2) መ𝜃𝛤)

I𝑠ℎ𝑒𝑙𝑙  = Tr መ𝐶 መ𝜃𝛤 +
1

2
Tr(𝐶 𝐻𝐹[ መ𝜃𝛤, 𝐻𝐹])

Mode-shell 
correspondence

Semi-classical limit

𝐼𝑛𝑑 ℎ = 𝑑𝑖𝑚 𝐾𝑒𝑟 ℎ − 𝑑𝑖𝑚 𝐾𝑒𝑟( ℎ†)

𝑊2𝐷−1 =  𝐶2𝐷−1 න Tr((𝑈†𝑑𝑈)2𝐷−1)

Infinite size limit

𝜃 shell

0−modes

shell

Other mode-shell correspondance: 

-spectral flow (1D) → Pierre Delplace’s talk (Wed) 

-number of Dirac-Weyl point  (2D & 3D)

Mode-shell 
correspondence
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