

Vortex mediated Josephson plasmon bound states

Marios H. Michael Max Planck Institute for the Structure and Dynamics of Matter

Mathematical aspects of condensed matter physics, ETH 2023

Vortex mediated Josephson plasmon bound states

Marios H. Michael Max Planck Institute for the Structure and Dynamics of Matter

Mathematical aspects of condensed matter physics, ETH 2023

Dissipationless currents in pseudogap YBCO

Marios H. Michael Max Planck Institute for the Structure and Dynamics of Matter

Mathematical aspects of condensed matter physics, ETH 2023

High Tc cuprates - the pseudogap phase

B. Keimer, A. Kivelson et al., Nature (2015)

High Tc cuprates - the pseudogap phase

B. Keimer, A. Kivelson et al., Nature (2015)

<u>Competition between mean field and</u> <u>phase fluctuation transition:</u>

V. J. Emery & S. A. Kivelson, Nature (1995)

This talk :

- 1. Present numerical simulations of the pseudogap phase.
- 2. Intuition behind the existence of dissipationless counterflow currents in YBCO.
- 3. Connection with experimental observations in light-driven YBCO. (references)

Phys. Rev. B 102, 174505 M. H. M. et al. (2020)

Phys. Rev. X 12, 031008 (2022) (2022) Alex von Hoegen

Physical Review B, 89, 184516 (2014), S. Kaiser et al.

Nature Materials, 13, 705–711 (2014), W. Hu et al.

Dissipationless counterflow currents above T_c in bilayer superconductors

Guido Homann,¹ Marios H. Michael,² Jayson G. Cosme,³ and Ludwig Mathey^{1,4}

¹Zentrum für Optische Quantentechnologien and Institut für Quantenphysik, Universität Hamburg, 22761 Hamburg, Germany ²Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chausse 149, 22761 Hamburg, Germany

³National Institute of Physics, University of the Philippines, Diliman, Quezon City 1101, Philippines ⁴The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany

Guido Homann

to appear on arXiv soon...

Superconducting potential:

$$\begin{aligned} \mathcal{L}_{\rm sc} &= \sum_{\mathbf{r}} K \hbar^2 |\partial_t \psi_{\mathbf{r}}|^2 + \mu |\psi_{\mathbf{r}}|^2 - \frac{g}{2} |\psi_{\mathbf{r}}|^4 \\ \\ \frac{\text{Tunneling of cooper pairs:}}{\mathcal{L}_{\rm kin}} &= \underbrace{-\sum_{j,\mathbf{r}} t_{j,\mathbf{r}} |\psi_{\mathbf{r}+\mathbf{u}_j} - \psi_{\mathbf{r}} e^{ia_{j,\mathbf{r}}}|^2}_{j,\mathbf{r}} \end{aligned}$$
Bilayer anisotropic 3D XY-model

Superconducting potential:

$$\mathcal{L}_{\rm sc} = \sum_{\mathbf{r}} K\hbar^2 |\partial_t \psi_{\mathbf{r}}|^2 + \mu |\psi_{\mathbf{r}}|^2 - \frac{g}{2} |\psi_{\mathbf{r}}|^4$$

<u>Iunneling of cooper pairs:</u>

$$\mathcal{L}_{\rm kin} = -\sum_{j,\mathbf{r}} t_{j,\mathbf{r}} |\psi_{\mathbf{r}+\mathbf{u}_j} - \psi_{\mathbf{r}} e^{ia_{j,\mathbf{r}}}|^2$$

Maxwell Hamiltonian:

 $\mathcal{L}_{ ext{em}}$

Goldstone

Semi-classical Langevin dynamics:

$$\begin{split} \partial_t^2 \psi_{\mathbf{r}} &= \frac{1}{K\hbar^2} \frac{\partial \mathcal{L}}{\partial \psi_{\mathbf{r}}^*} - \gamma_{\rm sc} \partial_t \psi_{\mathbf{r}} + \xi_{\mathbf{r}}, \\ \partial_t^2 A_{j,\mathbf{r}} &= \frac{1}{\epsilon_{\infty}\epsilon_0} \frac{\partial \mathcal{L}}{\partial A_{j,\mathbf{r}}} - \gamma_{j,\mathbf{r}} \partial_t A_{j,\mathbf{r}} + \eta_{j,\mathbf{r}}. \end{split}$$

Josephson plasmons:

Josephson current:

 $j_z = J_c \sin(heta)$

Josephson current:

 $j_z = J_c \sin(heta)$

Sine-gordon model of a single Josephson layer:

$$\partial_t^2 heta+\gamma\partial_t heta+c^2\partial_x^2 heta+J_c\sin(heta)=\lambda E(t)$$

Pancake vortices proliferate around 25 K.

Intrabilayer superconducting correlations:

<u>Claim</u>: Short range coherence in 3D anisotropic XY model **sufficient** to explain the plethora of nonlinear responses.

Long range order is lost:

$$\langle \psi^+(x)\psi(x')
angle \sim |\psi(x)|^2 \langle e^{i\phi(x)-i\phi(x')}
angle_{XY} = |\psi(x)|^2 e^{-x/\xi}$$

Locally strong Josephson nonlinearity:

$$\langle J_c\cos(heta(x))
angle
eq 0$$

Conductivity in the pseudogap:

Conductivity in the pseudogap:

Conductivity in the pseudogap:

Counterflow supercurrent above Tc!!!

Origin of counterflow superconductivity

Collaborators:

Numerical simulations:

Guido Homann Luc

Ludwig Mathey

<u>Theory:</u>

Eugene Demler

Patrick Lee

Experiments:

Andrea Cavalleri

Thank you !