Resonances in wave reflection from a disordered medium: nonlinear σ-model approach ${ }^{1}$

Yan V Fyodorov

Department of Mathematics

Project supported by EPSRC grant EP/V002473/1

Mathematical Aspects of Condensed Matter Physics
ETH Zurich, July 17th-21st 2023

[^0]Quantum particle in a disordered media, models:

Consider a classical particle moving with speed v in a domain $\mathcal{D} \subset \mathbb{R}^{d}$ with randomly placed scattering centers separated by the mean-free path l, The motion is then characterized by a diffusion constant $D \sim v l \sim l^{2} / \tau$.
To describe a quantum analogue of such a system one may consider the Hamiltonian:

$$
H=\frac{1}{2 m}\left(-i \hbar \nabla-\frac{e}{c} A(\mathbf{r})\right)^{2}+\mathbf{V}(\mathbf{r})+\text { Dirichlet b.c. at } \partial \mathcal{D}
$$

where $A(\mathbf{r})$ is a potential of a magnetic field $B=\nabla \times A$ and $\mathbf{V}(\mathbf{r}), \mathbf{r} \in \mathcal{D}$ is a (short-correlated) Gaussian random potential, in the simplest case:

$$
\left\langle\mathbf{V}(\mathbf{r}) \mathbf{V}\left(\mathbf{r}^{\prime}\right)\right\rangle=\frac{1}{2 \pi \nu \tau} \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)
$$

where in the semiclassical "weak disorder" limit $\lambda \sim k^{-1} \ll l$ with energies $E \sim(\hbar k)^{2} / 2 m \gg \hbar \tau^{-1}$, the density of energy levels ν per unit volume is given by $\nu \sim m k^{d-2}$.

Alternatively, one can consider its lattice analogue, the Anderson model, defined for $\mathbf{x} \in \boldsymbol{\Lambda} \subset \mathbb{Z}^{d}$:

$$
H=\sum_{x} \mathbf{V}_{x}|\mathbf{x}\rangle\langle\mathbf{x}|+\sum_{x \sim y}\left(t_{x y} e^{i \phi_{x y}}|\mathbf{x}\rangle\langle\mathbf{y}|+\text { c.c. }\right)
$$

with phases $\phi_{x y}=-\frac{e}{\hbar} \int_{\mathbf{x}}^{\mathbf{y}} A(\mathbf{r}) \cdot d \mathbf{l}$ and $\left\langle\mathbf{V}(\mathbf{x}) \mathbf{V}\left(\mathbf{x}^{\prime}\right)\right\rangle=W^{2} \delta_{\mathbf{x x}^{\prime}}$.

Physicists view, nonlinear σ-model description:

To get quantitative understanding of quantum particle motion in a random potential one may study e.g. the probability $P\left(\mathbf{r}, \mathbf{r}^{\prime}, t\right)$ of transiting from \mathbf{r} to \mathbf{r}^{\prime} in time t. Its Fourier-transform can be written as

$$
P\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)=\frac{1}{2 \pi \nu} \lim _{\eta \rightarrow 0}\left\langle G_{\mathbf{r}^{\prime}, \mathbf{r}}(E-\omega / 2+i \eta) G_{\mathbf{r}, \mathbf{r}^{\prime}}(E+\omega / 2-i \eta)\right\rangle
$$

in terms of the resolvent

$$
G_{\mathbf{r}^{\prime}, \mathbf{r}}(E+i \eta)=(E+i \eta-H)_{\mathbf{r}^{\prime}, \mathbf{r}}^{-1}, \quad \eta>0
$$

The most efficient computational framework for investigating universal features of such objects is provided by a (super)matrix nonlinear σ-model introduced by Wegner'79 and fully developed by Efetov'82.
It maps computations of resolvent moments to studying a non-random model involving interacting supermatrices Q_{x}, associated with every site on a lattice $\mathbf{x} \in \Lambda \subset \mathbb{Z}^{d}$ and satisfying constraints $Q_{\mathbf{x}}^{2}=1$ and $\operatorname{Str} Q_{\mathrm{x}}=0$. Namely:

$$
\left\langle f\left(G_{\mathbf{x}_{i}, \mathbf{x}_{j}}\left(E_{1}+i \eta\right), G_{\mathbf{x}_{k}, \mathbf{x}_{l}}\left(E_{2}-i \eta\right)\right\rangle_{H} \longrightarrow \int \mathcal{F}_{\mathbf{x}_{i}, \mathbf{x}_{j}}^{\mathbf{x}_{k}, \mathbf{x}_{l}}(Q) e^{-\mathcal{S}[Q]} \prod_{\mathbf{x}} \mathcal{D} \mu\left(Q_{\mathbf{x}}\right)\right.
$$

with the action

$$
\mathcal{S}[Q]=\frac{\alpha}{2} \sum_{\mathbf{x} \sim \mathbf{y}} S \operatorname{tr} Q_{\mathbf{x}} Q_{\mathbf{y}}+(\eta-i \omega) \sum_{x} \operatorname{Str}\left(\Lambda Q_{\mathbf{x}}\right), \quad \alpha>0, \omega=\frac{E_{2}-E_{1}}{2}
$$

Granular matter and banded matrices:

Physically, such nonlinear σ-model can be interpreted as describing a system of metallic granules on a lattice.

Each isolated granula represents a fully ergodic "zero-dimensional" system and is described by a single Q-matrix via the "action" $\mathcal{S}[Q]=(\eta-i \omega) \operatorname{Str}(\Lambda Q)$. Allowing nearest neighbors to interact via tunneling creates the term $\frac{\alpha}{2} \sum_{\mathbf{x} \sim \mathbf{y}} S \operatorname{tr} Q_{\mathbf{x}} Q_{\mathbf{y}}$.

Remark. After appropriate scaling one can pass from the lattice to continuum. For example, setting for simplicity $\omega=0$ and taking $d=1$ one gets

$$
\mathcal{S}[Q]=-\operatorname{Str} \int_{0}^{L}\left[\frac{\pi \nu D}{4}\left(\frac{\partial Q}{\partial x}\right)^{2}-\pi \nu \eta(\Lambda Q(x))\right] d x
$$

where D is the familiar diffusion constant, and ν in the sample of length L defines the energy level spacing via $\Delta=(\nu L)^{-1}$.
Such form can be alternatively (and rigorously) derived from the model of Banded Random Matrices (YF-Mirlin'91-'94; Shcherbina-Shcherbina '18), where $L \sim N$ and $D \sim b^{2} \gg 1$.

OPF in σ-model description:

In such a framework computation of all physical quantities characterizing statistics of eigenfunctions, energy levels, transport properties, etc. is reduced to studying expectations of the form $\int \mathcal{D} \mu(Q)(\ldots) \exp -\mathcal{S}[Q]$.
In particular, one of the most useful objects in the theory is the "order parameter function" (OPF) introduced originally in Zirnbauer'86 via

$$
Y_{\mathbf{x}}(Q ; \eta)=\int_{Q_{\mathbf{x}}=Q} e^{-\mathcal{S}\left[Q_{\mathbf{y}}\right]} \prod_{\mathbf{y} \neq \mathbf{x}} \mathcal{D} \mu\left(Q_{\mathbf{y}}\right)
$$

In the simplest example of systems with broken time-reversal symmetry the OPF actually depends only on two real Cartan variables parametrizing the Q - matrices:

$$
Y_{\mathbf{x}}(Q ; \eta):=\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right) \text { with } \lambda \in[-1,1] \text { and } \lambda_{1} \in[1, \infty] .
$$

Remark 1. This function is conceptually important as it describes the Anderson (de)localization transition as spontaneous symmetry breaking phenomenon: in the two phases $\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right)$ has very different dependence on the non-compact variable λ_{1} as $L \rightarrow \infty$ accompanied with the limit $\eta \rightarrow 0$, hence the name.

Remark 2. In what follows it turns out that the behaviour of the OPF $\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right)$ at finite η plays a central role. Note that η in the theory may be given an exact meaning: it represents a uniform absorption rate for particles in the medium.

"Heidelberg Approach" to wave scattering in chaotic/disordered systems:

Consider a model of quantum particle/wave reflection from a random medium via a single waveguide with M open channels characterized by the $M \times M$ energydependent scattering matrix of the form (Weidenmueller et al 85')

$$
S(E)=\frac{1-i K}{1+i K} \quad \text { where } \quad K_{a b}=\sum_{\mathbf{x}, \mathbf{y}} \bar{W}_{a \mathbf{x}}(E+i \eta-H)_{\mathrm{xy}}^{-1} W_{\mathbf{y} b}
$$

A self-adjoint H is to be chosen to describe closed system with a random medium inside, e.g.

$$
H=-\Delta+\mathbf{V}(\mathbf{x}) \quad \text { or } \quad H=\sum_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}|\mathbf{x}\rangle\langle\mathbf{x}|+\sum_{\mathbf{x} \sim \mathbf{y}}\left(t_{x y}|\mathbf{x}\rangle\langle\mathbf{y}|+c . c .\right)
$$

with random potential $\mathrm{V}(\mathbf{x}), \mathbf{x} \in \mathbb{R}^{d}$ or $\mathbf{x} \in \mathbb{Z}^{d},|\Lambda|=N$.
The coupling amplitudes $\mathbf{w}_{a}=\left(W_{a 1}, \ldots, W_{a N}\right)$ of N inner states to M open channels are taken as fixed orthogonal energy-independent vectors \mathbf{w}_{a}

$$
\mathbf{w}_{a}^{\dagger} \mathbf{w}_{b}=\gamma_{a} \delta_{a b}, \quad \gamma_{a}>0 \forall a=1, \ldots, M
$$

Effective non-Hermitian Hamiltonian, resonances:

Equivalently, defining $z=E+i \eta$ entries of the scattering matrix can be rewritten as

$$
S_{a b}(z)=\delta_{a b}-2 i \sum_{\mathbf{x}, \mathbf{y}} W_{a \mathbf{x}}^{*}\left[\frac{1}{z-\mathcal{H}_{e f f}}\right]_{\mathbf{x y}} W_{\mathbf{y} b}
$$

with an effective non-Hermitian Hamiltonian

$$
\mathcal{H}_{e f f}=H-i \Gamma, \quad \Gamma=\sum_{a=1}^{M} \mathbf{w}_{a} \otimes \mathbf{w}_{a}^{\dagger} \geq 0-\operatorname{rank} \mathbf{M}
$$

whose N complex eigenvalues $z_{n}=E_{n}-i \Gamma_{n}$ provide poles of the scattering matrix in the lower half of z-plane, known as RESONANCES.

Main question:

Given the mean level spacing Δ for disordered medium in the closed scattering region, what can be said about the mean density of S-matrix poles

$$
\rho_{E}(y):=\Delta\left\langle\sum_{n=1}^{N} \delta\left(E-E_{n}\right) \delta\left(y-2 \pi \Gamma_{n} / \Delta\right)\right\rangle
$$

in the open medium, especially of the statistics of imaginary parts $y_{n}=2 \pi \Gamma_{n} / \Delta$?
Remark. The quantities Γ_{n} are traditionally called resonance widths. Their values are expected to reflect the decay times of quantum states from the medium to continuum via open channels, and hence are of special interest.

Resonances via OPF in σ-model description:

It turns out the mean resonance density for M-channel single-lead reflection from a disordered medium can be explicitly related to the associated Order Parameter Function $\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right)$ of the associated σ - model with uniform absorption $\eta>0$:
$\rho_{E}(y)=\frac{(-1)^{M-1}}{2(M-1)!} \frac{\partial^{2}}{\partial y^{2}} \int_{-1}^{1}(g-\lambda)^{M} \frac{\partial^{M-1}}{\partial g^{M-1}}\left[\frac{\mathcal{Y}(\lambda, g ; \eta)}{(g-\lambda)^{2}}\right]_{\eta=\Delta y / 2 \pi}, \quad g=\frac{1}{2 \pi \nu}\left(\gamma+\gamma^{-1}\right)$
Remark: derivation proceeds through finding the density of complex eigenvalues of an $M \times M$ non-Hermitian resolvent matrix $(E+i \eta-H)_{\mathbf{r}_{1}, \mathbf{r}_{2}}^{-1}, \quad \eta>0$, with M distinct but close points $\mathbf{r}_{i} i=1, \ldots, M$.

The simplest case is that of the zero-dimensional σ-model in the ergodic regime describing a fully chaotic system, with Hamiltonian essentially equivalent to a single random GUE matrix. For such a case it is well-known that $\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right)=e^{-\eta\left(\lambda_{1}-\lambda\right)}$ implying the resonance density (YF - Sommers '96; YF - Khoruzhenko '99, see also Shcherbina-Shcherbina '21.

$$
\rho_{E}(y)=\frac{(-1)^{M} y^{M-1}}{(M-1)!} \frac{\partial^{M}}{\partial y^{M}}\left(e^{-y g \frac{\sinh y}{y}}\right) .
$$

In particular, for perfect coupling $g=1$ the tail is powerlaw: $\rho(y \gg 1) \sim M / y^{2}$.
Confirmed in experiment: L Chen, S. M. Anlage \& YF Phys Rev Lett 127, 204101(2021)

Resonances in reflection from quasi-1D disordered media:

The one-dimensional σ-model with the action

$$
\begin{gathered}
\mathcal{S}[Q]=-S \operatorname{tr} \int_{0}^{L} d x\left[\frac{\pi \nu D}{4}\left(\frac{\partial Q}{\partial x}\right)^{2}-\pi \nu \eta(\Lambda Q(x))\right] \\
\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet
\end{gathered}
$$

describes a disordered wire (Efetov-Larkin'83) of length L and the localization length $\xi=2 \pi \nu D$. Attaching an M-channel waveguide to one end provides the first truly nonperturbative test of our theory.
The OPF $\mathcal{Y}\left(\lambda, \lambda_{2} ; \eta\right)$ as a function of length L satisfies an evolution equation

$$
\frac{\partial}{\partial L} \mathcal{Y}=-\mathcal{H Y} \text { with the initial condition }\left.\mathcal{Y}\left(\lambda, \lambda_{1} ; \eta\right)\right|_{L=0}=1
$$

and \mathcal{H} being a certain second-order differential operator with respect to λ, λ_{1}. The associated scattering problem can be modelled using the effective banded nonHermitian Hamiltonian:

Resonances in reflection from 1D disordered media:

Define Δ_{ξ} to be the level spacing for a medium with $L=\xi$. For $L \gg \xi$ it is natural to measure resonance widths Γ_{n} in units of Δ_{ξ}, defining $y_{n}=2 \pi \Gamma_{n} / \Delta_{\xi}$.
The associated OPF in the limit $L / \xi \rightarrow \infty$ has been found explicitly:

$$
\mathcal{Y}\left(\lambda, \lambda_{1} ; y\right)=K_{0}(p) q I_{1}(q)+I_{0}(q) p K_{1}(p), \quad \text { Skvortsov-Ostrovsky }{ }^{\prime} 07
$$

where $q=\kappa \sqrt{(\lambda+1) / 2}, p=\kappa \sqrt{\left(\lambda_{1}+1\right) / 2}$, with $\kappa=\sqrt{\frac{8 y}{\pi}}$ and $K_{n}(\kappa), I_{n}(\kappa)$ being modified Bessel functions.
This allows us to find the probability density of the scaled resonance widths for M perfectly coupled channels attached to the 'edge" of the wire as

$$
\rho(y)=-\frac{4}{\pi^{2} \kappa} \frac{\partial}{\partial \kappa}\left[\frac{1}{\kappa} \sum_{n=0}^{M-1} K_{n}(\kappa) I_{n+1}(\kappa)\right], \text { where } \kappa=\sqrt{\frac{8 y}{\pi}}
$$

Analysis at $M \gg 1$ shows that

$$
\rho(\Gamma) \sim\left\{\begin{array}{ccc}
\Delta_{\xi} / \Gamma & \text { for } \Gamma \ll \Delta_{\xi} & \text { Iocalization } \\
\left(\Delta_{\xi} / \Gamma\right)^{3 / 2} & \text { for } \Delta_{\xi} \ll \Gamma \ll M^{2} \Delta_{\xi} & \text { diffusion } \\
M\left(\Delta_{\xi} / \Gamma\right)^{2} & \text { for } \Gamma \gg M^{2} \Delta_{\xi} & \text { ergodic decay }
\end{array}\right.
$$

The behaviour $\rho(\Gamma) \sim \Gamma^{-3 / 2}$ was first reported numerically for quantum kicked rotator in Borgonovi, Guarneri, and Shepelyansky '91, see also Kottos '05, Skipetrov - van Tiggelen '06

The analytic results agree well with numerical simulations for banded matrices:

The resonance density $\rho(\Gamma)$ for banded random matrices with $b=30$ of different sizes (from $N=2000$ to $N=16000$) and $M=10$ open channels. In the limit $N \rightarrow \infty$ the numerical curves approach the dashed black line, which is computed using the analytic formula.

Future aims: to provide analysis of $\rho(\Gamma)$ for $d>1$ in various regimes, including the vicinity of Anderson localization transition; to extend from σ-model to random Schrödinger, e.g. in pure 1D: $-\frac{d^{2}}{d x^{2}}+V(x)$. See Kunz-Shapiro'08 \& Feinberg'09 in Physics and Klopp'16 in Math context.

[^0]: ${ }^{1}$ Based on YVF, M. Skvortsov \& K. Tikhonov, arXiv:2211.03376

