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Subwavelength physics

• Subwavelength physics

• Manipulate waves at subwavelength scales;
• Subwavelength signal manipulation: revolutionizing nanotechnology;

applications in wireless communications, biomedical superresolution
imaging and quantum computing;

• Systems of subwavelength resonators; PDE models; Capacitance
matrix approximations; strong and long-range interactions in
subwavelength resonator systems.

• Condensed-matter physics

• Systems of particles;
• Hamiltonians; Tight-binding and Nearest-neighborhood

approximations;
• Topological defects; Phase transitions; Hall effect; Localized states:

Thouless, Duncan, Haldane, Kosterlitz, Anderson.

• Transpose demonstrated quantum phenomena to classical waves at
subwavelength scales.
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Single subwavelength resonator

• PDE model for a single subwavelength resonator:

∆u + ω2 ρ

κ
u = 0 in R3 \ D,

∆u + ω2 ρr

κr
u = 0 in D,

u|+ = u|− on ∂D,

ρr

ρ

∂u

∂ν

∣∣∣∣
+

=
∂u

∂ν

∣∣∣∣
−

on ∂D,

u satisfies the Sommerfeld radiation condition.

• κr , ρr , κ, ρ: material parameters inside and outside D.

• kr = ω
√

ρr/κr ; vr =
√

κr/ρr ; k = ω
√

ρ/κ; v =
√

κ/ρ.

• vr , v = O(1); High contrast: δ := |ρr/ρ| ≪ 1.

• Given δ, a subwavelength resonant frequency ω = ω(δ) ∈ C:

(i) there exists a non-trivial solution to the PDE model;
(ii) ω depends continuously on δ and satisfies ω → 0 as δ → 0.
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Finite systems of weakly interacting resonators
• Existence and characterization of subwavelength resonance frequency for single

subwavelength resonator1:√
CapD
|D|

vr
√
δ︸ ︷︷ ︸

:=ωM

+i (−
Cap2Dv

2
r

8πv |D|
δ)︸ ︷︷ ︸

:=τM

+O(δ
3
2 ).

• Capacity CapD := −
∫
∂D

S−1
D [χ∂D ] dσ; SD [ϕ] =

∫
∂D

G(x − y)ϕ(y) dσ(y).

• Effective operator for a dilute system2: ∆ + k2 + V (x);

• V (x) =
1

(ωM
ω

)2 − 1
ΛṼ (x);

• Λ: depends only on the volume fraction of the
subwavelength resonators;

• Ṽ : depends only on the distribution of the centers
of the subwavelength resonators. Ω

1with B. Fitzpatrick, D. Gontier, H. Lee, H. Zhang, Ann. IHP C, 2018.
2with H. Zhang, SIAM J. Math. Anal., 2017.

Subwavelength physics Habib Ammari



Finite systems of strongly interacting resonators3

• D = D1 ∪ · · · ∪ DN ;

• vi : wave speed in Di ;

• δi = O(δ), |δ| ≪ 1, i = 1, . . . ,N;

• χ∂Dj
: characteristic function of ∂Dj .

v

δ7 v7

δ1v1

δ3
v3

δ6
v6

δ4
v4

δ2
v2

δ5
v5

• Capacitance matrix: Cij = −
∫
∂Di

(SD)
−1[χ∂Dj

]︸ ︷︷ ︸
:=ψj

dσ, i , j = 1, . . . ,N.

• C: symmetric; positive definite; strictly diagonally dominant; Cij ∼ 1/|zi − zj |.
• Generalized capacitance matrix: C = VC ; V = diag(δiv

2
i /|Di |).

• Existence and characterization of the subwavelength resonant frequencies:

ωn =
√

λn + O(δ), n = 1, . . . ,N;

{λn : n = 1, . . . ,N}: eigenvalues of C, which satisfy λn = O(δ) as δ → 0.

• Characterization of the subwavelength resonant mode un in terms of the
eigenvector vn of C associated to λn.

3with B. Davies, E.O. Hiltunen, arXiv:2106.12301.
Subwavelength physics Habib Ammari



Periodic systems of resonators

• dl : dimension of periodicity of the lattice. d : dimension of the ambient space.

• Three different cases:

• d − dl = 0: crystal;
• d − dl = 1: screen;
• d − dl = 2: chain.

· · · · · ·

.

• Λ: periodic lattice; Y : fundamental domain; Λ∗: dual lattice of Λ; Brillouin zone
Y ∗ :=

(
Rdl × {0}

)
/Λ∗; 0: zero-vector in Rd−dl .

• Periodically repeated i th resonator Di and the full periodic structure D:

Di =
⋃
m∈Λ

Di +m, D =
N⋃
i=1

Di .

• Subwavelength spectrum:

σ =
⋃

α∈Y∗

{
ωαn
}N
n=1

.
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First radiation continuum
• Subwavelength band structure of a chain with two resonators in the unit cell.

• Shaded region is the first radiation continuum, defined by

|α| <
ω

v
< inf

q∈Λ∗\{0}
|α+ q|;

• Waves in this regime are propagating far away from the structure.

• Unshaded region corresponds to evanescent modes.
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Subwavelength band functions

• As δ → 0, the N subwavelength resonant frequencies satisfy the asymptotic
formula

ωαn =
√

λαn + O(δ3/2), n = 1, . . . ,N.

• {λαn : n = 1, . . . ,N}: eigenvalues of the generalized quasiperiodic capacitance
matrix Cα, which satisfy λαn = O(δ) as δ → 0.

• Characterization of the Bloch resonant mode uαn in terms of the eigenvector vαn
of Cα associated to λαn .

• Generalized quasiperiodic capacitance matrix:

Cαij = −
δiv

2
i

|Di |

∫
∂Di

(Sα,0D )−1[χ∂Dj
] dσ, α ̸= 0, i , j = 1, . . . ,N.

• Sα,kD : Quasiperiodic single layer potential.

• Resonances in the first radiation continuum: Characterized analogously by

α0 ̸= 0 fixed, limω→0

(
Sωα0,ω
D

)−1
.
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Subwavelength bandgap opening
• Subwavelength bandgap opening in square crystals4:

α1

α2

• Two-scale behaviour of the resonant mode for α close to (π, π): rapidly
oscillating on the crystal scale, and a large scale envelope which satisfies a
homogenized equation5.

4with B. Fitzpatrick, H. Lee, S. Yu, H. Zhang, J. Diff. Equat., 2017.
5with H. Lee, H. Zhang, SIAM J. Math. Anal., 2018.
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Honeycomb lattice of subwavelength resonators6

• Honeycomb lattice:

Y

D2D1

α∗
1

α∗
2

Γ

Y ∗

• At α = α∗, the first eigenfrequency ω∗ := ω(α∗)
of multiplicity 2.

• Conical behavior of subwavelength bands: The
first band and the second band form a Dirac cone
at α∗, i.e.,

ω1(α) = ω(α∗)−λ|α− α∗|[1 + O(|α− α∗|)],
ω2(α) = ω(α∗)+λ|α− α∗|[1 + O(|α− α∗|)];

λ = |c|
√
δλ0 ̸= 0 for sufficiently small δ.

• Dirac point at α = α∗.
    M    K    M   
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0.3
Sub-wavelength bands for the honeycomb bubble structure

6with B. Fitzpatrick, E.O. Hiltunen, H. Lee, S. Yu, SIAM J. Math. Anal., 2020.
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Honeycomb lattice of subwavelength resonators7

• For α close to α∗, eigenmodes:

ũ1(x)S1(
x
s
) + ũ2(x)S2(

x
s
) + O(δ + s);

• Effective equation: ũj satisfies

|c|2λ2
0∆ũj +

(ω − ω∗)2

δ︸ ︷︷ ︸
near zero

ũj = 0.

• Dirac equation:

λ0

[
0 (−ci)(∂1 − i∂2)

(−ci)(∂1 + i∂2) 0

] [
ũ1
ũ2

]
=

ω − ω∗
√
δ

[
ũ1
ũ2

]
.

• Zero-phase shift propagation.

• High transmittance ⇐ Dirac cone near Γ.

7with E.O. Hiltunen, S. Yu, Arch. Ration. Mech. Anal., 2020.
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Subwavelength trapping and guiding of waves
• Introduce a defect to a periodic arrangement of subwavelength resonators.

· · ·· · ·

...

...

· · ·· · ·

...

...

• Create a defect mode8 or a defect band9 inside the subwavelength band gap of
the unperturbed structure.

8with B. Fitzpatrick, E.O. Hiltunen, S. Yu, SIAM J. Appl. Math., 2018.
9with E.O. Hiltunen, S. Yu, J. Eur. Math. Soc., 2022.
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Topological defects

• Sensitivity to imperfections in the crystal’s design:

• Goal: design subwavelength wave guides whose properties are robust with
respect to imperfections.

• Idea: Topological invariant which captures the crystal’s wave propagation
properties.
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Topological defects

• Bulk-boundary correspondence:

• Take two crystals with topologically different wave propagation
properties (different values of the topological invariant);

• Join half of crystal A to half of crystal B;
• At the interface, a topologically protected interface mode will exist10.

10with B. Davies, E.O. Hiltunen, S. Yu, J. Math. Pures Appl., 2020.
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Topological defects

• An infinite chain of resonator dimers:11

D1

D2

d d ′

· · · · · ·

Y

Two assumptions of geometric symmetry:

• dimer is symmetric, in the sense that D(:= D1 ∪ D2) = −D,

• each resonator has reflective symmetry.

11Analogue of the Su-Schrieffer-Heeger model in topological insulator theory in
quantum mechanics.
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Topological defects

• The Zak phase:

φz
n :=

∫
Y∗

An(α) dα; Y ∗ = R/2πZ ≃ (−π, π] (first Brillouin zone);

• Berry-Simon connection:

An(α) := i

∫
D
uαn

∂

∂α
uαn dx ; n = 1, 2.

• For any α1, α2 ∈ Y ∗, parallel transport from α1 to α2 gives uα1
n 7→ e iθuα2

n ,
where θ is given by

θ =

∫ α2

α1

Andα.

• ⇒ The Zak phase corresponds to parallel transport around the whole of Y ∗.
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Topological defects

• Quasi-periodic capacitance matrix: C = (Cαij )i,j=1,2.

• The Zak phase is given by the change in the argument of Cα12 as α varies over
the Brillouin zone:

φz
n = −

1

2
[arg(Cα12)]Y∗ .

• Further, it holds that

Cα12
′ = e−iαCα12, ⇒ if d = d ′then Cπ12 = 0,

where the prime denotes that d and d ′ have been swapped.

• Thus,
|φz

n
′ − φz

n| = π,

i.e. the cases d > d ′ and d < d ′ have different Zak phases.
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Topological defects

• Dilute computations: Assume that the dimer is a rescaling of fixed domains B1

and B2:

D1 = ϵB1 −
(
d

2
, 0, 0

)
, D2 = ϵB2 +

(
d

2
, 0, 0

)
,

for 0 < ϵ.

• In the dilute regime, as ϵ → 0:

φz
n =

{
0, if d < d ′,

π, if d > d ′,

• There exists a band gap for all d ̸= d ′,

• The dilute crystal has a degeneracy precisely when d = d ′.

• The dispersion relation has a Dirac cone at α = π.

• Band inversion occurs between d < d ′ and d > d ′.
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Topological defects

• Band inversion:

d < d ′ d > d ′

u
π/L
1 u

π/L
2 u

π/L
1 u

π/L
2

The monopole/dipole natures of the 1st and 2nd eigenmodes have swapped between
the d < d ′ and d > d ′ regimes.
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Topological defects

• A finite chain of resonators

d ′d ′d d

φz
n = 0 φz

n = π

• Capacitance matrix of the finite chain D =
⋃N

l=1 Dl :

C = (Cij ), Cij := −
∫
∂Dj

(SD)
−1[χ∂Di

], i , j = 1, . . . ,N.

• Odd number of resonators ⇒ odd number of eigenvalues; middle frequency:
midgap frequency ⇒ robust to imperfections.
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Topological defects

• Finite chain - localization: There is a localized eigenmode
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Topological defects

• Finite chain–stability to imperfections: Simulation of band gap frequency (red)
and bulk frequencies (black) with Gaussian N (0, σ2) errors added to the
resonator positions. σ: expressed as a percentage of the average resonator
separation.

• Even for relatively small errors, the frequency associated with the point defect
mode exhibits poor stability and is easily lost amongst the bulk frequencies.

Finite chain with topological interface Classical, point defect chain.
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Edge modes in a dislocated chain12

• A second approach for creating robust localized subwavelength modes:

• Start with an array of pairs of subwavelength resonators, known to
have a subwavelength band gap. A dislocation (with size d > 0) is
introduced to create mid-gap frequencies.

. . .. . .

. . .. . .

d

12with B. Davies, E.O. Hiltunen, J. London Math. Soc., 2022.
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Edge modes in a dislocated chain

• As the dislocation size d increases from zero, a mid-gap frequency appears from
each edge of the subwavelength band gap. These two frequencies converge to a
single value within the subwavelength band gap as d → ∞.

d

ω

mid-gap frequencies
band gap

essential spectrum

essential spectrum

subwavelength
regime
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Spectral convergence in large finite resonator arrays13
• Pointwise convergence to the essential spectrum: Any eigenvalue/eigenvector of

Cα can be approximated by eigenvalues/eigenvectors of Cf ; Converse not true:
edge effect ⇒ greatest effect on eigenmodes within the first radiation continuum.

• Convergence in distribution of the discrete density of states for the finite
M-system of N periodically repeated resonators to the (continuous) density of
states of the infinite system:

Df(ω) :=
1

M

M∑
j=1

δ
(
ω − ω

(M)
j

)
→ D(ω).

· · · · · ·

.

13with B. Davies, E.O. Hiltunen, arXiv:2305.16788.
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Spectral convergence in large finite resonator arrays
• Weak convergence of Cf (M ×M-block matrix with blocks of size N) to

corresponding (translationally invariant) Toeplitz matrix Ct of the infinite
structure.

• Cm: inverse Floquet transform of Cα (real-space capacitance matrix);

• C: (block) Laurent operator corresponding to the symbol Cα:

C =


. . .

...
...

...
...

··· C0 C1 C2 C3 ···
··· C−1 C0 C1 C2 ···
··· C−2 C−1 C0 C1 ···
··· C−3 C−2 C−1 C0 ···

...
...

...
...

. . .

 .

• Ct : Toeplitz matrix with symbol Cα:

Ct =


C0 C1 ··· CM

C−1 C0 ··· CM−1

...
...

...
...

C−M C1−M ··· C0

 .

• Cf , Ct asymptotically equivalent: 1√
M
∥Cf − Ct∥F → 0; ∥Cf∥2, ∥Ct∥2 uniformly

bounded.

• Cf , Ct: identical eigenvalue distributions as their sizes → ∞.
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Spectral convergence in large finite resonator arrays
• Truncated Floquet transform: (ωj , uj ), (uj )m: vector of length N associated to

cell m ∈ Λ;

(ûj )α =
∑

m∈finite lattice

(uj )me
iα·m; αj = argmax

α∈Y∗
∥(ûj )α∥2.

• Principle applicable to structures that are not translationally invariant:

· · · · · ·

.

• Defect modes in infinite systems of resonators have corresponding modes in
finite systems which converge as the size of the system increases14.

14with B. Davies, E.O. Hiltunen, arXiv:2301.03402.
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Spectral convergence in large finite resonator arrays
• Rate of convergence in terms of the length r = O(M) of the truncated structure:

dl = d ⇒ exponential; dl < d ⇒ algebraic.

• Algebraic convergence ⇐ long-range interactions due to coupling with the
far-field.

• Convergence of the frequency of the defect modes in a dislocated chain.

• O(r−1.7) for the even mode and O(r−3.8) for the odd mode:

· · · · · ·

.
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Anderson localization15

• Strong localization in random media with long-range interactions.

• Scattering of waves by subwavelength resonators with randomly chosen material
parameters reproduces the characteristic features of Anderson localization.

• Hybridization of subwavelength resonant modes is responsible for both the
repulsion of energy levels as well as the phase transition, at which point
eigenmode symmetries swap and very strong localization is possible.

• Characterization of the localized modes in terms of Laurent operators and
generalized capacitance matrices.

15with B. Davies, E.O. Hiltunen, arXiv:2205.13337.
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Anderson localization

• Characterization of localization: Any localized solution u corresponding to a
subwavelength frequency ω = ω0 + O(δ), satisfies

Bm

∑
n∈Λ

Cm−nun = ω2
0u

m,

for every m ∈ Λ (real-space variable);

• Cm: inverse Floquet transform of Cα (real-space capacitance matrix); um ∈ RN ;

• Bm: N × N diagonal matrix whose i th entry is given by bmi = 1 + xmi ; xmi :
random perturbation of the material parameter of the resonator i in the cell m.
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Laurent-operator formulation

• If Λ = Z,
BCu = ω2

0u.

• Doubly infinite matrices and vectors:

C =


. . .

...
...

...
...

··· C0 C1 C2 C3 ···
··· C−1 C0 C1 C2 ···
··· C−2 C−1 C0 C1 ···
··· C−3 C−2 C−1 C0 ···

...
...

...
...

. . .

 , u =


...

u−1

u0

u1

u2

...

 , B =


. . .

...
...

...
...

··· B−1 0 0 0 ···
··· 0 B0 0 0 ···
··· 0 0 B1 0 ···
··· 0 0 0 B2 ···

...
...

...
...

. . .

 .

• C: (block) Laurent operator corresponding to the symbol Cα.
• A localized mode corresponds to an eigenvalue of the operator BC.

• In the periodic case (when B = I ), the spectrum of the Laurent operator C is
continuous and does not contain eigenvalues, so there are no localized modes.

• The operator BC might have a pure-point spectrum in the non-periodic case.
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Toeplitz matrix formulation for compact defects

• Compact defects: Bm are identity for all but finitely many m; 0 ≤ m ≤ M.

• Xm: diagonal matrix with entries xmi .

• (Block) Toeplitz matrix formulation: ω0 corresponds to a localized mode iff

det
(
I −XT (ω0)

)
= 0.

• X : block-diagonal matrix with entries Xm;

•

T (ω) =


T 0 T 1 T 2 ··· TM

T−1 T 0 T 1 ··· TM−1

T−2 T−1 T 0 ··· TM−2

...
...

...
. . .

...

T−M T−(M−1) T−(M−2) ··· T 0

 ;

•
Tm = −

1

|Y ∗|

∫
Y∗

e iαmCα
(
Cα − ω2I

)−1
dα.
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Hybridization and level repulsion
• A single localized mode:

• Two localized modes (higher mode has a dipole (odd) symmetry while the lower
mode has a monopole (even) symmetry):
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Hybridization and level repulsion

• The values of x1 and x2 are drawn independently from the uniform distribution
U[x −

√
3σ, x +

√
3σ].

• Level repulsion: introduction of random perturbations causes the average value
of each mid-gap frequency to move further apart (and further apart the edge of
the band gap):
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Phase transition and eigenmode symmetry swapping
• Doubly degenerate frequency: a transition point whereby the symmetries of the

corresponding eigenmodes swap:

• Sharp peak at the transition point in the degree of localization:
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Exceptional points for PT-symmetric dimers16

• Parity-time-symmetric system: D1 = −D2 and v2
1 δ1 = v2

2 δ2

D1 D2

v1 v2
δ1 δ2

v

• v2
1 δ1 := a+ib, v2

2 δ2 := a−ib, for a, b ∈ R; |b|: magnitude of the gain and
the loss.

• Asymptotic exceptional points: There is a magnitude of the gain/loss such that
resonant frequencies and corresponding eigenmodes coincide to leading order in
δ.

• PT -symmetry forces the spectrum of the capacitance matrix to be conjugate
symmetric.

• The operator in the PDE model: not PT -symmetric due to the radiation
condition ⇒ approximate nature of the exceptional points.

16with B. Davies, E.O. Hiltunen, H. Lee, S. Yu, Stud. Appl. Math., 2021.
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Exceptional points for PT-symmetric dimers

• As δ → 0, ωi =
√
λi + O(δ), i = 1, 2.

•

λi =
1

|D1|

(
aC11 + (−1)i

√
a2C2

12 − b2(C2
11 − C2

12)

)
, i = 1, 2.

• b0 = aC12√
C2
11−C2

12

corresponds to the point where C has a double eigenvalue

corresponding to a one-dimensional eigenspace.
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Non-Hermitian band inversion and edge modes17

• Localized interface modes in the non-Hermitian case:

• Localized interface modes in crystals where the periodic geometry is
intact, and a defect is placed in the parameters.

• A topological winding number: the non-Hermitian Zak phase, which
describes the winding of the complex eigenvalues.

• Exceptional point degeneracies can open into non-trivial band gaps
enabling non-Hermitian interface modes.

κ2 κ1

m = 1

κ1 κ2

m = 0

κ1 κ2

m = −1

· · · κ2 κ1

m = 2

· · ·

17with E.O. Hiltunen, arXiv:2006.05719.
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Non-Hermitian band inversion and edge modes
• Generalized quasiperiodic capacitance matrix:

Cα =
1

ρ|D1|

(
κ1Cα11 κ1Cα12
κ2Cα21 κ2Cα22

)
.

• Eigenvalues λαi of Cα:

λαj =
1

ρ|D1|

Cα11
κ1 + κ2

2
+ (−1)j

√(
κ1 − κ2

2

)2

(Cα11)
2 + κ1κ2|Cα12|2

 .

• As δ → 0, ωαi =
√

λαi + O(δ), i = 1, 2.

• Exceptional point degeneracy to occur for small δ: λα1 = λα2 at some α ∈ Y ∗.
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Non-Hermitian band inversion and edge modes
• Non-Hermitian Zak phase: uαj : right eigenmode; vαj : left eigenmode

corresponding to ωαj ,

φzak
j :=

i

2

∫
Y∗

(〈
vαj ,

∂uαj

∂α

〉
+
〈
uαj ,

∂vαj

∂α

〉)
dα.

• Hermitian counterpart of the structure is topologically trivial:

φzak
j (Re(κ1),Re(κ2)) = 0.

• φzak
j (κ1, κ2) = −φzak

j (κ2, κ1) + O(δ), φzak
j (κ1, κ2) = φzak

j (κ1, κ2) + O(δ).

• ⇒ If κ1 = κ2 := κ, φzak
j (κ, κ) = O(δ).

• Exceptional point degeneracy occurs when κ1 = κ2 = κ for sufficiently large κ:

• β1 = Cπ11 + Cπ12, β2 = 2C 0
11; l = (β1 + β2)/(β2 − β1).

• If κ1 = κ2 := κ with |Im(κ)| ≤ Re(κ)√
l2−1

(unbroken PT -symmetry),

the structure does not support localized modes in the subwavelength
regime.

• If κ1 = κ2 := κ with |Im(κ)| > Re(κ)√
l2−1

(broken PT -symmetry) or if

κ1 ̸= κ2 (no PT -symmetry): characterization of the localized mode
in the subwavelength regime.
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Non-Hermitian band inversion and edge modes
• Non-Hermitian Zak phase: not quantized but can nevertheless predict the

existence of localized edge modes. Edge modes can be achieved by swapping κ1

and κ2 while keeping the distance between the resonators fixed.

• Purely non-Hermitian effect: as Imκ1 and Imκ2 → 0, the effect disappears.
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Topological phase transitions

Hermitian:

α

ω

d < d ′
No band inversion

α

ω

Dirac cone
d = d ′ α

ω

d > d ′
Full band inversion

Non-Hermitian:

α

ω

Partial inversion
|κ1| < |κ2|

α

ω

Exceptional point
κ1 = κ2

α

ω

Partial inversion
|κ1| > |κ2|
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Non-Hermitian skin effect18

• PDE model: D: chain of finitely many periodic resonators (in x1-direction) with
a non-Hermitian imaginary gauge potential

∆u + ω2 ρ

κ
u = 0 in Rd \ D,

∆u + ω2 ρr

κr
u + γ∂x1u = 0 in D,

u|+ = u|− on ∂D,

ρr

ρ

∂u

∂ν

∣∣∣∣
+

=
∂u

∂ν

∣∣∣∣
−

on ∂D,

u satisfies the radiation condition.

• Condensation of bulk eigenmodes at one of the edges of the system (depending
on sign(γ)) as its size increases.

• Gauge capacitance matrix Cγ : perturbed Toeplitz structure.

18with S. Barandun, J. Cao, B. Davies, E.O. Hiltunen, arXiv:2306.15587.
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Non-Hermitian skin effect

• Eigenvector localization and ϵ-pseudospectra of Cγ :

0 20 40 60

Site index

−0.5

0.0

0.5

u

0 1 2 3 4

<

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

=

0.00001

0.00010

0.00100

0.01000

0.10000

• Condensation of the eigenmodes at one edge; “Infinite” order exceptional point.

• Topological nature of the skin effect: localization of the eigenmodes
corresponding to eigenvalues ∈ region where the symbol of the Toeplitz operator
corresponding to the semi-infinite structure has negative winding.
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Non-Hermitian skin effect
• Spectrum of the limiting operator: Non-Bloch eigenmodes ⇒ generalized

(complex) Brillouin zone

Y∗ :=
{
(α, β(α)) ∈ Y ∗ × R : λα+iβ(α) ∈ R+

}
.

• Convergence to the complex band structure:

<
(α)

−1.5
−1.0
−0.5

0.0
0.5

1.0
1.5 =(α)−0.25

−0.20
−0.15

−0.10
−0.05

0.00

ω

0.5

1.0

1.5

2.0

• Systems with complex material parameters can be reduced to Hermitian systems
through an imaginary gauge transformation away from their exceptional points.

• Non-Hermitian systems with imaginary gauge potentials / Non-Hermitian
systems with complex material parameters: fundamentally distinct.
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Space-time modulated systems of resonators19

• Wave equation in a space-time modulated systems:(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x)
∇
)
u(x , t) = 0, x ∈ Rd , t ∈ R.

• Y : unit cell; D =
⋃

m∈Λ D +m; Di =
⋃

m∈Λ Di +m; Di , i = 1, . . . ,N.

• Time-modulation of the resonators:

κ(x , t) =

{
κ, x ∈ Rd \ D,

κrκi (t), x ∈ Di ,
, κ(x , t + T ) = κ(x , t);

• Time-Brillouin zone: ω ∈ Y ∗
t := C/(ΩZ); Ω = (2π)/T = O(δ1/2).

• A quasifrequency is a subwavelength quasifrequency if the corresponding solution
is essentially supported in the subwavelength frequency regime.

19with E.O. Hiltunen, J. Comp. Phys., 2021.
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Space-time modulated systems of resonators

• Floquet transform in both x and t:

(
∂

∂t

1

κ(x , t)

∂

∂t
−∇ ·

1

ρ(x)
∇
)
u(x , t) = 0,

u(x , t)e−iα·x is Λ-periodic in x ,

u(x , t)e−iωt is T -periodic in t.

• Space-Brillouin zone: α ∈ Y ∗ := Rd/Λ∗; Time-Brillouin zone:
ω ∈ Y ∗

t := C/(ΩZ); Ω = (2π)/T .

• As δ → 0, the quasifrequencies ω = ω(α) ∈ Y ∗
t are, to leading order, given by

the quasifrequencies of the system of ordinary differential equations:

N∑
j=1

Cαij Φj = −
d

dt

(
1

κi

dΦi

dt

)
,

for i = 1, . . . ,N. (Φj (t) = e iωt
∑

n Φj,ne
inΩt).
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Pseudo-spin effect
• Trimer honeycomb lattice with phase-shifted time-modulations inside the trimers:

l2
Y

l1

3
1
2

1
2

3

κj(t) = 1 + ε sin
(
Ωt+ 2πj

3

)

· · ·

··· · · ·

···

• Dirac cones at the origin of the Brillouin zone:

Unmodulated case Modulated case
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Non-reciprocal wave propagation and k-gaps20
• Folding of the static band structure might create degenerate points;

• Degenerate points give rise to broken reciprocity;

• Non-reciprocal band gaps and k-gaps:

Re( )

Im( )

Band gap

Re( )

Im( )

k-gap

• Breaking reciprocity (time-reversal symmetry) ⇒ non-symmetric bandgaps ⇒
unidirectional excitation of the operating waves.

• Existence of k-gaps ⇒ exponentially growing wave propagation.
20with J. Cao, X. Zeng, Stud. Appl. Math., 2022.
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Concluding remarks

• Mathematical foundations of subwavelength physics:

• Hermitian systems: Dirac degeneracies; Near-zero refraction;
Topologically protected edge modes; Bound states in the continuum;
Anderson localization.

• Non-Hermitian systems with complex material parameters:
Exceptional point degeneracies; Non-quantized topological
invariants; Unidirectional reflection and extraordinary transmission.

• Non-Hermitian systems with complex gauge potentials:
“Infinite” order exceptional point degeneracies; Eigenmode
condensation at one edge; Generalized (complex) Brillouin zone.

• Time-modulated systems: Pseudo-spin effect; Double-zero
refraction; Unidirectional guiding and broken time-reversal symmetry;
One-way edge states; Amplified emission and k-gaps.

• Avenue for understanding the localization and topological properties of
non-hermitian and time-modulated systems of subwavelength resonators.
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