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Guiding Question

Can we classify the full set of integral geometries that appear
in four-dimensional quantum field theories at a given loop order?

⇒ Even at two loops this remains an open problem

multiple elliptic curves genus 3 curve K3 surface ???
[Adams, Chaubey, Weinzierl, 2018] [Georgoudis, Zhang, 2015] [Bourjaily, AJM, von Hippel, Wilhelm, 2018]
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From Elliptic to Hyperelliptic Curves

Today, I will focus on just hyperelliptic Feynman integrals, which still
hold interesting new surprises compared to the elliptic case

• Hyperelliptic curves can be defined by an equation of the form

y2 =

n∏
i=1

(z − ri)

for some set of distinct roots ri

n = 3, 4 ⇒ elliptic curve

n ≥ 5 ⇒ hyperelliptic curve of genus g =

⌈
n− 2

2

⌉



Hyperelliptic Feynman Integrals

A handful of Feynman integrals are already known to give rise to hyperelliptic curves
[Huang, Zhang, 2013] [Georgoudis, Zhang, 2015] [Doran, Harder, Vanhove, 2023]

D = 4 D = 6 D = 8

However. . .

• Fewer than 5 papers written on hyperelliptic Feynman integrals

• Compare this to more than 40 papers written on Calabi-Yau Feynman integrals

⇒ Much remains to be learned about this class of Feynman integrals
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Genus Drop in
Hyperelliptic Feynman Integrals
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The Nonplanar Crossed Box

We focus on the example of the nonplanar crossed box diagram:

=

∫
d4`1d

4`2
1∏7

i=1Di

`1

`2

p2

p1

p4 p3

Di = q2i −m2

(massless external particles, all internal propagators have mass m)

• Function of s = (p1 + p2)
2, t = (p2 + p3)

2, and m2

• Over ten years ago, shown to give rise to an integral over a genus-three curve
[Huang, Zhang, 2013]



Momentum Space

• More specifically, it was shown cutting all seven propagators in momentum space
resulted in an integral [Huang, Zhang, 2013]

∼
∫

dz z√
P8(z)

where P8(z) is a degree-eight polynomial whose coefficients depend on s, t, and m2

P8(z) = (s+ t)2
(
t2m2 + s2z(sz + t)

) (
m2(s+ t)2 + s2z(sz + s+ t)

)
×(

s2zm2 (−3s3z + s2(2tz + t) + st2(2z + 3) + 2t3
)
+ t2

(
m2)2 (s+ t)2 + s4z2(sz + t)(sz + s+ t)

)

⇒ We expect this Feynman integral to depend on iterated integrals involving one-forms
that can be defined on the curve

y2 = P8(z) =
8∏
i=1

(z − ri)
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Baikov Representation

• However, we can also compute the maximal cut after changing to a Baikov
parametrization. In this case, one finds an integral

∼
∫

dz√
P6(z)

where now P6(z) is just a degree-six polynomial

P6(z) = s
(
2z(s + 2z)− 3m2s

) (
m2s + 2z(s + 2z)

) (
s(s + t + 2z)2 − 4m2t(s + t)

)

⇒ From this, we would expect iterated integrals involving one-forms defined on

y2 = P6(z) =

6∏
i=1

(z − r̃i)

Does the nonplanar crossed box integral evaluate to iterated integrals
that involve one-forms related to a genus-two or a genus-three curve?
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Period Matrix

To explore this apparent tension, we can study the period matrix associated with each curve

• The branch cut structure of the genus-three curve takes the form

Im(z)

Re(z)

a1a2a3

b1
b2

b3

r1r2r3r4r5r6r7r8

• We can thus find a basis of six independent integration contours

• We can also define three independent holomorphic differentials

zidz√
P8(z)

, i ∈ {0, 1, 2}
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Extra Period Matrix Relations

• It is simple to numerically evaluate this period matrix for generic values of s, t, and m2

⇒ Doing this for a number of kinematic points, we find that the entries of this matrix
satisfy simple unexpected linear relations

• This motivates looking for some kind of hidden symmetry or constraint that might
explain these relations

⇒ For instance, it is possible that P8(z) has a symmetry that is only made manifest if
one makes the right change of coordinates

• To search for such a symmetry, we apply a general SL2(C) transformation

z 7→ aẑ + b

cẑ + d

and ask whether anything special happens for particular values of a, b, c, and d
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cẑ + d

and ask whether anything special happens for particular values of a, b, c, and d



A Hidden Symmetry

• Surprisingly, this change of variables can be chosen such that all eight roots pair up:

P8(z) 7→ P̂4(ẑ
2) =

4∏
i=1

(ẑ2 − r̂2i )

Im(ẑ)

Re(ẑ)

ẑ1ẑ2ẑ3ẑ4−ẑ4−ẑ3−ẑ2−ẑ1

⇒ In this representation, it’s clear why relations exist between different periods



A Hidden Symmetry

Now there’s only one thing to do... search for this type of symmetry in the math literature!



Curves with an Extra Involution

• Hyperelliptic curves with this symmetry are described as respecting an extra involution

e1 : ẑ 7→ −ẑ

above and beyond the involution that all hyperelliptic curves respect

e0 : y 7→ −y

• There are then two hyperelliptic curves that can be associated with P8(z):

v21 = P̂4(w)w (genus 1)

v22 = wP̂4(w) (genus 2)

• These curves can be mapped back to P4(ẑ
2) by the e1-invariant map (v1, w) 7→ (y, ẑ2)

and the e1 ◦ e0-invariant map (v2, w) 7→ (yẑ, ẑ2), respectively
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Curves with an Extra Involution

Let’s see how this pair of curves arises in a more pedestrian way:

• Consider a hyperelliptic curve P2g+2(z) of genus g that respects an extra involution,
which can be made manifest by the change of variables z 7→ aẑ+b

cẑ+d

• Like before, we define

P̂g+1(w) = P̂g+1(ẑ
2) = (cẑ + d)2g+2 P2g+2

(
aẑ + b

cẑ + d

)
• Finally, using the fact that

dz = ± ad− bc

2(d± c
√
w)2
√
w
dw

we compute the entries of the period matrix of P2g+2 in terms of w to be∫
γj

dz zi√
P2g+2(z)

= ±(ad− bc)

2

∫
γj

dw
(±a
√
w + b)i(±c

√
w + d)g−1−i√

wP̂g+1(w)



Curves with an Extra Involution

∫
γj

dw
(±a
√
w + b)i(±c

√
w + d)g−1−i√

wP̂g+1(w)

Two types of terms appear in this integral, when the numerator is expanded out

• Terms with integer powers of w evaluate to periods of the curve wP̂g+1(w)

• Terms with half-integer powers of w evaluate to periods of the curve P̂g+1(w)

In the case of the nonplanar crossed box, we only get integer powers of w

• The original periods can be expressed as linear combinations of genus-two periods

• A further change of variables maps wP̂4(w) to the genus-two Baikov curve
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A Few Comments

• There is nothing incorrect about the cut computation in momentum space—the curve
one finds this way is genuinely genus three, so we expect the nonplanar crossed box
could be evaluated in terms of iterated integrals involving P8(z)

• The point is that this genus-three curve has an extra symmetry that allows it to be
algebraically mapped to a curve of lower genus without losing any information

• This corresponds to a massive simplification of the types of iterated integrals needed to
evaluate this Feynman integral



Further Examples

• gg → tt̄ with a top quark loop

genus 3 drops to 2

• In the kinematic limit where s = −2t, the equal-mass nonplanar crossed box drops
further in genus from 2 to 1

• Beyond hyperelliptic curves (... is this due to an extra involution?)

(equal internal masses, massless external particles)

genus 5 drops to 3



Feynman Integrals of All Genus
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Hyperelliptic Feynman Integrals

We’ve established that interesting new mathematical phenomena can appear when curves of
genus greater than one appear in Feynman integrals

⇒ However, it’s reasonable to ask how commonly these types of curves appear—are the
examples we’re looking at exceptional, or just the simplest of a large class of examples?

I now want to argue that hyperelliptic curves are
ubiquitous in perturbative quantum field theory

⇒ This class of Feynman integrals deserves to be studied in much more depth!
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Simple Example

Consider the following four-loop vacuum graph:

r±i = (mi ±mi+3)
2

MaxCut
( )

=

∫
d2`

1∏3
i=1

√
(`2 − r+i )(`

2 − r−i )

∼
∫

d`2
1∏3

i=1

√
(`2 − r+i )(`

2 − r−i )

genus 2 curve

m1

m2

m3

m4

m5

m6

• The max cut is easy to compute in two dimensions using the max cut of the bubble

MaxCut

( )
=

1√(
`2 − (mi +mj)2

)(
`2 − (mi −mj)2

)
mi

mj

`

threshold pseudothreshold
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Simple Example

In fact, we can do even better—instead of cutting the bubbles, we can integrate them out

`2 +m2
i +m2

j +
√(

`2 − (mi +mj)2
)(
`2 − (mi −mj)2

)
2mimj

=
log( )√(

`2 − (mi +mj)2
)(
`2 − (mi −mj)2

)
mi

mj

`

∼
∫

d`2
∏3
i=1 log(xi)∏3

i=1

√
(`2 − r+i )(`2 − r−i )

r±i = (mi ±mi+3)
2 xi =

`2 +m2
i +m2

i+3 +
√(

`2 − r+i
)(
`2 − r−i

)
2mimi+3

m1

m2

m3

m4

m5

m6
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All-Loop Necklace Integrals

r±i = (mi ±mi+L−1)
2 xi =

`2 +m2
i +m2

i+L−1 +
√(

`2 − r+i
)(
`2 − r−i

)
2mimi+L−1

∼
∫

d`2
∏L−1
i=1 log(xi)∏L−1

i=1

√
(`2 − r+i )(`2 − r−i )

m1

m2

m3 mL−3

mL−2

mL−1

mL

mL+1

mL+2 m2L−4

m2L−3

m2L−2

. . .

⇒ an integral over a hyperelliptic curve of genus L− 2



Minimal Mass Configurations

However, these examples depend on a large number of masses... can we do better?

m1

m1

m2

m1

m2

m3

m1

m2

m3

m3

m4

m4

m4

m1

⇒ nmin
L =

⌈
1+
√
−15+8L
2

⌉

⇒ the number of independent kinematic variables can be chosen to grow quite slowly
(3 masses through 5 loops, 4 masses through 8 loops, 5 masses through 12 loops, . . . )
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Conclusions

• Hyperelliptic curves seem to be quite common in perturbative quantum field theory

⇒ Even if you don’t care about vacuum integrals, the necklaces ‘lower bound’ the
complexity of Feynman integrals for which they appear in soft limits

• Surprising simplifications can occur in the types of functions needed to evaluate
Feynman integrals beyond the elliptic case

⇒ We have identified Feynman integrals in which the periods associated with the max
cut can be re-expressed as linear combinations of lower-genus curves

⇒ Can this happen beyond the hyperelliptic case? Or higher-dimensional geometries?

• Much more to exploration to be done for hyperelliptic Feynman integrals!

Thanks!
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