ϵ-factorised Differential Equations Beyond Polylogarithms

Elliptics \& Beyond 2023
ETH Zürich - September 5th, 2023
Fabian Wagner - TUM School of Natural Sciences

Joint work with L. Görges, C. Nega, L. Tancredi [arXiv:2305.14090] with C. Duhr, S. Maggio, C. Nega, L. Tancredi [ongoing work]

Technical

University of Munich

Why study Feynman integrals?

- Traditionally: ubiquitous in scattering amplitude calculations for collider observables in perturbative Quantum Field Theory framework

- More recently: gravitational-wave observables calculated in PostMinkowskian expansion (black hole / neutron star scattering)

\Rightarrow Key for precise theoretical predictions

Differential Equations Method

dimensionally regularised scalar
Feynman integral families

$$
\begin{gathered}
\int\left(\prod_{j=1}^{l} \frac{d^{d} k_{j}}{(2 \pi)^{d}}\right) \frac{N_{1}^{b_{1}} \ldots N_{m}^{b_{m}}}{D_{1}^{a_{1}} \ldots D_{n}^{a_{n}}} \\
d=d_{0}-2 \epsilon, d_{0} \in \mathbb{N}
\end{gathered}
$$

vector space structure with basis of master integrals

The master integrals satisfy a system of partial differential equations (DEs) w.r.t. \vec{z} :

$$
d \vec{I}=G M(\vec{z}, \epsilon) \vec{I}
$$

[Kotikov `93; Remiddi `97; Gehrmann Remiddi `99; ...]

Gauss-Manin connection matrix of differential 1-froms (fuchsian \& entirely rational!)

ϵ-factorised form of differential equations

DEs are hard to solve for arbitrary choice of basis, solution becomes straight-forward in ϵ-factorised form.

$$
\begin{aligned}
& d \vec{I}=G M(\vec{z}, \epsilon) \vec{I} \quad \stackrel{\text { Change of basis }}{\vec{J}=T(\vec{z}, \epsilon) \vec{I}} d \vec{J}=\epsilon G M_{\epsilon}(\vec{z}) \vec{J} \underset{\substack{\text { does not } \\
\text { depend on } \epsilon!}}{\left.\begin{array}{l}
\text { [Kotikov`12; }
\end{array}\right)} \\
& \text { Solution: } \\
& \vec{J}(\vec{z}, \epsilon)=\mathbb{P} \exp \left(\epsilon \int_{\gamma} G M_{\epsilon}\left(\vec{z}^{\prime}\right)\right) \vec{J}\left(\vec{z}_{0}, \epsilon\right) \text { depend }
\end{aligned}
$$

At every order in ϵ, find Chen iterated integrals: [Chen `77]

$$
\begin{array}{ll}
\vec{J}(\vec{z}, \epsilon)=\sum_{k=0}^{\infty} \epsilon^{k} \vec{J}^{(k)}(\vec{z}) \Longrightarrow \vec{J}^{(k)}(\vec{z}) \sim & " \sum_{j=0}^{k} \int_{\gamma} \underbrace{G M_{\epsilon} \cdots \cdots M_{\epsilon}}_{\nearrow_{\epsilon}^{j}} \vec{J}^{(k-j)}\left(\vec{z}_{0}\right)^{"} \\
\text { sume: normalised with a power of } \epsilon \\
\text { n that its } \epsilon \text {-expansion starts at } \mathcal{O}\left(\epsilon^{0}\right) & j \text {-fold iterated integral }
\end{array}
$$

Canonical differential equations

Conjecturally, a basis satisfying differential equations in ϵ-factorised form always exists. Even up to constant rotations, it is in fact not unique! Some bases are better than others.

Simple example: massless Box family (2 master integrals, $z=s / t$)

$$
\begin{aligned}
& d \vec{I}=\left(\begin{array}{cc}
0 & 0 \\
\frac{2(2 \epsilon-1)}{z(1+z)} & -\frac{1+z+\epsilon}{z(1+z)}
\end{array}\right) d z \vec{I} \xrightarrow{T_{1}=\left(\begin{array}{cc}
1 & 0 \\
2 \ln (1+z) & z / 2
\end{array}\right) d \vec{J}_{1}=\epsilon\left(\begin{array}{cc}
0 \\
\frac{2 z+\ln (1+z)}{z(1+z)} & \frac{-1}{z(1+z)}
\end{array}\right) d z \vec{J}_{1} .} \\
& T_{2}=\left(\begin{array}{cc}
2 \epsilon-1 & 0 \\
0 & \varepsilon Z
\end{array}\right) \\
& d \vec{\jmath}_{2}=\epsilon \underbrace{\left(\begin{array}{cc}
0 & 0 \\
\frac{2}{1+z} & \frac{-1}{z(1+z)}
\end{array}\right) d z \vec{J}_{2}} \\
& =\left(\begin{array}{cc}
0 & 0 \\
2 d \ln (1+z) & d \ln (1+z)-d \ln (z)
\end{array}\right) \\
& \text { Canonical Basis [Henn `13] } \\
& \text { dlog-forms with rational } \\
& \text { (algebraic) arguments } \\
& \text { Resulting iterated integrals } \\
& \text { evaluate to Multiple } \\
& \text { Polylogarithms (MPLs) }
\end{aligned}
$$

Multiple Polylogarithms (MPLs)

In a nutshell, they can be defined as iterated integrals of rational functions with simple poles on the Riemann sphere

$$
\begin{aligned}
& G\left(a_{1}, a_{2}, \ldots, a_{n} ; x\right)=\int_{0}^{x} \frac{d t_{1}}{t_{1}-a_{1}} G\left(a_{2}, \ldots, a_{n} ; t_{1}\right)= \\
& \text { length/ } \\
& \text { transcendental weight }=\int_{0}^{x} \frac{d t_{1}}{t_{1}-a_{1}} \int_{0}^{t_{1}} \frac{d t_{2}}{t_{2}-a_{2}} \ldots \int_{0}^{t_{n-1}} \frac{d t_{n}}{t_{n}-a_{n}}
\end{aligned}
$$

They have at most logarithmic singularities and satisfy a simple inhomogeneous, unipotent differential equation:

$$
\frac{d}{d x} G\left(a_{1}, a_{2}, \ldots, a_{n} ; x\right)=\frac{1}{x-a_{1}} G\left(a_{2}, \ldots, a_{n} ; x\right)
$$

transcendental weight / length decreased by one
\square such functions are called pure functions

Canonical differential equations and pure functions

Canonical Form: $d \vec{J}=\epsilon \sum_{n} m_{n} d \log \left(\alpha_{n}\right) \vec{J}$
Solution: $\vec{J}(\vec{z}, \epsilon)=\mathbb{P} \exp \left(\epsilon \int_{\gamma} \sum_{n} m_{n} d \log \left(\alpha_{n}\left(\vec{z}^{\prime}\right)\right)\right) \vec{J}\left(\vec{z}_{0}, \epsilon\right)$

$" j$ is pure and of uniform transcendental weight (UT)"

Smallest step up in complexity: the elliptic case

MPLS: iterated integrals of rational functions with simple poles on the Riemann sphere
\square Generalization on torus: elliptic multiple polylogarithms (eMPLs)
[Brown Levin `11; Brödel Mafra Matthes Schlotterer `14; Brödel Dulat Duhr Penante Tancredi `17,`18]
BUT: cohomology of torus can't be spanned by differential forms with simples poles only!

Way to avoid higher poles: add infinite tower of transcendental kernels

Important property: Resulting functions satisfy generalised unipotent differential equations. We have a notion of purity!

\square
Generalisation of the idea of a canonical basis possible?

The information encoded in the Wronskian

Knowledge of the solution of the differential equations at $\boldsymbol{\epsilon}=\mathbf{0}$ is crucial to achieve the factorisation of ϵ

$$
\begin{gathered}
d \vec{I}=\left[G M_{0}(\vec{z})+\mathcal{O}(\epsilon)\right] \vec{I} \\
d W(\vec{z})=G M_{0}(\vec{z}) W(\vec{z}) \\
\vec{J}=W^{-1}(\vec{z}) \vec{I} \\
d \vec{J}=[\mathcal{O}(\epsilon)] \vec{J}
\end{gathered}
$$

$W(\vec{z})$: fundamental matrix of solutions, also called
Wronskian or period matrix

The Wronskian informs us on the function space required to decouple the differential equations at $\epsilon=0$.
> polylogarithmic case: W consists of rational (algebraic) functions and (poly)logarithms
> elliptic case: W contains complete elliptic integrals

Important Observation: this information can be extracted by studying the maximal cuts of the Feynman integrals.

From unipotent to canonical

Examples: sunrise graph with two / three equal non-vanishing internal masses on maximal cut

MPL case (two masses)
$\left.\frac{\ln \left(\frac{s-r\left(s, m^{2}\right)}{s+r\left(s, m^{2}\right)}\right)}{r\left(s, m^{2}\right)}\left(\frac{\ln \left(\frac{s-r\left(s, m^{2}\right)}{s+r\left(s, m^{2}\right)}\right)}{r\left(s, m^{2}\right)}\right)\right)$
mixed transcendental
weights!

$$
W_{s s}=\left(\begin{array}{cc}
\frac{1}{r\left(s, m^{2}\right)} & 0 \\
\frac{2 s}{r\left(s, m^{2}\right)^{3}} & \frac{1}{m^{2}\left(s-4 m^{2}\right)}
\end{array}\right), W_{u}=\left(\begin{array}{cc}
1 & \ln \left(\frac{s-r\left(s, m^{2}\right)}{s+r\left(s, m^{2}\right)}\right) \\
0 & 1
\end{array}\right), \frac{\partial}{\partial m^{2}} W_{u}=\left(\begin{array}{cc}
0 & \frac{s}{m^{2} r\left(s, m^{2}\right)} \\
0 & 0
\end{array}\right) W_{u}
$$

and rotate away the semi-simple part: $\quad \vec{I}=W_{s S} \cdot \vec{I}$

From unipotent to canonical

MPL case (two masses)
Split W into a unipotent and semi-simple part: $W=W_{s S} \cdot W_{u}$

$$
W_{s s}=\left(\begin{array}{cc}
\frac{1}{r\left(s, m^{2}\right)} & 0 \\
\frac{2 s}{r\left(s, m^{2}\right)^{3}} & \frac{1}{m^{2}\left(s-4 m^{2}\right)}
\end{array}\right), W_{u}=\left(\begin{array}{cc}
1 & \ln \left(\frac{s-r\left(s, m^{2}\right)}{s+r\left(s, m^{2}\right)}\right) \\
0 & 1
\end{array}\right), \frac{\partial}{\partial m^{2}} W_{u}=\left(\begin{array}{cc}
0 & \frac{s}{m^{2} r\left(s, m^{2}\right)} \\
0 & 0
\end{array}\right) W_{u}
$$

Rotate away the semi-simple part: $\vec{I}=W_{s s} \cdot \vec{I}$ integral by ϵ !

$$
\begin{gathered}
\frac{\partial}{\partial m^{2}} \vec{I}^{\prime}=\left[\left(\begin{array}{cc}
0 & \left.\left.\frac{s}{m^{2} r\left(s, m^{2}\right)}\right)+\mathcal{O}(\epsilon)\right] \vec{I}^{\prime} \\
0 & 0
\end{array} d d \vec{J}=\epsilon G M_{c}\left(s, m^{2}\right) \vec{J}\right.\right. \\
\vec{J}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{2\left(s+2 m^{2}\right)}{r\left(s, m^{2}\right)} & 1
\end{array}\right) \cdot\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right) \vec{I}^{\prime} \quad \begin{array}{c}
\text { canonical (contains } \\
\text { only dlog-forms) }
\end{array} \\
\text { egrates out a total derivative }
\end{gathered}
$$

coming from $\mathcal{O}(\epsilon)$-terms

From unipotent to canonical

eMPL case (three masses)

$$
\frac{\partial}{\partial m^{2}} \vec{I}=\left[\left(\begin{array}{cc}
0 & 1 \\
\frac{3\left(s-m^{2}\right)}{m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)} & -\frac{s^{2}-20 s m^{2}+27 m^{4}}{m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)}
\end{array}\right)+\mathcal{O}(\epsilon)\right] \vec{I}
$$

not unipotent

$$
W=\left(\begin{array}{cc}
\omega_{0}\left(s, m^{2}\right) & \omega_{1}\left(s, m^{2}\right) \\
\partial_{m^{2}} \omega_{0}\left(s, m^{2}\right) & \partial_{m^{2}} \omega_{1}\left(s, m^{2}\right)
\end{array}\right)
$$

around the MUM point $m^{2} / s=0$:

$$
\begin{gathered}
\text { algebraic functions } \\
\omega_{0}\left(s, m^{2}\right) \sim a_{1}\left(s, m^{2}\right) K\left(a_{2}\left(s, m^{2}\right)\right) \\
\omega_{1}\left(s, m^{2}\right) \sim a_{1}\left(s, m^{2}\right) K\left(1-a_{2}\left(s, m^{2}\right)\right)
\end{gathered}
$$

Complete elliptic integral of the first kind

$$
\begin{aligned}
& \omega_{0}\left(s, m^{2}\right)=\text { power series in } m^{2} / s \quad \longleftarrow \text { holomorphic } \\
& \omega_{1}\left(s, m^{2}\right)=\omega_{0}\left(s, m^{2}\right) \ln \left(m^{2} / s\right)+\text { power series in } m^{2} / s \longleftarrow \text { single-logarithmic }
\end{aligned}
$$

Split W into a unipotent and semi-simple part: $W=W_{s s} \cdot W_{u}$

From unipotent to canonical

eMPL case (three masses)

Split W into a unipotent and semi-simple part: $W=W_{s s} \cdot W_{u}$

$$
\begin{aligned}
& W_{u}=\left(\begin{array}{cc}
1 & \frac{\omega_{1}}{\omega_{0}} \\
0 & 1
\end{array}\right), \quad \frac{\partial}{\partial \tau} W_{u}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) W_{u}, \quad \tau=\frac{\omega_{1}}{\omega_{0}} \\
& W_{s s}=\left(\begin{array}{cc}
\omega_{0} & 0 \\
\partial_{m^{2}} \omega_{0} & \frac{1}{m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right) \omega_{0}}
\end{array}\right)
\end{aligned}
$$

Legendre relation: $\omega_{0}\left(\partial_{m^{2}} \omega_{1}\right)-\omega_{1}\left(\partial_{m^{2}} \omega_{0}\right)=\left[m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)\right]^{-1}$
As in the polylogarithmic two-mass case: rotate with $\boldsymbol{W}_{s s}^{-1}$, rescale the first integral with $\boldsymbol{\epsilon}$ and integrate out a total derivative

$$
\vec{J}=\left(\begin{array}{cc}
1 & 0 \\
s^{2}-30 s m^{2}+45 m^{4} \\
2 & \omega_{0}^{2}
\end{array} 1 \begin{array}{ll}
1
\end{array}\right) \cdot\left(\begin{array}{ll}
\epsilon & 0 \\
0 & 1
\end{array}\right) \cdot W_{s s}^{-1} \vec{I} \quad \Rightarrow \quad d \vec{J}=\epsilon G M_{\epsilon}\left(s, m^{2}\right) \vec{J}
$$

From unipotent to canonical

eMPL case (three masses)

Arrived at a known ϵ-factorised form [Adams Weinzierl '18]

$$
G M_{\epsilon}^{m^{2}}\left(s, m^{2}\right)=\left(\begin{array}{cc}
\frac{-s^{2}+30 s m^{2}-45 m^{4}}{2 m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)} & \frac{\omega_{0}^{2}}{m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)} \\
\frac{\left(3 m^{2}+s\right)^{4}}{4 m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right) \omega_{0}^{2}} & \frac{-s^{2}+30 s m^{2}-45 m^{4}}{2 m^{2}\left(s-m^{2}\right)\left(s-9 m^{2}\right)}
\end{array}\right)
$$

only ω_{0} appears, $\partial_{m^{2}} \omega_{0}$ does not!
Further: this basis can indeed be expressed in terms of pure eMPLs!

[Broedel Duhr Dulat Penante Tancredi `18]

Strong support that this might indeed be the elliptic generalisation of the idea of a canonical differential equation

Integrand / Leading Singularity Analysis

Parametric representation of the considered integral family (Feynman, Baikov, ...):

$$
I \sim \int \prod_{i=1}^{n} d x_{i} \mathcal{F}\left(x_{i}, \vec{z}\right)\left[\mathcal{G}\left(x_{i}, \vec{z}\right)\right]^{\epsilon}
$$

Try to write this as a sum over dlog-forms (in polylogarithmic case):

$$
\prod_{i=1}^{n} d x_{i} \mathcal{F}\left(x_{i}, \vec{z}\right)=\sum_{i} c_{i} d \log \left(f_{1, i}\right) \wedge d \log \left(f_{2, i}\right) \wedge \cdots \wedge d \log \left(f_{n, i}\right)
$$

leading singularities (multi-variate / iterative residues)

Conjecturally, master integrals whose integrands admit such a dlog-form with constant leading singularities (numbers!) evaluate to pure functions.
[Arkani Hamed et al `10; Henn `13; Henn Mistlberger Smirnov Wasser `20]

\square
in many cases sufficient to find a canonical basis

Integrand / Leading Singularity Analysis

In the elliptic case, examples indicate that the conjecture can be generalised for integrands that look as follows:

$$
\begin{aligned}
& \prod_{i=1}^{n} d x_{i} \mathcal{F}\left(x_{i}, \vec{z}\right)=\sum_{i} c_{i} d \log \left(f_{1, i}\right) \wedge \cdots \wedge d \varepsilon_{4}\left({ }_{0}^{0}, x_{j} ; \vec{a}\right) \wedge \cdots \wedge d \log \left(f_{n, i}\right) \\
& \text { differential of } 1 \text { st kind }
\end{aligned}
$$

Can't continue to insist on single poles: to find second candidate double poles are required.
one good initial integral and can work with its derivative basis

Another step up in complexity

One internal mass different from the other two (all non-zero): extra master integral!

$$
\frac{\partial}{\partial m_{2}^{2}} \vec{I}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\left(\begin{array}{cc}
f_{1}\left(s, m_{1}^{2}, m_{2}^{2}\right) & f_{2}\left(s, m_{1}^{2}, m_{2}^{2}\right) \\
-2 & 0
\end{array}\right)+\mathcal{O}(\epsilon) \\
\text { Internal mass appearing twice }
\end{array}\right] \vec{I}
$$

Solution at $\epsilon=0$, requires new function: integral over the solution for the first integral!

$$
W=\left(\begin{array}{ccc}
\omega_{0} & \omega_{1} & 0 \\
\partial_{m_{2}^{2}} \omega_{0} & \partial_{m_{2}^{2}} \omega_{1} & 0 \\
G_{0} & G_{1} & 1
\end{array}\right), \quad G_{i} \equiv-2 \int d m_{2}^{2} \omega_{i}
$$

Integrand analysis: new master integral has extra residue (differential of the 3rd kind)can indeed be written in terms of a complete elliptic integral of the third kind!

Another step up in complexity

Perform the splitting of W block-by-block (minimal irreducible complexity)
$W_{u}=\left(\begin{array}{lll}1 & \tau & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,

$$
\frac{\partial}{\partial \tau} W_{u}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) W_{u}
$$

$\vec{J}=T_{t d} \cdot\left(\begin{array}{lll}\epsilon & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \epsilon\end{array}\right) \cdot W_{s s}^{-1} \vec{I}$$\Rightarrow$

$$
d \vec{J}=\epsilon G M\left(s, m_{1}^{2}, m_{2}^{2}\right) \vec{J}
$$

only ω_{0} and G_{0} appear, $\partial_{m^{2}} \omega_{0}$ does not!
introduces G_{0} into the problem

Alternative: generalised splitting

Another approach leads to the exact same result: define a generalised splitting for W :

$$
W_{u}^{b}=\left(\begin{array}{ccc}
1 & \tau & 0 \\
0 & 1 & 0 \\
0 & G_{1}-\tau G_{0} & 1
\end{array}\right), \quad \frac{\partial}{\partial \tau} W_{u}^{b}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & -G_{0} & 0
\end{array}\right) W_{u}^{b}
$$

More examples from this category

Gauss-Manin connections correspond to the homogeneous system at $\epsilon=$ (derivative with respect to the internal mass squared).

$$
G M=\left(\begin{array}{lll}
0 & 1 & 0 \\
* & * & 0 \\
0 & 0 & 0
\end{array}\right) \quad G M=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
* & * & 0 & 0 \\
* & 0 & 0 & 0 \\
* & 0 & 0 & 0
\end{array}\right) \quad G M=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
* & * & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

* denotes rational (algebraic) functions

Going beyond (e)MPLs

Not all Feynman integral families evaluate to (e)MPLs. With increasing complexity, special functions defined on even more complicated geometries are required.

Elliptic Curve / Torus (genus 1, complex 1D)

[Pögel Wang Weinzierl `22]

Calabi-Yau Manifolds: Collection of relevant facts

- A Calabi-Yau n-fold of complex dimension n is a compact Kähler manifold with a unique holomorphic ($n, 0$)-form that vanishes nowhere.
- can be defined through polynomial constraints.
- elliptic curves are Calabi-Yau 1-folds
- shape and properties described by period integrals:

$$
\begin{aligned}
\omega: \quad H_{n} \times H_{d R}^{n} & \rightarrow \mathbb{C} \\
(\gamma, \alpha) & \mapsto \omega_{\gamma, \alpha}=\int_{\gamma} \alpha
\end{aligned}
$$

- period matrix $\Pi_{i j}=\omega_{\gamma_{i}, \alpha_{j}}$ is constructed from the independent cycles and differential forms. For one-parameter families of Calabi-Yaus parametrised by a variable z, the period matrix $\Pi(z)$
$>$ satisfies linear differential equations: $d \Pi(z)=G M(z) \Pi(z)$
$>$ takes on a hierarchical logarithmic structure at a point of maximal unipotent monodromy (MUM point)
> obeys quadratic relations (Griffiths transversality conditions)

Banana Graphs: the Calabi-Yau case

Perfect playground: banana graph integral families with equal, non-zero internal masses m^{2}. An $(n+1)$-loop banana graph corresponds to a one-parameter family of n-dim. Calabi-Yaus.

$$
\frac{\partial}{\partial m^{2}} \vec{I}_{\text {ban }}^{(n+1)}=\left[\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & 0 \\
0 & \ldots & 0 & 0 & 1 \\
* & * & * & * & *
\end{array}\right)+\mathcal{O}(\epsilon)\right] \vec{I}_{\text {ban }}^{(n+1)}
$$

derivative basis Calabi-Yau operator (tadpole neglected)

$$
W=\left(\begin{array}{cccc}
\omega_{0} & \omega_{1} & \cdots & \omega_{n} \\
\partial_{m^{2}} \omega_{0} & \partial_{m^{2}} \omega_{1} & \cdots & \partial_{m^{2}} \omega_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{m^{2}}^{(n)} \omega_{0} & \partial_{m^{2}}^{(n)} \omega_{1} & \cdots & \partial_{m^{2}}^{(n)} \omega_{n}
\end{array}\right)
$$

Wronskian constructed from
 Calabi-Yau period integrals

Banana Graphs: the Calabi-Yau case

Calabi-Yau period integrals satisfy a known unipotent differential equation

Banana Graphs: the Calabi-Yau case

The semi-simple part $W_{s s}$ can be simplified using Griffiths transversality conditions

Construction of the basis transformation to an ϵ-factorised form in principle as before:

New step: require new functions which are (iterated) integrals over the periods, the \boldsymbol{Y} invariants and algebraic functions. Originate from the $\boldsymbol{\mathcal { O }}(\boldsymbol{\epsilon})$-terms!

Example: 3-loop banana $z=m^{2} / s$

$$
\begin{aligned}
& G M_{b a n}^{(3)}(z)=\left(\begin{array}{ccc}
+ \frac{G_{2}}{\omega_{0}} & * \frac{1}{\omega_{0}} & 0 \\
* \omega_{0}+* \frac{G_{2}^{2}}{\omega_{0}} & *+* \frac{G_{2}}{\omega_{0}} & * \frac{1}{\omega_{0}} \\
* \omega_{0}^{2}+* G_{2} \omega_{0}+* \frac{G_{2}^{3}}{\omega_{0}} & * \omega_{0}+* \frac{G_{2}^{2}}{\omega_{0}} & *+* \frac{G_{2}}{\omega_{0}}
\end{array}\right) \\
& G_{2}(z)=\int d z \frac{G_{1}(z)}{\sqrt{(1-4 z)(1-16 z)} \omega_{0}(z)} \\
& G_{1}(z)=\int d z \frac{2(1-8 z)(1+8 z)^{3} \omega_{0}^{2}(z)}{z^{2}(1-4 z)^{2}(1-16 z)^{2}}
\end{aligned}
$$

* denotes algebraic functions

Overview of the procedure: the general recipe

Work bottom-up, sector-by-sector and employ for every sector the following strategy, which leads to a sequence of rotations on the initial basis:

1. Choose a starting basis free of double poles in the UV and IR and perform rational (algebraic) basis transformations such that the differential equations are for $\epsilon=0$ manifestly put into minimal irreducible blocks. For each block, choose the first integral such that its integrand corresponds to the holomorphic differential of the first kind on the underlying geometry. Fill up the basis with its derivatives. [This uses the information from integrand analysis and the study of the maximal cuts].
2. Construct the Wronskian, split it into a unipotent and semi-simple part and rotate away the latter.
3. Perform ϵ-rescalings to match transcendental weights (afterwards, non- ϵ-factorised terms appear frequently only below the diagonal of the Gauss-Manin connection)
4. Remove any remaining undesired terms (including subsector contributions)
a. by integrating out total derivatives of functions already present
b. by introducing new functions ((iterated) integrals of functions already present)

> Conjecture: following these steps, it is possible to find a (generalization of the) canonical form for any Feynman integral family!

More examples (last one beyond one Calabi-Yau)

new function required by subsector contributions

topsector is not elliptic, but a next-to-top sector is new functions through elliptic sector and subsector contributions
[Bonciani Duca Frellesvig Henn Moriello Smirnov `16] topsector contains two coupled elliptic curves [Duhr Klemm Nega Tancredi `22]

Summary and Outlook

- Proposal of a procedure conjectured to derive generalized canonical differential equations for any Feynman integral family with any number of scales almost algorithmically
- Critical step: splitting of Wronskian (utilize property of unipotence)
- Still, many open questions remain:
> Can the integrand analysis be generalised further beyond the polylogarithmic case? Would help to find a good initial basis.
$>$ How does the procedure work in more complicated cases? Are further steps needed?
$>$ What are the properties of the new functions? What's the resulting function space? Are there non-trivial relations among the resulting iterated integrals?
$>$ How do these new functions contribute to an actual physics problem?

Thank you for your attention!

