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Key for precise theoretical predictions

• Traditionally: ubiquitous in scattering 

amplitude calculations for collider 

observables in perturbative Quantum 

Field Theory framework

• More recently: gravitational-wave 

observables calculated in Post-

Minkowskian expansion (black hole / 

neutron star scattering)
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Why study Feynman integrals?



Integration-by-parts 

identities

[Chetyrkin Tkachov `81]

dimensionally regularised scalar 

Feynman integral families
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Differential Equations Method 

න ෑ

𝑗=1

𝑙
𝑑𝑑𝑘𝑗

(2𝜋)𝑑

𝑁1
𝑏1 … 𝑁𝑚

𝑏𝑚

𝐷1
𝑎1 … 𝐷𝑛

𝑎𝑛

𝑑 = 𝑑0 − 2𝜖 , 𝑑0 ∈ ℕ 

vector space structure with 

basis of master integrals

Ԧ𝐼 = 𝐼1 Ԧ𝑧, 𝜖 , … , 𝐼𝑁 Ԧ𝑧, 𝜖

kinematic

variables

Choice is a 

priori free

[Kotikov `93; Remiddi `97; 

Gehrmann Remiddi `99; ...]

Gauss-Manin connection

matrix of differential 1-froms 

(fuchsian & entirely rational!)

The master integrals satisfy a system of partial differential equations (DEs) w.r.t. Ԧ𝑧 : 

𝑑 Ԧ𝐼 = 𝐺𝑀 Ԧ𝑧, ϵ Ԧ𝐼



Change of basis

Ԧ𝐽 = 𝑇 Ԧ𝑧, 𝜖 Ԧ𝐼
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𝜖-factorised form of differential equations

𝑑 Ԧ𝐼 = 𝐺𝑀 Ԧ𝑧, ϵ Ԧ𝐼

DEs are hard to solve for arbitrary choice of basis, solution becomes straight-forward in 

𝝐-factorised form.

𝑑 Ԧ𝐽 = 𝜖 𝐺𝑀𝜖 Ԧ𝑧 Ԧ𝐽

does not 

depend on 𝜖!

Solution:    Ԧ𝐽 Ԧ𝑧, 𝜖 = ℙ 𝑒𝑥𝑝 𝜖 𝛾
𝐺𝑀𝜖 Ԧ𝑧′ Ԧ𝐽( Ԧ𝑧0, 𝜖)

path ordering boundary conditionpath from Ԧ𝑧0 to Ԧ𝑧

At every order in 𝜖, find Chen iterated integrals:

Ԧ𝐽 Ԧ𝑧, 𝜖 = 

𝑘=0

∞

𝜖𝑘 Ԧ𝐽(𝑘) Ԧ𝑧 ⇒ Ԧ𝐽(𝑘) Ԧ𝑧 ~ 

𝑗=0

𝑘

න
𝛾

𝐺𝑀𝜖 ∙ ⋯ ∙ 𝐺𝑀𝜖

𝑗

Ԧ𝐽(𝑘−𝑗) Ԧ𝑧0

[Chen `77]

assume: normalised with a power of 𝜖 

such that its 𝜖-expansion starts at 𝒪(𝜖0) 
𝑗-fold iterated integral

[Kotikov `12; 

Henn `13; Lee `13]

“ “



Conjecturally, a basis satisfying differential equations in 𝜖-factorised form always exists. Even 

up to constant rotations, it is in fact not unique! Some bases are better than others. 
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Canonical differential equations

Simple example: massless Box family (2 master integrals, 𝑧 = 𝑠/𝑡)

𝑑 Ԧ𝐼 =

0 0
2(2𝜖 − 1)

𝑧 (1 + 𝑧)
−

1 + 𝑧 + 𝜖

𝑧 (1 + 𝑧)
𝑑𝑧 Ԧ𝐼

𝑇1 =
1 0

2 ln(1 + 𝑧) 𝑧/2
𝑑 Ԧ𝐽1 = 𝜖

0 0
2𝑧 + ln(1 + 𝑧)

𝑧 (1 + 𝑧)

−1

𝑧 (1 + 𝑧)
𝑑𝑧 Ԧ𝐽1

𝑇2 =
2𝜖 − 1 0

0 𝜀 𝑧

𝑑 Ԧ𝐽2 = 𝜖

0 0
2

1 + 𝑧

−1

𝑧 (1 + 𝑧)
𝑑𝑧 Ԧ𝐽2

=
0 0

2 𝑑ln(1 + 𝑧) 𝑑 ln(1 + 𝑧) − 𝑑 ln(𝑧)

Canonical Basis

𝑑log-forms with rational 

(algebraic) arguments

[Henn `13]

Resulting iterated integrals 

evaluate to Multiple 

Polylogarithms (MPLs)



In a nutshell, they can be defined as iterated integrals of 

rational functions with simple poles on the Riemann sphere
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Multiple Polylogarithms (MPLs)

𝐺 𝑎1, 𝑎2, … , 𝑎𝑛; 𝑥 = න
0

𝑥 𝑑𝑡1

𝑡1 − 𝑎1
𝐺 𝑎2, … , 𝑎𝑛; 𝑡1 =

length / 

transcendental weight 

[…, Remiddi Vermaseren `99, 

Goncharov `00, …]

𝑑

𝑑𝑥
𝐺 𝑎1, 𝑎2, … , 𝑎𝑛; 𝑥 =

1

𝑥 − 𝑎1
𝐺 𝑎2, … , 𝑎𝑛; 𝑥

transcendental weight / length decreased by one

They have at most logarithmic singularities and satisfy a simple 

inhomogeneous, unipotent differential equation:

= න
0

𝑥 𝑑𝑡1

𝑡1 − 𝑎1
න

0

𝑡1 𝑑𝑡2

𝑡2 − 𝑎2
… න

0

𝑡𝑛−1 𝑑𝑡𝑛

𝑡𝑛 − 𝑎𝑛

such functions are called pure functions
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Canonical differential equations and pure functions

Ԧ𝐽(𝑘) Ԧ𝑧  can be written in terms of 

a pure linear combination of 

MPLs of transcendental weight 𝑘

Ԧ𝐽 Ԧ𝑧, 𝜖 = σ𝑘=0
∞ 𝜖𝑘 Ԧ𝐽(𝑘) Ԧ𝑧  

satisfies a canonical 

differential equation

“Ԧ𝐽 is pure and of uniform transcendental weight (UT)“

⇒
⇐

Canonical Form: 𝑑 Ԧ𝐽 = 𝜖 

𝑛

𝑚𝑛 𝑑log(𝛼𝑛) Ԧ𝐽

constant, rational 

matrices

letters 

(rational functions)

Solution:    Ԧ𝐽 Ԧ𝑧, 𝜖 = ℙ 𝑒𝑥𝑝 𝜖 𝛾
σ𝑛 𝑚𝑛 𝑑log(𝛼𝑛 Ԧ𝑧′ ) Ԧ𝐽( Ԧ𝑧0, 𝜖)



MPLS: iterated integrals of rational functions with simple poles on the Riemann sphere
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Smallest step up in complexity: the elliptic case

Generalization on torus: elliptic multiple polylogarithms (eMPLs)

cohomology of torus can’t be spanned by 

differential forms with simples poles only!

[Brown Levin `11; Brödel Mafra Matthes Schlotterer

`14; Brödel Dulat Duhr Penante Tancredi `17,`18]

Way to avoid higher poles: add infinite 

tower of transcendental kernels

BUT:

Resulting functions satisfy generalised unipotent differential equations. We 

have a notion of purity!  

Generalisation of the idea of a canonical basis possible?

Important property:



Important Observation: this information can be 

extracted by studying the maximal cuts of the 

Feynman integrals. 

The Wronskian informs us on the function 

space required to decouple the differential 

equations at 𝜖 = 0.

➢ polylogarithmic case: 𝑊 consists of rational 

(algebraic) functions and (poly)logarithms

➢ elliptic case: 𝑊 contains complete elliptic 

integrals

Knowledge of the solution of the differential equations at 𝝐 = 𝟎 is crucial to achieve the 

factorisation of 𝜖
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The information encoded in the Wronskian

𝑑 Ԧ𝐼 = 𝐺𝑀0 Ԧ𝑧 + 𝒪(𝜖) Ԧ𝐼

𝑑𝑊( Ԧ𝑧) = 𝐺𝑀0 Ԧ𝑧 𝑊 Ԧ𝑧

Ԧ𝐽 = 𝑊−1 Ԧ𝑧 Ԧ𝐼

𝑑 Ԧ𝐽 = 𝒪(𝜖) Ԧ𝐽

𝑊 Ԧ𝑧 : fundamental matrix of 

solutions, also called 

Wronskian or period matrix 

[Primo Tancredi `16, 

Frellesvig Papadopoulos ´17, 

Bosma Sogaard Zhang `17]



Examples:

10Fabian Wagner (TUM) | 𝜖-factorised differential equations beyond polylogarithms | ETH Zürich, September 5th, 2023

From unipotent to canonical

sunrise graph with two / three equal non-vanishing 

internal masses on maximal cut

MPL case (two masses)

𝜕

𝜕𝑚2
Ԧ𝐼 =

0 1
2

𝑚2 (𝑠 − 4𝑚2)

10𝑚2 − 𝑠

𝑚2 (𝑠 − 4𝑚2)
+ 𝒪(𝜖) Ԧ𝐼

𝑟 𝑠, 𝑚2 = 𝑠(𝑠 − 4𝑚2)

not unipotent

Split 𝑊 into a unipotent and semi-simple part:    𝑊 = 𝑊𝑠𝑠 ∙ 𝑊𝑢

𝑊𝑠𝑠 =

1

𝑟(𝑠, 𝑚2)
0

2𝑠

𝑟(𝑠, 𝑚2)3

1

𝑚2 (𝑠 − 4𝑚2)

, 𝑊𝑢 =
1 ln

𝑠−𝑟(𝑠,𝑚2)

𝑠+𝑟(𝑠,𝑚2)

0 1
,  

𝜕

𝜕𝑚2 𝑊𝑢 =
0

𝑠

𝑚2 𝑟(𝑠,𝑚2)

0 0
𝑊𝑢

and rotate away the semi-simple part:     Ԧ𝐼 = 𝑊𝑠𝑠 ∙ Ԧ𝐼’

mixed transcendental 

weights!

𝑊 =

1

𝑟(𝑠, 𝑚2)

ln
𝑠 − 𝑟(𝑠, 𝑚2)
𝑠 + 𝑟(𝑠, 𝑚2)

𝑟(𝑠, 𝑚2)

𝜕

𝜕𝑚2

1

𝑟(𝑠, 𝑚2)

𝜕

𝜕𝑚2

ln
𝑠 − 𝑟(𝑠, 𝑚2)
𝑠 + 𝑟(𝑠, 𝑚2)

𝑟(𝑠, 𝑚2)
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From unipotent to canonical

MPL case (two masses)

Split 𝑊 into a unipotent and semi-simple part:   𝑊 = 𝑊𝑠𝑠 ∙ 𝑊𝑢

Rotate away the semi-simple part:   Ԧ𝐼 = 𝑊𝑠𝑠 ∙ Ԧ𝐼’

𝜕

𝜕𝑚2
Ԧ𝐼′ =

0
𝑠

𝑚2 𝑟(𝑠, 𝑚2)
0 0

+ 𝒪 𝜖 Ԧ𝐼′

canonical (contains 

only dlog-forms)

𝑊𝑠𝑠 =

1

𝑟(𝑠, 𝑚2)
0

2𝑠

𝑟(𝑠, 𝑚2)3

1

𝑚2 (𝑠 − 4𝑚2)

𝑑 Ԧ𝐽 = 𝜖 𝐺𝑀𝑐 𝑠, 𝑚2 Ԧ𝐽

Integrates out a total derivative 

coming from 𝒪 𝜖 -terms

, 𝑊𝑢 =
1 ln

𝑠−𝑟(𝑠,𝑚2)

𝑠+𝑟(𝑠,𝑚2)

0 1
,  

𝜕

𝜕𝑚2 𝑊𝑢 =
0

𝑠

𝑚2 𝑟(𝑠,𝑚2)

0 0
𝑊𝑢

Ԧ𝐽 =

1 0

−
2(𝑠 + 2𝑚2)

𝑟(𝑠, 𝑚2)
1

∙
𝜖 0
0 1

Ԧ𝐼′

rescale first 

integral by 𝜖 !
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From unipotent to canonical

eMPL case (three masses)

𝜕

𝜕𝑚2
Ԧ𝐼 =

0 1
3(𝑠 − 𝑚2)

𝑚2 (𝑠 − 𝑚2)(𝑠 − 9𝑚2)
−

𝑠2 − 20𝑠 𝑚2 + 27 𝑚4

𝑚2 (𝑠 − 𝑚2)(𝑠 − 9𝑚2)
+ 𝒪(𝜖) Ԧ𝐼

𝑊 =
𝜔0(𝑠, 𝑚2) 𝜔1(𝑠, 𝑚2)

𝜕𝑚2 𝜔0(𝑠, 𝑚2) 𝜕𝑚2 𝜔1(𝑠, 𝑚2)

𝜔0 𝑠, 𝑚2 ~ 𝑎1 𝑠, 𝑚2 𝐾(𝑎2 𝑠, 𝑚2 )

Split 𝑊 into a unipotent and semi-simple part:   𝑊 = 𝑊𝑠𝑠 ∙ 𝑊𝑢

𝜔1 𝑠, 𝑚2 ~ 𝑎1 𝑠, 𝑚2 𝐾(1 − 𝑎2 𝑠, 𝑚2 )

not unipotent

Complete elliptic integral 

of the first kindaround the MUM point Τ𝑚2 𝑠 = 0 :

𝜔0 𝑠, 𝑚2 = power series in Τ𝑚2 𝑠 

𝜔1 𝑠, 𝑚2 = 𝜔0 𝑠, 𝑚2 ln( Τ𝑚2 𝑠) + power series in Τ𝑚2 𝑠 

holomorphic

algebraic functions

single-logarithmic

periods
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From unipotent to canonical

eMPL case (three masses)

Split 𝑊 into a unipotent and semi-simple part:   𝑊 = 𝑊𝑠𝑠 ∙ 𝑊𝑢

𝑊𝑠𝑠 =

𝜔0 0

𝜕𝑚2 𝜔0

1

𝑚2 𝑠 − 𝑚2 𝑠 − 9𝑚2 𝜔0

𝑊𝑢 =
1

𝜔1

𝜔0

0 1
,        

𝜕

𝜕𝜏
𝑊𝑢 =

0 1
0 0

𝑊𝑢 ,       𝜏 =
𝜔1

𝜔0

As in the polylogarithmic two-mass case: rotate with 𝑾𝒔𝒔
−𝟏, rescale the first integral with 

𝝐 and integrate out a total derivative

Ԧ𝐽 =
1 0

𝑠2−30𝑠 𝑚2+45𝑚4

2
𝜔0

2 1
∙

𝜖 0
0 1

∙ 𝑊𝑠𝑠
−1 Ԧ𝐼                            𝑑 Ԧ𝐽 = 𝜖 𝐺𝑀𝜖 𝑠, 𝑚2 Ԧ𝐽

Legendre relation: 𝜔0 𝜕𝑚2 𝜔1 − 𝜔1 𝜕𝑚2 𝜔0 = 𝑚2 𝑠 − 𝑚2 𝑠 − 9𝑚2 −1

⇒
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From unipotent to canonical

eMPL case (three masses)

only 𝜔0 appears, 𝜕𝑚2 𝜔0 does not!    

[Adams Weinzierl `18]

Further: this basis can indeed be expressed in terms of pure eMPLs!

[Broedel Duhr Dulat Penante Tancredi `18]

Strong support that this might indeed be the elliptic generalisation of 

the idea of a canonical differential equation

𝐺𝑀𝜖
𝑚2

𝑠, 𝑚2 =

−𝑠2 + 30𝑠 𝑚2 − 45𝑚4

2𝑚2(𝑠 − 𝑚2)(𝑠 − 9𝑚2)

𝜔0
2

𝑚2(𝑠 − 𝑚2)(𝑠 − 9𝑚2)

(3𝑚2 + 𝑠)4

4𝑚2(𝑠 − 𝑚2)(𝑠 − 9𝑚2)𝜔0
2

−𝑠2 + 30𝑠 𝑚2 − 45𝑚4

2𝑚2(𝑠 − 𝑚2)(𝑠 − 9𝑚2)

Arrived at a known 𝜖-factorised form 



𝐼 ~ න ෑ

𝑖=1

𝑛

𝑑𝑥𝑖 ℱ 𝑥𝑖 , Ԧ𝑧 [𝒢 𝑥𝑖 , Ԧ𝑧 ]𝜖

Parametric representation of the considered integral family (Feynman, Baikov, …): 
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Integrand / Leading Singularity Analysis

neglected (expanding in 𝜖 only adds logarithms) 

Try to write this as a sum over 𝒅log-forms (in polylogarithmic case): 

ς𝑖=1
𝑛 𝑑𝑥𝑖 ℱ 𝑥𝑖 , Ԧ𝑧 = σ𝑖 𝑐𝑖 𝑑 log(𝑓1,𝑖) ∧ 𝑑 log 𝑓2,𝑖 ∧ ⋯ ∧ 𝑑 log(𝑓𝑛,𝑖) 

leading singularities (multi-variate / iterative residues)   

Conjecturally, master integrals whose integrands admit such a 𝒅log-form with constant 

leading singularities (numbers!) evaluate to pure functions.

[Arkani Hamed et al `10; Henn `13; Henn Mistlberger Smirnov Wasser `20]

in many cases sufficient to find a canonical basis
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Integrand / Leading Singularity Analysis

In the elliptic case, examples indicate that the conjecture can be generalised for integrands 

that look as follows: 

ς𝑖=1
𝑛 𝑑𝑥𝑖 ℱ 𝑥𝑖 , Ԧ𝑧 = σ𝑖 𝑐𝑖 𝑑 log(𝑓1,𝑖) ∧ ⋯ ∧ 𝑑ℰ4( , 𝑥𝑗; Ԧ𝑎) ∧ ⋯ ∧ 𝑑 log(𝑓𝑛,𝑖) 

kernel of eMPLs for constant Ԧ𝑎

𝑑ℰ4 , 𝑥𝑗; Ԧ𝑎 =
𝑑𝑥𝑗

𝑃4(𝑥𝑗)
, 𝑃4 𝑥 = 𝑥 − 𝑎1 𝑥 − 𝑎2 𝑥 − 𝑎3 𝑥 − 𝑎4 , Ԧ𝑎 = 𝑎1, 𝑎2, 𝑎3, 𝑎4

𝟎
𝟎

𝟎
𝟎

Can’t continue to insist on single poles: to find second candidate double poles are required.

one good initial integral and can work with its derivative basis 

differential of 1st kind



𝜕

𝜕𝑚2
2

Ԧ𝐼 =
0 1 0

𝑓1(𝑠, 𝑚1
2, 𝑚2

2) 𝑓2(𝑠, 𝑚1
2, 𝑚2

2) 0
−2 0 0

+ 𝒪(𝜖) Ԧ𝐼

One internal mass different from the other two (all non-zero): extra master integral! 
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Another step up in complexity

Solution at 𝜖 = 0, requires new function: integral over the solution for the first integral!

𝑊 =

𝜔0 𝜔1 0
𝜕𝑚2

2 𝜔0 𝜕𝑚2
2 𝜔1 0

𝐺0 𝐺1 1

, 𝐺𝑖 ≡ −2 න 𝑑𝑚2
2 𝜔𝑖

Integrand analysis: new master integral has extra residue (differential of the 3rd kind)

Internal mass appearing twice

can indeed be written in terms of a complete elliptic integral of the third kind!



Perform the splitting of 𝑊 block-by-block (minimal irreducible complexity)

18Fabian Wagner (TUM) | 𝜖-factorised differential equations beyond polylogarithms | ETH Zürich, September 5th, 2023

Another step up in complexity

𝑊𝑢 =
1 𝜏 0
0 1 0
0 0 1

,
𝜕

𝜕𝜏
𝑊𝑢 =

0 1 0
0 0 0
0 0 0

𝑊𝑢

Ԧ𝐽 = 𝑇𝑡𝑑 ∙
𝜖 0 0
0 1 0
0 0 𝜖

∙ 𝑊𝑠𝑠
−1 Ԧ𝐼              ⇒       𝑑 Ԧ𝐽 = 𝜖 𝐺𝑀 𝑠, 𝑚1

2, 𝑚2
2 Ԧ𝐽

Not only total derivatives of 

rational functions and 𝜔0 
only 𝜔0 and 𝐺0 appear, 

𝜕𝑚2 𝜔0 does not!    

contains 𝜔0 

and 𝜕𝑚2 𝜔0    

introduces 𝐺0 into the problem 



Another approach leads to the exact same result: define a generalised splitting for 𝑊 :
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Alternative: generalised splitting

𝑊𝑢
𝑏 =

1 𝜏 0
0 1 0
0 𝐺1 − 𝜏 𝐺0 1

,
𝜕

𝜕𝜏
𝑊𝑢

𝑏 =
0 1 0
0 0 0
0 −𝐺0 0

𝑊𝑢
𝑏

Ԧ𝐽 = 𝑇𝑡𝑑 ∙
𝜖 0 0
0 1 0
0 0 𝜖

∙ 𝑊𝑠𝑠
−1 Ԧ𝐼              ⇒       𝑑 Ԧ𝐽 = 𝜖 𝐺𝑀 𝑠, 𝑚1

2, 𝑚2
2 Ԧ𝐽

𝐺𝑖 and 𝜔𝑖 have 

same weight!

removes total 

derivatives including 

also 𝐺0 

same result as with block-

by-block approachcontains 𝜔0 , 𝑮𝟎 

and 𝜕𝑚2 𝜔0    



Gauss-Manin connections correspond to the homogeneous system at 𝜖 = (derivative with 

respect to the internal mass squared).
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More examples from this category

𝐺𝑀 =
0 1 0
∗ ∗ 0
0 0 0

𝐺𝑀 =

0 1
∗ ∗

0 0
0 0

∗ 0
∗ 0

0 0
0 0

𝐺𝑀 =

0 1 0
∗ ∗ 0
∗ 0 0

0 0 0
0 0 0
0 0 0

∗ 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

∗ denotes rational (algebraic) functions



Not all Feynman integral families evaluate to (e)MPLs. With increasing complexity, special 

functions defined on even more complicated geometries are required.
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Going beyond (e)MPLs

Elliptic Curve / Torus

(genus 1, complex 1D)

generalisations
higher

genus

higher

dimensional

varieties

Hyperelliptic 

curves, …

Calabi-Yau 

manifolds

How does our previous idea of a canonical 

differential equation generalise further?

[Pögel Wang Weinzierl `22]



▪ A Calabi-Yau 𝒏-fold of complex dimension 𝑛 is a compact Kähler 

manifold with a unique holomorphic (𝑛, 0)-form that vanishes nowhere.

▪ can be defined through polynomial constraints.

▪ elliptic curves are Calabi-Yau 1-folds

▪ shape and properties described by period integrals:

▪ period matrix Π𝑖𝑗 = 𝜔𝛾𝑖,𝛼𝑗
 is constructed from the independent cycles 

and differential forms. For one-parameter families of Calabi-Yaus 

parametrised by a variable 𝑧, the period matrix Π(z)

➢ satisfies linear differential equations: 𝑑Π(𝑧) = 𝐺𝑀(𝑧) Π(𝑧)

➢ takes on a hierarchical logarithmic structure at a point of maximal 

unipotent monodromy (MUM point)

➢ obeys quadratic relations (Griffiths transversality conditions)
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Calabi-Yau Manifolds: Collection of relevant facts

𝜔: 𝐻𝑛 × 𝐻𝑑𝑅
𝑛 → ℂ

𝛾, 𝛼 ⟼ 𝜔𝛾,𝛼 = න
𝛾

𝛼



𝜕

𝜕𝑚2
Ԧ𝐼𝑏𝑎𝑛

(𝑛+1)
=

0 1 0 … 0
0 0 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 … 0 0 1
∗ ∗ ∗ ∗ ∗

+ 𝒪(𝜖) Ԧ𝐼𝑏𝑎𝑛
(𝑛+1)

Perfect playground: banana graph integral families with equal, non-zero internal masses 𝑚2. 

An (𝑛 + 1)-loop banana graph corresponds to a one-parameter family of 𝑛-dim. Calabi-Yaus.
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Banana Graphs: the Calabi-Yau case

Calabi-Yau operator

Wronskian 

constructed from 

Calabi-Yau period 

integrals 

derivative basis 

(tadpole neglected)

𝑊 =

𝜔0 𝜔1

𝜕𝑚2 𝜔0 𝜕𝑚2 𝜔1

⋯ 𝜔𝑛

⋯ 𝜕𝑚2 𝜔𝑛

⋮ ⋮

𝜕
𝑚2
(𝑛)

𝜔0 𝜕
𝑚2
(𝑛)

𝜔1

⋱ ⋮

⋯ 𝜕
𝑚2
(𝑛)

𝜔𝑛



Calabi-Yau period integrals satisfy a known unipotent differential equation

𝐺𝑀𝐶𝑌 =

0 1 0 0 ⋯ ⋯ ⋯ 0
0 0 𝑌1 0 ⋱ ⋱ ⋱ ⋮
0 0 0 𝑌2 ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ 𝑌2 0 0
⋮ ⋱ ⋱ ⋱ ⋱ 0 𝑌1 0
⋮ ⋱ ⋱ ⋱ ⋱ 0 0 1
0 ⋯ ⋯ ⋯ ⋯ 0 0 0

24Fabian Wagner (TUM) | 𝜖-factorised differential equations beyond polylogarithms | ETH Zürich, September 5th, 2023

Banana Graphs: the Calabi-Yau case

𝑊 = 𝑊𝑠𝑠 ∙ 𝑊𝑢 , 𝜏 =
𝜔1

𝜔0
,

𝜕

𝜕𝜏
𝑊𝑢 = 𝐺𝑀𝐶𝑌 ∙ 𝑊𝑢

𝑌-invariants

lower 

triangular

upper triangular with 

unit diagonal

single-logarithmic 

holomorphic



Ԧ𝐽𝑏𝑎𝑛
(𝑛+1)

= 𝑇𝑛𝑓 ∙ 𝑇𝑡𝑑 ∙

𝜖𝑛 0 ⋯ 0
0 ⋱ ⋱ ⋮
⋮ ⋱ 𝜖 0
0 ⋯ 0 1

∙ 𝑊𝑠𝑠
−1 Ԧ𝐼𝑏𝑎𝑛

𝑛+1
⇒ 𝑑 Ԧ𝐽𝑏𝑎𝑛

(𝑛+1)
= 𝜖 𝐺𝑀𝑏𝑎𝑛

(𝑛+1)
(𝑠, 𝑚2) Ԧ𝐽𝑏𝑎𝑛

(𝑛+1)

Banana Graphs: the Calabi-Yau case

The semi-simple part 𝑊𝑠𝑠 can be simplified using Griffiths transversality conditions
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𝑍 = 𝑊 ∙ Σ ∙ 𝑊𝑇

algebraic functions intersection form

In derivative basis:

Σ =

⋰ 0 0 1
⋰ 0 −1 0
⋰ 1 0 0
⋰ ⋰ ⋰ ⋰

Construction of the basis transformation to an 𝜖-factorised form in principle as before: 

𝜖-rescalings reflect hierarchical logarithmic 

structure of periods (at MUM point) 

New step: require new functions which are (iterated) integrals over the periods, the 𝒀-

invariants and algebraic functions. Originate from the 𝓞(𝝐)-terms!

[Pögel Wang Weinzierl `22]



Example: 3-loop banana
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𝐺𝑀𝑏𝑎𝑛
3

𝑧 =

∗ + ∗
𝐺2

𝜔0
∗

1

𝜔0
0

∗ 𝜔0 + ∗
𝐺2

2

𝜔0
∗ + ∗

𝐺2

𝜔0
∗

1

𝜔0

∗ 𝜔0
2 + ∗ 𝐺2 𝜔0 + ∗

𝐺2
3

𝜔0
∗ 𝜔0 + ∗

𝐺2
2

𝜔0
∗ + ∗

𝐺2

𝜔0

𝑧 = Τ𝑚2 𝑠

∗ denotes algebraic functions

𝐺2 𝑧 = න 𝑑𝑧
𝐺1 𝑧

1 − 4𝑧 1 − 16𝑧 𝜔0(𝑧)

𝐺1 𝑧 = න 𝑑𝑧
2(1 − 8𝑧)(1 + 8𝑧)3𝜔0

2 𝑧

𝑧2 (1 − 4𝑧)2 (1 − 16𝑧)2



Work bottom-up, sector-by-sector and employ for every sector the following strategy, which 

leads to a sequence of rotations on the initial basis:

1. Choose a starting basis free of double poles in the UV and IR and perform rational (algebraic) 

basis transformations such that the differential equations are for 𝜖 = 0 manifestly put into minimal 

irreducible blocks. For each block, choose the first integral such that its integrand corresponds to 

the holomorphic differential of the first kind on the underlying geometry. Fill up the basis with its 

derivatives. [This uses the information from integrand analysis and the study of the maximal cuts].

2. Construct the Wronskian, split it into a unipotent and semi-simple part and rotate away the latter.

3. Perform 𝝐-rescalings to match transcendental weights (afterwards, non-𝜖-factorised terms appear 

frequently only below the diagonal of the Gauss-Manin connection)

4. Remove any remaining undesired terms (including subsector contributions)

a. by integrating out total derivatives of functions already present

b. by introducing new functions ((iterated) integrals of functions already present)
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Overview of the procedure: the general recipe

Conjecture: following these steps, it is possible to find a (generalization of the) canonical 

form for any Feynman integral family!
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More examples (last one beyond one Calabi-Yau)

new function required by subsector contributions

topsector is not elliptic, but a next-to-top sector is 

new functions through elliptic sector and subsector contributions

topsector contains two coupled elliptic curves

[Bonciani Duca Frellesvig Henn Moriello Smirnov `16]

[Duhr Klemm Nega Tancredi `22]



▪ Proposal of a procedure conjectured to derive generalized canonical differential equations 

for any Feynman integral family with any number of scales almost algorithmically 

▪ Critical step: splitting of Wronskian (utilize property of unipotence) 

▪ Still, many open questions remain:

➢ Can the integrand analysis be generalised further beyond the polylogarithmic case? 

Would help to find a good initial basis. 

➢ How does the procedure work in more complicated cases? Are further steps needed?

➢ What are the properties of the new functions? What’s the resulting function space? 

Are there non-trivial relations among the resulting iterated integrals?

➢ How do these new functions contribute to an actual physics problem?
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Summary and Outlook

Thank you for your attention!
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