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Kinematic invariants:

Q2 = −q2, x =
Q2

2P.q

The cross section factorizes into

leptonic and hadronic tensor:
d2σ

dQ2dx
∼ LµνWµν

The hadronic tensor can be expressed through structure functions:

Wµν =
1

4π

∫
d4ξ exp(iqξ) ⟨P, |

[
Jem
µ (ξ), Jem

ν (ξ)
]
|P⟩

=
1

2x

(
gµν +

qµqν

Q2

)
FL(x ,Q

2) +
2x
Q2

(
PµPν +

qµPν + qνPµ

2x
− Q2

4x2
gµν

)
F2(x ,Q

2)

+ iϵµνρσ
qρSσ

q · P
g1(x ,Q

2) + iϵµνρσ
qρ

(
q · PSσ − q · SPσ

)
(q · P)2

g2(x ,Q
2)

FL, F2, g1 and g2 contain contributions from both, charm and bottom quarks.
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Theory of Deep Inelastic Scattering



At leading twist the structure functions factorize in terms of a Mellin convolution

F(2,L)(x ,Q
2) =

∑

j

Cj,(2,L)

(
x ,

Q2

µ2 ,
m2

µ2

)

︸ ︷︷ ︸
perturbative

⊗ fj(x , µ2)︸ ︷︷ ︸
nonpert.

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
⊗ denotes the Mellin convolution

f (x)⊗ g(x) ≡
∫ 1

0
dy
∫ 1

0
dz δ(x − yz)f (y)g(z) .

The subsequent calculations are performed in Mellin space, where ⊗ reduces to a multiplication, due to the Mellin
transformation

f̂ (N) =

∫ 1

0
dx xN−1f (x) .
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Factorization of the Structure Functions



Wilson coefficients:

Cj,(2,L)

(
N,

Q2

µ2
,

m2

µ2

)
= Cj,(2,L)

(
N,

Q2

µ2

)
+ Hj,(2,L)

(
N,

Q2

µ2
,

m2

µ2

)
.

At Q2 ≫ m2 the heavy flavor part

Hj,(2,L)

(
N,

Q2

µ2
,

m2

µ2

)
=

∑
i

Ci,(2,L)

(
N,

Q2

µ2

)
Aij

(
m2

µ2
,N

)
+O

(
m2

Q2

)
[Buza, Matiounine, Smith, van Neerven (Nucl.Phys.B (1996))]

factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements (OMEs) of local
operators Oi between partonic states j

Aij

(
m2

µ2
,N

)
= ⟨j | Oi | j⟩

OS
q = iN−1S

[
ψ̄γµ1 Dµ2 . . .DµNψ

]
− trace terms ,

OS
g = 2iN−2SSp

[
F a
µ1αDµ2 . . . F

α,a
µN

]
− trace terms

→ additional Feynman rules with local operator insertions for partonic matrix elements.

For F2(x ,Q2) : at Q2 ≳ 10m2 the asymptotic representation holds at the 1% level.
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Leading Order: [Witten (1976); Babcock, Sivers, Wolfram (1978); Shifman, Vainshtein, Zakharov (1978); Leveille, Weiler (1979); Glück, Reya

(1979); Glück, Hoffmann, Reya (1982)]

Next-to-Leading Order:
full m dependence (numeric) [Laenen, van Neerven, Riemersma, Smith (1993)]

Q2 ≫ m2: via IBP [Buza, Matiounine, Smith, Migneron, van Neerven (1996)]

Compact results via pFq ’s [Bierenbaum, Blümlein, Klein (2007)]

O(α2
sε) (for general N) [Bierenbaum, Blümlein, Klein (2008, 2009)]

Next-to-Next-to-Leading Order: Q2 ≫ m2

Moments (using MATAD [Steinhauser (2000)] ):
F2: N = 2...10(14) [Bierenbaum, Blümlein, Klein (2009)]
transversity: N = 1...13
Two masses m1 ̸= m2 → Moments N = 2,4,6 [Blümlein, Wißbrock (2011)]

Analytic solutions for ANS
qq,Q , Aqg,Q , Agq,Q , APS

qq,Q , APS
Qq [Blümlein et al (2010-2023)] , with recent extension to polarized

scattering.

Analytic two mass solutions for ANS
qq,Q , Aqg,Q , Agq,Q , APS

qq,Q , APS
Qq , Agg,Q [Blümlein et al (2017-2020)] , with recent

extension to polarized scattering.
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Status of OME Calculations



LNS
q,(2,L)(NF + 1) = a2

s

[
A(2),NS

qq,Q (NF + 1)δ2 + Ĉ(2),NS
q,(2,L)(NF )

]
+ a3

s

[
A(3),NS

qq,Q (NF + 1)δ2 + A(2),NS
qq,Q (NF + 1)C(1),NS

q,(2,L)(NF + 1) + Ĉ(3),NS
q,(2,L)(NF )

]
LPS

q,(2,L)(NF + 1) = a3
s

[
A(3),PS

qq,Q (NF + 1)δ2 + NF A(2),NS
gq,Q (NF )C̃

(1),NS
g,(2,L)(NF + 1) + NF

ˆ̃C(3),PS
q,(2,L)(NF )

]
LS

g,(2,L)(NF + 1) = a2
s A(1)

gg,Q(NF + 1)NF C̃(2)
g,(2,L)(NF + 1) + a3

s

[
A(3)

qg,Q(NF + 1)δ2 + A(1)
gg,Q(NF + 1)NF C̃(2)

g,(2,L)(NF + 1)

+ A(2)
gg,Q(NF + 1)NF C̃(1)

g,(2,L)(NF + 1) + A(1)
Qg (NF + 1)NF C̃(2),PS

q,(2,L)(NF + 1) + NF
ˆ̃C(3)

g,(2,L)(NF )
]

HPS
q,(2,L)(NF + 1) = a2

s

[
A(2),PS

Qq (NF + 1)δ2 + C̃(2),PS
q,(2,L)(NF + 1)

]
+ a3

s

[
A(3),PS

Qq (NF + 1)δ2 + A(2)
gq,Q(NF + 1)C̃(2)

g,(1,L)(NF + 1) + A(2),PS
Qq (NF + 1)C̃(1),NS

q,(2,L)(NF + 1) + C̃(3),PS
q,(2,L)(NF + 1)

]
HS

g,(2,L)(NF + 1) = as
[
A(1)

Qg (NF + 1)δ2 + C̃(1)
g,(2,L)(NF + 1)

]
+ a2

s

[
A(2)

Qg (NF + 1)δ2 + A(1)
Qg (NF + 1)C̃(1)

q,(2,L)(NF + 1) + A(1)
gg,Q(NF + 1)C̃(1)

g,(2,L)(NF + 1) + C̃(2)
g,(2,L)(NF + 1)

]
+ a3

s

[
A(3)

Qg (NF + 1)δ2 + A(2)
Qg (NF + 1)C̃(1)

q,(2,L)(NF + 1) + A(2)
gg,Q(NF + 1)C̃(1)

g,(2,L)(NF + 1)

+ A(1)
Qg (NF + 1)C̃(2),S

q,(2,L)(NF + 1) + A(1)
gg,Q(NF + 1)C̃(1)

g,(2,L)(NF + 1) + C̃(3)
g,(2,L)(NF + 1)

]
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The Wilson Coefficients at Large Q2



Matching conditions for parton distribution functions:

fk (NF + 2) + fk (NF + 2) = ANS
qq,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
·
[
fk (NF ) + fk (NF )

]
+

1

NF
APS

qq,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
· Σ(NF )

+
1

NF
Aqg,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
· G(NF ) ,

fQ(NF + 2) + fQ(NF + 2) = APS
Qq

(
NF + 2,

m2
1

µ2
,

m2
2

µ2
,

)
· Σ(NF ) + AQg

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
· G(NF ) ,

Σ(NF + 2) =

[
ANS

qq,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
+ APS

qq,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
+ APS

Qq

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)]
· Σ(NF )

+

[
Aqg,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
+ AQg

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)]
· G(NF ) ,

G(NF + 2) = Agq,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
· Σ(NF ) + Agg,Q

(
NF + 2,

m2
1

µ2
,

m2
2

µ2

)
· G(NF ) .
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The Variable Flavor Number Scheme



Massive Operator Matrix Elements
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The diagrams are given by propagators with operator insertions..
To deal with the operators we can resum them into propagator structures:

(∆.k)N →
∞∑

N=0

tN(∆.k)N =
1

1 − t ∆.k

N∑
j=0

(∆.k1)
j(∆.k2)

N−j →
∞∑

N≥0,j≤N

tN(∆.k1)
j(∆.k2)

N−j =
1

[1 − t ∆.k1][1 − t ∆.k2]

With the linear propagators we use IBP reductions.

We can derive a system of differential equations in t .

Operators induce additional
Feynman rules, e.g.:
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Technical aspects



f̂(t) =
∞∑

N=1

tN f̃(N)

f̃(N) =
1∫
0

dxxN−1 f(x)

f(x) = 1
2πi

i∞∫
−i∞

x−N f̃(N)dN

f̂ (t)→ f̃ (N) and f̂ (x)→ f̃ (N): calculable via recurrence equations

f̃ (N)→ f (x): calculable via differential equations

algorithms implemented in public packages Sigma [Scheider (’07-)] and
HarmonicSums [Ablinger et al. (’10-)]

but: algorithmic solution only possible if recurrences or differential equations factorize
to first order

Are f̂ (t) and f (x) directly connected?
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Relation between the different spaces
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Relation between the different spaces



f̂ (t) =
∞∑

N=1

f̃ (N)tN =
∞∑

N=1

1∫

0

dx ′ tNx ′N−1f (x ′) =

1∫

0

dx ′ t
1− tx ′ f (x

′)

Setting t = 1
x we obtain:

f̂
(

1
x

)
=

1∫

0

dx ′ f (x ′)
x − x ′

Therefore:

f (x) =
i

2π
lim
δ→0

∮

|x−x′|=δ

f (x ′)
x − x ′ =

i
2π

Disc
x

f̂
(

1
x

)
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Inverse Mellin transform via analytic continuation
[based on: Behring, Blümlein, Schönwald (JHEP (2023))]



f̂ (t) =
∞∑

N=1

f̃ (N)tN =
∞∑

N=1

1∫

0

dx ′ tNx ′N−1f (x ′) =

1∫

0

dx ′ t
1− tx ′ f (x

′)

Setting t = 1
x we obtain:

f̂
(

1
x

)
=

1∫

0

dx ′ f (x ′)
x − x ′

Therefore:

f (x) =
i

2π
lim
δ→0

∮

|x−x′|=δ

f (x ′)
x − x ′ =

i
2π

Disc
x

f̂
(

1
x

)
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Inverse Mellin transform via analytic continuation
[based on: Behring, Blümlein, Schönwald (JHEP (2023))]



The discussion before used some implicit assumptions.
The x-space representation

1 has no (−1)N term.
2 is regular and has now contributions from distributions.
3 has a support only on x ∈ (0, 1).

For physical examples:

f̃ (N) =

1∫
0

dx xN−1
[
f (x) + (−1)Ng(x) +

(
fδ + (−1)Ngδ

)
δ(1 − x)

]
+

1∫
0

dx
xN−1 − 1

1 − x
,
[
f+(x) + (−1)Ng+(x)

]

All of this can be lifted, but the discussion is more involved.
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Inverse Mellin transform via analytic continuation



Sums Integrals Special Numbers
Harmonic Sums Harmonic Polylogarithms multiple zeta values

N∑
k=1

1

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

1 + z

∫ 1

0
dx

Li3(x)

1 + x
= −2Li4(1/2) + ...

gen. Harmonic Sums gen. Harmonic Polylogarithms gen. multiple zeta values
N∑

k=1

(1/2)k

k

k∑
l=1

(−1)l

l3

∫ x

0

dy

y

∫ y

0

dz

z − 3

∫ 1

0
dx

ln(x + 2)

x − 3/2
= Li2(1/3) + ...

Cycl. Harmonic Sums Cycl. Harmonic Polylogarithms cycl. multiple zeta values
N∑

k=1

1

(2k + 1)

k∑
l=1

(−1)l

l3

∫ x

0

dy

1 + y2

∫ y

0

dz

1 − z + z2
C =

∞∑
k=0

(−1)k

(2k + 1)2

Binomial Sums root-valued iterated integrals associated numbers
N∑

k=1

1

k2

(2k

k

)
(−1)k

∫ x

0

dy

y

∫ y

0

dz

z
√

1 + z
H8,w3 = 2arccot(

√
7)2

iterated integrals on 2F1 functions associated numbers

shuffle, stuffle, and various structural relations =⇒ algebras
All other ones stem from 1st order factorizable equations.
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First order factorizable sector – The function spaces



Agg,Q is an important build block for the variable flavor number scheme.
We find much more involved analytical structures than in the massless case:

Binomially weighted sums in Mellin space, e.g.:

BS3(N) =
N∑

τ1=1

4−τ1
(
2τ1

)
!(

τ1!
)2
τ1

, BS8(N) =
N∑

τ1=1

τ1∑
τ2=1

4τ2
(
τ2!
)2(

2τ2

)
!τ2

2

τ1

Iterated integrals over square root valued letters in x-space, i.e. over the alphabet:{
1
x
,

1
1 − x

,
1

1 + x
,
√

x(1 − x)

}

The (inverse) Mellin transformations can be calculated analytically with HarmonicSums:

M−1[BS8(N)](x) =

[
− 4
(

1 − √
1 − x

)
1 − x

+

(
2(1 − ln(2))

1 − x
+

H0(x)√
1 − x

)
H1(x) −

H0,1(x)√
1 − x

+
H1(x)

2(1 − x)

x∫
0

H0(x)√
1 − x

dx − 1

2(1 − x)

x∫
0

H0,1(x)√
1 − x

dx

]
+
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First order factorizable sector – Agg,Q as an example



We considered unpolarized and polarized scattering.

The analytic results allow to obtain the small and large x
expansion analytically.

Despite the iterated integrals over square roots only well known
constants occur in both expansions.

We provide deep expansions (up to 50th order) for easy
numerical evaluation.

The x-space of some diagrams has been obtained via analytic
continuation from t-space.
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Small and Large x Limits of a(3)
gg,Q
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Small and Large x Limits of a(3)
gg,Q



10-5 10-4 0.001 0.010 0.100 1

-2000

0

2000

4000

6000

8000

x

(1
-

x
)2

x
a

g
g

,Q
(3
)

The non–NF terms of a(3)
gg,Q(N) (rescaled) as a function of x . Full line (black): complete result; upper dotted line (red): term

∝ ln(x)/x , BFKL limit; lower dashed line (cyan): small x terms ∝ 1/x ; lower dotted line (blue): small x terms including all ln(x)
terms up to the constant term; upper dashed line (green): large x contribution up to the constant term; dash-dotted line (brown):
complete large x contribution.
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Elliptic Structures in AQg
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468 out of 666 master integrals solved analytically.

1009 out of 1233 contributing Feynman diagrams solved.

Solved via the method of large moments [Blümlein, Schneider (Phys.Lett.B (2017))] :
NF -term, ζ2, ζ4 and B4 terms

Inverse Mellin transform calculated via analytic continuation of the t-space.

Alphabet:

{
1
t
,

1
1 + t

,
1

1− t
,

√
4 + t
t

,

√
4− t
t

,

√
4 + t

1 + t
,

√
4− t

1 + t
, ...

}
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First order factorizable contributions



d
dt

 F1(t)
F2(t)
F3(t)

 =

 − 1
t − 1

1−t 0
0 − 1

t(1−t) − 2
1−t

0 2
t(8+t)

1
8+t


 F1(t)

F2(t)
F3(t)

+

 R1(t, ε)
R2(t, ε)
R3(t, ε)

+ O(ε),

R1(t, ε) =
1

t(1 − t)ε3

[
16 − 68

3
ε+

(
59
3

+ 6ζ2

)
ε2 +

(
−65

12
− 17

2
ζ2 + 2ζ3

)
ε3
]
+ O(ε),

R2(t, ε) =
1

t(1 − t)ε3

[
8 − 16

3
ε+

(
4
3
+ 3ζ2

)
ε2 +

(
14
3

− 2ζ2 + ζ3

)
ε3
]
+ O(ε),

R3(t, ε) =
1

12t(8 + t)ε3

[
−192 + 8ε− 8

(
4 + 9ζ2

)
ε2 +

(
68 + 3ζ2 − 24ζ3

)
ε3
]
+ O(ε).
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The underlying elliptic sector



After decoupling for F1(t) we find the differential equation

f (3)1 (t)− 2(4 + 5t)
t(1− t)(8 + t)

f (2)1 (t) +
4

t(1− t)(8 + t)
f (1)1 (t) = 0

with F1(t) = f1(t)/t and
We the methods of [Immamoglu, van Hoeij (J.Symb.Comput.(2017))] implemented in Maple we find solutions for f (1)1 (t):

g1(t) =
t2(8 + t)2

(4− t)4 2F1

[ 4
3 ,

5
3

2
; z(t)

]
,

g2(t) =
t2(8 + t)2

(4− t)4 2F1

[ 4
3 ,

5
3

2
; 1− z(t)

]

with

z(t) =
27t2

(4− t)3
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Homogenous solutions I



A similar solution was found for the analytic calculation of the ρ parameter at 3-loop order:
[Ablinger, Blümlein, De Freitas, van Hoeij, Imamoglu (J.Math.Phys.(2018))]

ψ
(0)
1a (x) =

x2(x2 − 1)(x2 − 9)2

(x2 + 3)4 2F1

[ 4
3 ,

5
3

2
;

x2(x2 − 9)2

(x2 + 3)3

]
∼ −(x − 1)(x − 3)(x + 3)2

√
x + 1

9 − 3x
K
(
− 16x3

(x + 1)(x − 3)3

)
+ (x2 + 3)(x − 3)2

√
x + 1

9 − 3x
E
(
− 16x3

(x + 1)(x − 3)3

)
In [Abreu, Becchetti, Duhr, Marzucca (JHEP (2022))] it was shown that a representation in terms of eMPLs and iterated
Eisenstein integrals exists.
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Other representations



When decoupling for F3 first, we find:

F ′
1(t) +

1
t

F1(t) = 0, g0 =
1
t

F ′′
3 (t) +

(2− t)
(1− t)t

F ′
3(t) +

2 + t
(1− t)t(8 + t)

F3(t) = 0,

with

g1(t) =
2

(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2
;− 27t

(1− t)2(8 + t)

]
,

g2(t) =
9
√

3Γ2(1/3)
8π

1
(1− t)2/3(8 + t)1/3 2F1

[ 1
3 ,

4
3

2
3

; 1 +
27t

(1− t)2(8 + t)

]
,

W (t) = 1−t
t2 (1)
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Homogeneous solutions II



Once the homogenous solutions are found, we can obtain the full solution by variation of constants.
E.g. we find:

F3(t) =
1
ϵ2

[
10
3

− t
6

]
+

1
ϵ

[
−31

6
+

3t
8

−
(

1
3
− 1

6t
− t

6

)
H1(t)

]
+

[
3
4
ln(2)g1(t) +

1
12

(10 + π(−3i +
√

3))g1(t)

− g2(t)
3

+
25
54

[
g1(t)G(13; t)− g2(t)G(7; t)

]
+

28
27

[
g2(t)G(8; t)− g1(t)G(14; t)

]
+

1
3

[
g1(t)G(16; t)− g2(t)G(10; t)

]]
ζ2 + ...

with the alphabet:

A = {1, 2, ..., 17} =

{
1
t
,

1
1 − t

,
1

8 + t
, g1, g2,

g1

t
,

g1

1 − t
,

g1

8 + t
,

g′
1

t
,

g′
1

1 − t
,

g′
1

8 + t
,

g2

t
,

g2

1 − t
,

g2

8 + t
g′

2

t
,

g′
2

1 − t
,

g′
2

8 + t
, t g1, t g2

}

G(w1, w⃗ ; t) =
t∫

0
dt ′ Aw1(t

′)G(w⃗ ; t ′), with the usual regularization at t = 0 understood implicitly
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Full solution



General idea:

Evaluate a series expansion around a potential singular point, e.g. t = 1−.

Series expand the solution around t → 1− and obtain a power-log series.

Analytically continue ln(1− t) for t > 1.

Use these values as initial values for a solution of the differential equation in the variable w = t − 1.

Prositives:

We find exact integral representations.

The boundary conditions for the new region are
’analytic’.

We can extract ’analytic’ series expansions.

Negatives:

The letters of the iterated integrals have more
singularities than we expect from the physical
amplitude.

We have to introduce a new set of constants for each
step in the analytic continuation.

At high weight the constants can be hard to evaluate
numerically.
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Analytic continuation
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Analytic continuation



After the analytic continuation we find exact integral representations.

For numerical evaluation it is often simpler to consider expansions. We considered expansions around
x = 0, 1/2, 1 to find precise results for x ∈ (0, 1).
The accuracy of the expansion coefficients depends on the numerical evaluation of the integral representations,
e.g.

1∫
0

g1(t)
8 + t

Li2(t)dt = 0.06619...

Around x = 0 we can use PSLQ to reconstruct the analytic expansions:

F (0)
1 (x) =

1
x

(
−1

6
− 3

4
ln(x)

)
+

11
4

− 3
4
ζ2 +

29
6

ln(x) +
5
4
ln2(x)

+ x
(
−113

16
− 27

8
ζ2 + 5ζ3 +

[83
24

+
3
2
ζ2
]
ln(x)− 3

8
ln2(x)− 5

6
ln3(x)

)
+ ...
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Solutions



Summary

Massive operator matrix elements are important for the interretation of DIS precision data, the determination of
parton distribution functions, and therefore LHC phenomenology.

All 1st order factorizing cases have been calculated.

At 3-loop order the OME AQg depends on two elliptic sectors.

We proposed a method how to obtain the x-space representation directly from the analytic results in the
resummation variable t .

The master integrals can be expressed as iterated integrals over kernels which depend on
Gauss-Hypergeometric 2F1 functions.

Outlook

192 master integrals depend on the elliptic sectors via the inhomogenous terms.

Functional relations between the different iterated integrals (and their special values) have to be studied further.
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Summary and Outlook



Backup
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The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules:

p, jp, i

δij/∆γ±(∆ · p)N−1 , N ≥ 1

p2, jp1, i

µ, a

gtaji∆
µ/∆γ±

∑N−2
j=0 (∆ · p1)j(∆ · p2)N−j−2 , N ≥ 2

p2, jp1, i

p3, µ, a p4, ν, b

g2∆µ∆ν/∆γ±
∑N−3

j=0

∑N−2
l=j+1(∆p2)

j(∆p1)
N−l−2

[
(tatb)ji(∆p1 +∆p4)

l−j−1 + (tbta)ji(∆p1 +∆p3)
l−j−1

]
,

N ≥ 3

p2, jp1, i

p3, µ, a p4, ν, b p5, ρ, c

g3∆µ∆ν∆ρ/∆γ±
∑N−4

j=0

∑N−3
l=j+1

∑N−2
m=l+1(∆.p2)

j(∆.p1)
N−m−2

[
(tatbtc)ji(∆.p4 +∆.p5 +∆.p1)

l−j−1(∆.p5 +∆.p1)
m−l−1

+(tatctb)ji(∆.p4 +∆.p5 +∆.p1)
l−j−1(∆.p4 +∆.p1)

m−l−1

+(tbtatc)ji(∆.p3 +∆.p5 +∆.p1)
l−j−1(∆.p5 +∆.p1)

m−l−1

+(tbtcta)ji(∆.p3 +∆.p5 +∆.p1)
l−j−1(∆.p3 +∆.p1)

m−l−1

+(tctatb)ji(∆.p3 +∆.p4 +∆.p1)
l−j−1(∆.p4 +∆.p1)

m−l−1

+(tctbta)ji(∆.p3 +∆.p4 +∆.p1)
l−j−1(∆.p3 +∆.p1)

m−l−1
]
,

N ≥ 4

γ+ = 1 , γ− = γ5 .

p, µ, ap, ν, b 1+(−1)N

2
δab(∆ · p)N−2

[
gµν(∆ · p)2 − (∆µpν +∆νpµ)∆ · p+ p2∆µ∆ν

]
, N ≥ 2

p1, µ, a
→

p2, ν, b

↑

p3, λ, c
←

−ig 1+(−1)N

2
fabc

(

[
(∆νgλµ −∆λgµν)∆ · p1 +∆µ(p1,ν∆λ − p1,λ∆ν)

]
(∆ · p1)N−2

+∆λ

[
∆ · p1p2,µ∆ν +∆ · p2p1,ν∆µ −∆ · p1∆ · p2gµν − p1 · p2∆µ∆ν

]

×∑N−3
j=0 (−∆ · p1)j(∆ · p2)N−3−j

+
{

p1→p2→p3→p1
µ→ν→λ→µ

}
+
{

p1→p3→p2→p1
µ→λ→ν→µ

})
, N ≥ 2

p1, µ, a
→

p2, ν, b

↑
p3, λ, c

↑

p4, σ, d
←

g2 1+(−1)N

2

(
fabef cdeOµνλσ(p1, p2, p3, p4)

+facef bdeOµλνσ(p1, p3, p2, p4) + fadef bceOµσνλ(p1, p4, p2, p3)

)
,

Oµνλσ(p1, p2, p3, p4) = ∆ν∆λ

{
−gµσ(∆ · p3 +∆ · p4)N−2

+[p4,µ∆σ −∆ · p4gµσ]
∑N−3

i=0 (∆ · p3 +∆ · p4)i(∆ · p4)N−3−i

−[p1,σ∆µ −∆ · p1gµσ]
∑N−3

i=0 (−∆ · p1)i(∆ · p3 +∆ · p4)N−3−i

+[∆ · p1∆ · p4gµσ + p1 · p4∆µ∆σ −∆ · p4p1,σ∆µ −∆ · p1p4,µ∆σ]

×∑N−4
i=0

∑i
j=0(−∆ · p1)N−4−i(∆ · p3 +∆ · p4)i−j(∆ · p4)j

}

−
{

p1↔p2
µ↔ν

}
−
{

p3↔p4
λ↔σ

}
+
{

p1↔p2, p3↔p4
µ↔ν, λ↔σ

}
, N ≥ 2
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Calculation of the 3-loop Operator Matrix Elements



BS8(N)− BS8(N − 1) =
1
N

BS4(N),

BS4(N) =
N∑

τ1=1

4τ1
(
τ1!
)2

(
2τ1
)
!τ 2

1

BS8(N) ∝ −7ζ3 +

[
+3(ln(N) + γE) +

3
2N
− 1

4N2 +
1

40N4 −
1

84N6 +
1

80N8 −
1

44N10

]
ζ2

+

√
π

N

[
4− 23

18N
+

1163
2400N2 −

64177
564480N3 −

237829
7741440N4 +

5982083
166526976N5

+
5577806159

438593126400N6 −
12013850977

377864847360N7 −
1042694885077

90766080737280N8

+
6663445693908281

127863697547722752N9 +
23651830282693133

1363413316298342400N10

]
(2)
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N Space Evaluation



The logarithmic parts of (∆)A(3)
gg have been computed before [Behring et al., (2014)], [Blümlein et al. (2021)].

N space
Recursions available for all building blocks: N → N + 1.
Asymptotic representations available.
Contour integral around the singularities of the problem at the non-positive real axis.

x space
All constants occurring in the transition t → x can be calculated in terms of ζ-values.
This can be proven analytically by first rationalizing and then calculating the obtained cyclotomic harmonic
polylogarithms.
Separate the δ(1 − x) and +-function terms first.
Series representations to 50 terms around x = 0 and x = 1 can be derived for the regular part analytically (12 digits).
The accuracy can be easily enlarged, if needed.
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Representations of the OME



f̂1(t) = H0,0,1(t) = Li3(t) ,

f̂1

(
t =

1
x

)
= −2ζ2H0(x) +

1
6

H3
0 (x) + H0,0,1(x) +

iπ
2

H2
0 (x) ,

f̂1

(
t = −1

x

)
= ζ2H0(x) +

1
6

H3
0 (x)− H0,0,−1(x) ,

f1(x) =
1
2

H2
0 ,

f̃1(N) =
1

N3
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Example of the analytic continuation
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