Universität
Zürich ${ }^{\text {VZH }}$

Mathematical Structures in Massive Operator Matrix Elements

Elliptics \& Beyond 2023

Kay Schönwald | September 5, 2023

in collaboration with: J. Ablinger, A. Behring, J. Blümlein, A. Goedicke, A. De Freitas, A. von Manteuffel, P. Marquard, C. Schneider

Theory of Deep Inelastic Scattering

- Kinematic invariants:

$$
Q^{2}=-q^{2}, \quad x=\frac{Q^{2}}{2 P \cdot q}
$$

- The cross section factorizes into leptonic and hadronic tensor:

$$
\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} Q^{2} \mathrm{~d} x} \sim L_{\mu \nu} W^{\mu \nu}
$$

- The hadronic tensor can be expressed through structure functions:

$$
\begin{aligned}
W_{\mu \nu} & =\frac{1}{4 \pi} \int \mathrm{~d}^{4} \xi \exp (i q \xi)\langle P,|\left[J_{\mu}^{\mathrm{em}}(\xi), J_{\nu}^{\mathrm{em}}(\xi)\right]|P\rangle \\
& =\frac{1}{2 x}\left(g_{\mu \nu}+\frac{q_{\mu} q_{\nu}}{Q^{2}}\right) F_{L}\left(x, Q^{2}\right)+\frac{2 x}{Q^{2}}\left(P_{\mu} P_{\nu}+\frac{q_{\mu} P_{\nu}+q_{\nu} P_{\mu}}{2 x}-\frac{Q^{2}}{4 x^{2}} g_{\mu \nu}\right) F_{2}\left(x, Q^{2}\right) \\
& +i \epsilon_{\mu \nu \rho \sigma} \frac{q^{\rho} S^{\sigma}}{q \cdot P} g_{1}\left(x, Q^{2}\right)+i \epsilon_{\mu \nu \rho \sigma} \frac{q^{\rho}\left(q \cdot P S^{\sigma}-q \cdot S P^{\sigma}\right)}{(q \cdot P)^{2}} g_{2}\left(x, Q^{2}\right)
\end{aligned}
$$

- F_{L}, F_{2}, g_{1} and g_{2} contain contributions from both, charm and bottom quarks.

Factorization of the Structure Functions

At leading twist the structure functions factorize in terms of a Mellin convolution

$$
F_{(2, L)}\left(x, Q^{2}\right)=\sum_{j} \underbrace{\mathbb{C}_{j,(2, L)}\left(x, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)}_{\text {perturbative }} \otimes \underbrace{f_{j}\left(x, \mu^{2}\right)}_{\text {nonpert. }}
$$

into (pert.) Wilson coefficients and (nonpert.) parton distribution functions (PDFs).
\otimes denotes the Mellin convolution

$$
f(x) \otimes g(x) \equiv \int_{0}^{1} d y \int_{0}^{1} d z \delta(x-y z) f(y) g(z)
$$

The subsequent calculations are performed in Mellin space, where \otimes reduces to a multiplication, due to the Mellin transformation

$$
\hat{f}(N)=\int_{0}^{1} d x x^{N-1} f(x)
$$

Wilson coefficients:

$$
\mathbb{C}_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=C_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right)+H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right) .
$$

At $Q^{2} \gg m^{2}$ the heavy flavor part

$$
H_{j,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}, \frac{m^{2}}{\mu^{2}}\right)=\sum_{i} C_{i,(2, L)}\left(N, \frac{Q^{2}}{\mu^{2}}\right) A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)+\mathcal{O}\left(\frac{m^{2}}{Q^{2}}\right)
$$

[Buza, Matiounine, Smith, van Neerven (Nucl.Phys.B (1996))]
factorizes into the light flavor Wilson coefficients C and the massive operator matrix elements (OMEs) of local operators O_{i} between partonic states j

$$
A_{i j}\left(\frac{m^{2}}{\mu^{2}}, N\right)=\langle j| O_{i}|j\rangle \quad \begin{array}{ll}
O_{q}^{S} & =i^{N-1} \mathrm{~S}\left[\bar{\psi} \gamma_{\mu_{1}} D_{\mu_{2}} \ldots D_{\mu_{N}} \psi\right]-\text { trace terms } \\
O_{g}^{S}=2 i^{N-2} \operatorname{SSp}\left[F_{\mu_{1} \alpha}^{a} D_{\mu_{2}} \ldots F_{\mu_{N}}^{\alpha, a}\right]-\text { trace terms }
\end{array}
$$

\rightarrow additional Feynman rules with local operator insertions for partonic matrix elements.
For $F_{2}\left(x, Q^{2}\right)$: at $Q^{2} \gtrsim 10 m^{2}$ the asymptotic representation holds at the 1% level.

Status of OME Calculations

Universität Zürich ${ }^{\text {²H }}$
Leading Order: [Witten (1976); Babcock, Sivers, Wolfram (1978); Shifman, Vainshtein, Zakharov (1978); Leveille, Weiler (1979); Glück, Reya (1979); Glück, Hoffmann, Reya (1982)]

Next-to-Leading Order:
full m dependence (numeric) [Laenen, van Neerven, Riemersma, Smith (1993)]
$Q^{2} \gg m^{2}: \quad$ via IBP [Buza, Matiounine, Smith, Migneron, van Neerven (1996)]
Compact results via ${ }_{p} F_{q}$'s [Bierenbaum, Blümlein, Klein (2007)]
$O\left(\alpha_{s}^{2} \varepsilon\right)$ (for general N) [Bierenbaum, Blümlein, Klein (2008, 2009)]
Next-to-Next-to-Leading Order: $\quad Q^{2} \gg m^{2}$

- Moments (using MATAD [Steinhauser (2000)]):
- $F_{2}: N=2 \ldots 10(14)$ [Bierenbaum, Blümlein, Klein (2009)]
- transversity: $N=1$... 13
- Two masses $m_{1} \neq m_{2} \rightarrow$ Moments $\mathrm{N}=2,4,6$ [Blümlein, Wißbrock (2011)]
- Analytic solutions for $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{g q, Q}, A_{q q, Q}^{P S}, A_{Q q}^{P S}$ [Blümlein et al (2010-2023)], with recent extension to polarized scattering.
- Analytic two mass solutions for $A_{q q, Q}^{\mathrm{NS}}, A_{q g, Q}, A_{g q, Q}, A_{q q, Q}^{\mathrm{PS}}, A_{Q q}^{\mathrm{PS}}, A_{g g, Q}$ [Blümlein et al (2017-2020)] , with recent extension to polarized scattering.

Massive Operator Matrix Elements 000000000

Summary and Outlook -

The Wilson Coefficients at Large Q^{2}

$$
\begin{aligned}
L_{q,(2, L)}^{\mathrm{NS}}\left(N_{F}+1\right) & =a_{s}^{2}\left[A_{q q, Q}^{(2), \mathrm{NS}}\left(N_{F}+1\right) \delta_{2}+\hat{C}_{q,(2, L)}^{(2), \mathrm{NS}}\left(N_{F}\right)\right]+a_{s}^{3}\left[A_{q q, Q}^{(3), \mathrm{NS}}\left(N_{F}+1\right) \delta_{2}+A_{q q, Q}^{(2), \mathrm{NS}}\left(N_{F}+1\right) C_{q,(2, L)}^{(1), \mathrm{NS}}\left(N_{F}+1\right)+\hat{C}_{q,(2, L)}^{(3), \mathrm{NS}}\left(N_{F}\right)\right] \\
L_{q,(2, L)}^{\mathrm{PS}}\left(N_{F}+1\right) & =a_{s}^{3}\left[A_{q q, Q}^{(3), \mathrm{PS}}\left(N_{F}+1\right) \delta_{2}+N_{F} A_{g q, Q}^{(2), \mathrm{NS}}\left(N_{F}\right) \tilde{C}_{g,(2, L)}^{(1), \mathrm{NS}}\left(N_{F}+1\right)+N_{F} \tilde{\tilde{C}}_{q,(2, L)}^{(3), \mathrm{PS}}\left(N_{F}\right)\right] \\
L_{g,(2, L)}^{\mathrm{S}}\left(N_{F}+1\right) & =a_{s}^{2} A_{g g, Q}^{(1)}\left(N_{F}+1\right) N_{F} \tilde{C}_{g,(2, L)}^{(2)}\left(N_{F}+1\right)+a_{s}^{3}\left[A_{q g, Q}^{(3)}\left(N_{F}+1\right) \delta_{2}+A_{g g, Q}^{(1)}\left(N_{F}+1\right) N_{F} \tilde{C}_{g,(2, L)}^{(2)}\left(N_{F}+1\right)\right. \\
& \left.+A_{g g, Q}^{(2)}\left(N_{F}+1\right) N_{F} \tilde{C}_{g,(2, L)}^{(1)}\left(N_{F}+1\right)+A_{Q g}^{(1)}\left(N_{F}+1\right) N_{F} \tilde{C}_{q,(2, L)}^{(2), \mathrm{PS}}\left(N_{F}+1\right)+N_{F} \tilde{\tilde{C}}_{g,(2, L)}^{(3)}\left(N_{F}\right)\right] \\
H_{q,(2, L)}^{\mathrm{PS}}\left(N_{F}+1\right) & =a_{s}^{2}\left[A_{Q q}^{(2), \mathrm{PS}}\left(N_{F}+1\right) \delta_{2}+\tilde{C}_{q,(2, L)}^{(2), \mathrm{PS}}\left(N_{F}+1\right)\right] \\
& +a_{s}^{3}\left[A_{Q q}^{(3), \mathrm{PS}}\left(N_{F}+1\right) \delta_{2}+A_{g q, Q}^{(2)}\left(N_{F}+1\right) \tilde{C}_{g,(1, L)}^{(2)}\left(N_{F}+1\right)+A_{Q q}^{(2), \mathrm{PS}}\left(N_{F}+1\right) \tilde{C}_{q,(2, L)}^{(1), \mathrm{NS}}\left(N_{F}+1\right)+\tilde{C}_{q,(2, L)}^{(3), \mathrm{PS}}\left(N_{F}+1\right)\right] \\
H_{g,(2, L)}^{S}\left(N_{F}+1\right) & =a_{s}\left[A_{Q g}^{(1)}\left(N_{F}+1\right) \delta_{2}+\tilde{C}_{g,(2, L)}^{(1)}\left(N_{F}+1\right)\right] \\
& +a_{s}^{2}\left[A_{Q g}^{(2)}\left(N_{F}+1\right) \delta_{2}+A_{Q g}^{(1)}\left(N_{F}+1\right) \tilde{C}_{q,(2, L)}^{(1)}\left(N_{F}+1\right)+A_{g g, Q}^{(1)}\left(N_{F}+1\right) \tilde{C}_{g,(2, L)}^{(1)}\left(N_{F}+1\right)+\tilde{C}_{g,(2, L)}^{(2)}\left(N_{F}+1\right)\right] \\
& +a_{s}^{3}\left[A_{Q g}^{(3)}\left(N_{F}+1\right) \delta_{2}+A_{Q g}^{(2)}\left(N_{F}+1\right) \tilde{C}_{q,(2, L)}^{(1)}\left(N_{F}+1\right)+A_{g g, Q}^{(2)}\left(N_{F}+1\right) \tilde{C}_{g,(2, L)}^{(1)}\left(N_{F}+1\right)\right. \\
& \left.+A_{Q g}^{(1)}\left(N_{F}+1\right) \tilde{C}_{q,(2, L)}^{(2), \mathrm{S}}\left(N_{F}+1\right)+A_{g g, Q}^{(1)}\left(N_{F}+1\right) \tilde{C}_{g,(2, L)}^{(1)}\left(N_{F}+1\right)+\tilde{C}_{g,(2, L)}^{(3)}\left(N_{F}+1\right)\right]
\end{aligned}
$$

The Variable Flavor Number Scheme

- Matching conditions for parton distribution functions:

$$
\begin{aligned}
f_{k}\left(N_{F}+2\right)+f_{\bar{k}}\left(N_{F}+2\right) & =A_{q q, Q}^{\mathrm{NS}}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot\left[f_{k}\left(N_{F}\right)+f_{\bar{k}}\left(N_{F}\right)\right]+\frac{1}{N_{F}} A_{q q, Q}^{\mathrm{PS}}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \Sigma\left(N_{F}\right) \\
& +\frac{1}{N_{F}} A_{q g, Q}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G\left(N_{F}\right), \\
f_{Q}\left(N_{F}+2\right)+f_{\bar{Q}}\left(N_{F}+2\right) & =A_{Q q}^{\mathrm{PS}}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}},\right) \cdot \Sigma\left(N_{F}\right)+A_{Q g}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G\left(N_{F}\right), \\
\Sigma\left(N_{F}+2\right) & =\left[A_{q q, Q}^{N S}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right)+A_{q q, Q}^{\mathrm{PS}}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right)+A_{Q q}^{\mathrm{PS}}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right)\right] \cdot \Sigma\left(N_{F}\right) \\
& +\left[A_{q g, Q}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right)+A_{Q g}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right)\right] \cdot G\left(N_{F}\right), \\
G\left(N_{F}+2\right) & =A_{g q, Q}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot \Sigma\left(N_{F}\right)+A_{g g, Q}\left(N_{F}+2, \frac{m_{1}^{2}}{\mu^{2}}, \frac{m_{2}^{2}}{\mu^{2}}\right) \cdot G\left(N_{F}\right) .
\end{aligned}
$$

Massive Operator Matrix Elements

Technical aspects

- The diagrams are given by propagators with operator insertions..
- To deal with the operators we can resum them into propagator structures:

$$
\begin{aligned}
(\Delta . k)^{N} & \rightarrow \sum_{N=0}^{\infty} t^{N}(\Delta . k)^{N}=\frac{1}{1-t \Delta . k} \\
\sum_{j=0}^{N}\left(\Delta . k_{1}\right)^{j}\left(\Delta . k_{2}\right)^{N-j} & \rightarrow \sum_{N \geq 0, j \leq N}^{\infty} t^{N}\left(\Delta . k_{1}\right)^{j}\left(\Delta . k_{2}\right)^{N-j}=\frac{1}{\left[1-t \Delta . k_{1}\right]\left[1-t \Delta . k_{2}\right]}
\end{aligned}
$$

- With the linear propagators we use IBP reductions.
- We can derive a system of differential equations in t.

Operators induce additional Feynman rules, e.g.:

$$
g t_{j i}^{i} \Delta^{\mu} \Delta \gamma_{ \pm} \sum_{j=0}^{N-2}\left(\Delta \cdot p_{1}\right)^{j}\left(\Delta \cdot p_{2}\right)^{N-j-2}
$$

Relation between the different spaces

- $\hat{f}(t) \rightarrow \tilde{f}(N)$ and $\hat{f}(x) \rightarrow \tilde{f}(N)$: calculable via recurrence equations
- $\tilde{f}(N) \rightarrow f(x)$: calculable via differential equations
- algorithms implemented in public packages Sigma [Scheider ('07-)] and HarmonicSums [Ablinger et al. ('10-)]
but: algorithmic solution only possible if recurrences or differential equations factorize to first order

Relation between the different spaces

- $\hat{f}(t) \rightarrow \tilde{f}(N)$ and $\hat{f}(x) \rightarrow \tilde{f}(N)$: calculable via recurrence equations
- $\tilde{f}(N) \rightarrow f(x)$: calculable via differential equations
- algorithms implemented in public packages Sigma [Scheider ('07-)] and HarmonicSums [Ablinger et al. ('10-)]
but: algorithmic solution only possible if recurrences or differential equations factorize to first order

Are $\hat{f}(t)$ and $f(x)$ directly connected?

Inverse Mellin transform via analytic continuation

[based on: Behring, Blümlein, Schönwald (JHEP (2023))]

Universität
Zürich ${ }^{\text {UZH }}$

$$
\hat{f}(t)=\sum_{N=1}^{\infty} \tilde{f}(N) t^{N}=\sum_{N=1}^{\infty} \int_{0}^{1} \mathrm{~d} x^{\prime} t^{N} x^{\prime N-1} f\left(x^{\prime}\right)=\int_{0}^{1} \mathrm{~d} x^{\prime} \frac{t}{1-t x^{\prime}} f\left(x^{\prime}\right)
$$

Setting $t=\frac{1}{x}$ we obtain:

$$
\hat{f}\left(\frac{1}{x}\right)=\int_{0}^{1} \mathrm{~d} x^{\prime} \frac{f\left(x^{\prime}\right)}{x-x^{\prime}}
$$

Inverse Mellin transform via analytic continuation

[based on: Behring, Blümlein, Schönwald (JHEP (2023))]

$$
\hat{f}(t)=\sum_{N=1}^{\infty} \tilde{f}(N) t^{N}=\sum_{N=1}^{\infty} \int_{0}^{1} \mathrm{~d} x^{\prime} t^{N} x^{\prime N-1} f\left(x^{\prime}\right)=\int_{0}^{1} \mathrm{~d} x^{\prime} \frac{t}{1-t x^{\prime}} f\left(x^{\prime}\right)
$$

Setting $t=\frac{1}{x}$ we obtain:

$$
\hat{f}\left(\frac{1}{x}\right)=\int_{0}^{1} \mathrm{~d} x^{\prime} \frac{f\left(x^{\prime}\right)}{x-x^{\prime}}
$$

Therefore:

$$
f(x)=\frac{i}{2 \pi} \lim _{\delta \rightarrow 0} \oint_{\left|x-x^{\prime}\right|=\delta} \frac{f\left(x^{\prime}\right)}{x-x^{\prime}}=\frac{i}{2 \pi} \operatorname{Disc}_{x} \hat{f}\left(\frac{1}{x}\right)
$$

Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation
(1) has no $(-1)^{N}$ term.
(2) is regular and has now contributions from distributions.
(3) has a support only on $x \in(0,1)$.

Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation
(C) has no $(-1)^{N}$ term.
(2) is regular and has now contributions from distributions.
(3) has a support only on $x \in(0,1)$.

For physical examples:

$$
\tilde{f}(N)=\int_{0}^{1} \mathrm{~d} x x^{N-1}\left[f(x)+(-1)^{N} g(x)+\left(f_{\delta}+(-1)^{N} g_{\delta}\right) \delta(1-x)\right]+\int_{0}^{1} \mathrm{~d} x \frac{x^{N-1}-1}{1-x},\left[f_{+}(x)+(-1)^{N} g_{+}(x)\right]
$$

Inverse Mellin transform via analytic continuation

The discussion before used some implicit assumptions.
The x-space representation
(C) has no $(-1)^{N}$ term.
(2) is regular and has now contributions from distributions.
(3) has a support only on $x \in(0,1)$.

For physical examples:

$$
\tilde{f}(N)=\int_{0}^{1} \mathrm{~d} x x^{N-1}\left[f(x)+(-1)^{N} g(x)+\left(f_{\delta}+(-1)^{N} g_{\delta}\right) \delta(1-x)\right]+\int_{0}^{1} \mathrm{~d} x \frac{x^{N-1}-1}{1-x},\left[f_{+}(x)+(-1)^{N} g_{+}(x)\right]
$$

All of this can be lifted, but the discussion is more involved.

First order factorizable sector - The function spaces

Sums
Harmonic Sums
$\sum_{k=1}^{N} \frac{1}{k} \sum_{l=1}^{k} \frac{(-1)^{l}}{l^{3}}$
gen. Harmonic Sums
$\sum_{k=1}^{N} \frac{(1 / 2)^{k}}{k} \sum_{l=1}^{k} \frac{(-1)^{l}}{\beta}$
Cycl. Harmonic Sums
$\sum_{k=1}^{N} \frac{1}{(2 k+1)} \sum_{l=1}^{k} \frac{(-1)^{l}}{\beta}$
Binomial Sums
$\sum_{k=1}^{N} \frac{1}{k^{2}}\binom{2 k}{k}(-1)^{k}$

Integrals
Harmonic Polylogarithms

$$
\int_{0}^{x} \frac{d y}{y} \int_{0}^{y} \frac{d z}{1+z}
$$

gen. Harmonic Polylogarithms

$$
\int_{0}^{x} \frac{d y}{y} \int_{0}^{y} \frac{d z}{z-3}
$$

Cycl. Harmonic Polylogarithms

$$
\int_{0}^{x} \frac{d y}{1+y^{2}} \int_{0}^{y} \frac{d z}{1-z+z^{2}}
$$

root-valued iterated integrals
$\int_{0}^{x} \frac{d y}{y} \int_{0}^{y} \frac{d z}{z \sqrt{1+z}}$
iterated integrals on ${ }_{2} F_{1}$ functions

Special Numbers
multiple zeta values
$\int_{0}^{1} d x \frac{\mathrm{Li}_{3}(x)}{1+x}=-2 \operatorname{Li}_{4}(1 / 2)+\ldots$
gen. multiple zeta values
$\int_{0}^{1} d x \frac{\ln (x+2)}{x-3 / 2}=\mathrm{Li}_{2}(1 / 3)+\ldots$
cycl. multiple zeta values
$\mathbf{C}=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{2}}$
associated numbers
$\mathrm{H}_{8, w_{3}}=2 \operatorname{arccot}(\sqrt{7})^{2}$
associated numbers
shuffle, stuffle, and various structural relations \Longrightarrow algebras
All other ones stem from 1st order factorizable equations.

First order factorizable sector - $A_{g g, Q}$ as an example

- $A_{g g, Q}$ is an important build block for the variable flavor number scheme.
- We find much more involved analytical structures than in the massless case:
- Binomially weighted sums in Mellin space, e.g.:

$$
\mathrm{BS}_{3}(N)=\sum_{\tau_{1}=1}^{N} \frac{4^{-\tau_{1}}\left(2 \tau_{1}\right)!}{\left(\tau_{1}!\right)^{2} \tau_{1}}, \quad \quad \mathrm{BS}_{8}(N)=\sum_{\tau_{1}=1}^{N} \frac{\sum_{\tau_{2}=1}^{\tau_{1}} \frac{4^{\tau_{2}}\left(\tau_{2}!\right)^{2}}{\left(2 \tau_{2}\right)!\tau_{2}^{2}}}{\tau_{1}}
$$

- Iterated integrals over square root valued letters in x-space, i.e. over the alphabet:

$$
\left\{\frac{1}{x}, \frac{1}{1-x}, \frac{1}{1+x}, \sqrt{x(1-x)}\right\}
$$

- The (inverse) Mellin transformations can be calculated analytically with HarmonicSums:
$\mathbf{M}^{-1}\left[\mathrm{BS}_{8}(N)\right](x)=\left[-\frac{4(1-\sqrt{1-x})}{1-x}+\left(\frac{2(1-\ln (2))}{1-x}+\frac{\mathrm{H}_{0}(x)}{\sqrt{1-x}}\right) \mathrm{H}_{1}(x)-\frac{\mathrm{H}_{0,1}(x)}{\sqrt{1-x}}+\frac{\mathrm{H}_{1}(x)}{2(1-x)} \int_{0}^{x} \frac{\mathrm{H}_{0}(x)}{\sqrt{1-x}} \mathrm{~d} x-\frac{1}{2(1-x)} \int_{0}^{x} \frac{\mathrm{H}_{0,1}(x)}{\sqrt{1-x}} \mathrm{~d} x\right]_{+}$

Small and Large x Limits of $a_{g g, Q}^{(3)}$

- We considered unpolarized and polarized scattering.
- The analytic results allow to obtain the small and large x expansion analytically.
- Despite the iterated integrals over square roots only well known constants occur in both expansions.
- We provide deep expansions (up to 50th order) for easy numerical evaluation.
- The x-space of some diagrams has been obtained via analytic continuation from t-space.

$$
\begin{aligned}
& a_{g g_{Q}}^{x \rightarrow 0}(x) \propto \\
& \frac{1}{x}\left\{\operatorname { l n } (x) \left[C_{A}^{2} T_{F}\left(-\frac{11488}{81}+\frac{224 \zeta_{2}}{27}+\frac{256 \zeta_{3}}{3}\right)+C_{A} C_{F} T_{F}\left(-\frac{15040}{243}-\frac{1408 \zeta_{2}}{27}\right.\right.\right. \\
& \left.\left.-\frac{1088 \zeta_{3}}{9}\right)\right]+C_{A} T_{F}^{2}\left[\frac{112016}{729}+\frac{1288}{27} \zeta_{2}+\frac{1120}{27} \zeta_{3}+\left(\frac{108256}{729}+\frac{368 \zeta_{2}}{27}-\frac{448 \zeta_{3}}{27}\right)\right. \\
& \left.\times N_{F}\right]+C_{F}\left[T_{F}^{2}\left(-\frac{107488}{729}-\frac{656}{27} \zeta_{2}+\frac{3904}{27} \zeta_{3}+\left(\frac{116800}{729}+\frac{224 \zeta_{2}}{27}-\frac{1792 \zeta_{3}}{27}\right) N_{F}\right)\right. \\
& \left.+C_{A} T_{F}\left(-\frac{5538448}{3645}+\frac{1664 \mathrm{~B}_{4}}{3}-\frac{43024 \zeta_{4}}{9}+\frac{12208}{27} \zeta_{2}+\frac{211504}{45} \zeta_{3}\right)\right] \\
& +C_{A}^{2} T_{F}\left(-\frac{4849484}{3645}-\frac{352 \mathrm{~B}_{4}}{3}+\frac{11056 \zeta_{4}}{9}-\frac{1088}{81} \zeta_{2}-\frac{84764}{135} \zeta_{3}\right) \\
& \left.+C_{F}^{2} T_{F}\left(\frac{10048}{5}-640 \mathrm{~B}_{4}+\frac{51104 \zeta_{4}}{9}-\frac{10096}{9} \zeta_{2}-\frac{280016}{45} \zeta_{3}\right)\right\} \\
& +\left[-\frac{4}{3} C_{F} C_{A} T_{F}+\frac{2}{15} C_{F}^{2} T_{F}\right] \ln ^{5}(x)+\left[-\frac{40}{27} C_{A}^{2} T_{F}+\frac{4}{9} C_{F}^{2} T_{F}+C_{F}\left(-\frac{296}{27} C_{A} T_{F}\right.\right. \\
& \left.\left.+\left(\frac{28}{27}+\frac{56}{27} N_{F}\right) T_{F}^{2}\right)\right] \ln ^{4}(x)+\left[\frac{112}{81} C_{A}\left(1+2 N_{F}\right) T_{F}^{2}+C_{F}\left(\left(\frac{1016}{81}+\frac{496}{81} N_{F}\right) T_{F}^{2}\right.\right. \\
& \left.\left.+C_{A} T_{F}\left(-\frac{10372}{81}-\frac{328 \zeta_{2}}{9}\right)\right)+C_{F}^{2} T_{F}\left[-\frac{2}{3}+\frac{4 \zeta_{2}}{9}\right]+C_{A}^{2} T_{F}\left[-\frac{1672}{81}+8 \zeta_{2}\right]\right] \ln { }^{3}(x) \\
& +\left[\frac{8}{81} C_{A}\left(155+118 N_{F}\right) T_{F}^{2}+C_{F}\left[T_{F}^{2}\left(-\frac{32}{81}+N_{F}\left(\frac{3872}{81}-\frac{16 \zeta_{2}}{9}\right)+\frac{232 \zeta_{2}}{9}\right)\right.\right. \\
& \left.+C_{A} T_{F}\left(-\frac{70304}{81}-\frac{680 \zeta_{2}}{9}+\frac{80 \zeta_{3}}{3}\right)\right]+C_{A}^{2} T_{F}\left[\frac{4684}{81}+\frac{20 \zeta_{2}}{3}\right]+C_{F}^{2} T_{F}[56 \\
& \left.\left.+\frac{8 \zeta_{2}}{3}-40 \zeta_{3}\right]\right] \ln ^{2}(x)+\left[C _ { F } \left[T _ { F } ^ { 2 } \left(\frac{140992}{243}+N_{F}\left(\frac{182528}{243}-\frac{400 \zeta_{2}}{27}-\frac{640 \zeta_{3}}{9}\right)\right.\right.\right. \\
& \left.\left.-\frac{728}{27} \zeta_{2}-\frac{224}{9} \zeta_{3}\right)+C_{A} T_{F}\left(-\frac{514952}{243}+\frac{152 \zeta_{4}}{3}-\frac{21140 \zeta_{2}}{27}-\frac{2576 \zeta_{3}}{9}\right)\right] \\
& +C_{A} T_{F}^{2} \\
& \left.\left.+\frac{64 \zeta_{3}}{3}\right]+C_{F}^{2} T_{F}\left[-\frac{1036}{3}-\frac{976 \zeta_{4}}{3}-\frac{58 \zeta_{2}}{3}+\frac{416 \zeta_{3}}{3}\right]\right] \ln (x), \\
& \left.\left.+\frac{656}{27}-\frac{32 \zeta_{2}}{27}\right)+\frac{464 \zeta_{2}}{27}\right]+C_{A}^{2} T_{F}\left[-\frac{42476}{81}-92 \zeta_{4}+\frac{4504 \zeta_{2}}{27}\right. \\
& +
\end{aligned}
$$

Massive Operator Matrix Elements 0000000 ○

The OME $A_{Q g}$
000000000

Summary and Outlook -

Small and Large x Limits of $a_{g g, Q}^{(3)}$

Universität
Zürich ${ }^{\text {UHH }}$

- We considered unpolarized and polarized scattering.
- The analytic results allow to obtain the small and large x expansion analytically.
- Despite the iterated integrals over square roots only well known constants occur in both expansions.
- We provide deep expansions (up to 50th order) for easy numerical evaluation.
- The x-space of some diagrams has been obtained via analytic continuation from t-space.

$$
\begin{align*}
a_{g g, Q}^{(3), x \rightarrow 1}(x) \propto & a_{g g, Q, \delta}^{(3)} \delta(1-x)+a_{g g, Q, \text { plus }}^{(3)}(x)+\left[-\frac{32}{27} C_{A} T_{F}^{2}\left(17+12 N_{F}\right)+C_{A} C_{F} T_{F}\left(56-\frac{32 \zeta_{2}}{3}\right)\right. \\
& \left.+C_{A}^{2} T_{F}\left(\frac{9238}{81}-\frac{104 \zeta_{2}}{9}+16 \zeta_{3}\right)\right] \ln (1-x)+\left[-\frac{8}{27} C_{A} T_{F}^{2}\left(7+8 N_{F}\right)\right. \\
& \left.+C_{A}^{2} T_{F}\left(\frac{314}{27}-\frac{4 \zeta_{2}}{3}\right)\right] \ln ^{2}(1-x)+\frac{32}{27} C_{A}^{2} T_{F} \ln ^{3}(1-x) . \\
(\Delta) a_{g g, Q, \delta}^{(3)}= & T_{F}\left\{C _ { F } \left[C_{A}\left(\frac{16541}{162}-\frac{64 \mathrm{~B}_{4}}{3}+\frac{128 \zeta_{4}}{3}+52 \zeta_{2}-\frac{2617 \zeta_{3}}{12}\right)+T_{F}\left(-\frac{1478}{81}\right.\right.\right. \\
& \left.\left.+N_{F}\left(-\frac{1942}{81}-\frac{20 \zeta_{2}}{3}\right)-\frac{88 \zeta_{2}}{3}-7 \zeta_{3}\right)\right]+C_{A}^{2}\left[\frac{34315}{324}+\frac{32 \mathrm{~B}_{4}}{3}-\frac{3778 \zeta_{4}}{27}\right. \\
& \left.+\frac{992}{27} \zeta_{2}+\left(\frac{20435}{216}+24 \zeta_{2}\right) \zeta_{3}-\frac{304}{9} \zeta_{5}\right]+C_{A} T_{F}\left[\frac{2587}{135}+N_{F}\left(-\frac{178}{9}+\frac{196 \zeta_{2}}{27}\right)\right. \\
& \left.\left.+\frac{572 \zeta_{2}}{27}-\frac{291 \zeta_{3}}{10}\right]+C_{F}^{2}\left[\frac{274}{9}+\frac{95 \zeta_{3}}{3}\right]+\frac{64}{27} T_{F}^{2} \zeta_{3}\right\}, \\
(\Delta) a_{g g, Q, \text { plus }}^{(3)}= & \frac{T_{F}}{1-x}\left\{C_{A} T_{F}\left[\frac{35168}{729}+N_{F}\left(\frac{55552}{729}+\frac{160 \zeta_{2}}{27}-\frac{448 \zeta_{3}}{27}\right)+\frac{560}{27} \zeta_{2}+\frac{1120}{27} \zeta_{3}\right]\right. \\
& +C_{A}^{2}\left[-\frac{32564}{729}-\frac{32 \mathrm{~B}_{4}}{3}+104 \zeta_{4}-\frac{3248 \zeta_{2}}{81}-\frac{1796 \zeta_{3}}{27}\right]+C_{A} C_{F}\left[-\frac{6152}{27}+\frac{64 \mathrm{~B}_{4}}{3}\right. \\
& \left.\left.-96 \zeta_{4}-40 \zeta_{2}+\frac{1208 \zeta_{3}}{9}\right]\right\} . \tag{4.7}
\end{align*}
$$

The non $-N_{F}$ terms of $a_{g g, Q}^{(3)}(N)$ (rescaled) as a function of x. Full line (black): complete result; upper dotted line (red): term $\propto \ln (x) / x$, BFKL limit; lower dashed line (cyan): small x terms $\propto 1 / x$; lower dotted line (blue): small x terms including all $\ln (x)$ terms up to the constant term; upper dashed line (green): large x contribution up to the constant term; dash-dotted line (brown): complete large x contribution.

Massive Operator Matrix Elements

Elliptic Structures in $A_{Q g}$

First order factorizable contributions

- 468 out of 666 master integrals solved analytically.
- 1009 out of 1233 contributing Feynman diagrams solved.
- Solved via the method of large moments [Blümlein, Schneider (Phys.Lett.B (2017))] : N_{F}-term, ζ_{2}, ζ_{4} and B_{4} terms
- Inverse Mellin transform calculated via analytic continuation of the t-space.
- Alphabet:

$$
\left\{\frac{1}{t}, \frac{1}{1+t}, \frac{1}{1-t}, \frac{\sqrt{4+t}}{t}, \frac{\sqrt{4-t}}{t}, \frac{\sqrt{4+t}}{1+t}, \frac{\sqrt{4-t}}{1+t}, \ldots\right\}
$$

The underlying elliptic sector

$$
\frac{d}{d t}\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]=\left[\begin{array}{rrr}
-\frac{1}{t} & -\frac{1}{1-t} & 0 \\
0 & -\frac{1}{t(1-t)} & -\frac{2}{1-t} \\
0 & \frac{2}{t(8+t)} & \frac{1}{8+t}
\end{array}\right]\left[\begin{array}{l}
F_{1}(t) \\
F_{2}(t) \\
F_{3}(t)
\end{array}\right]+\left[\begin{array}{l}
R_{1}(t, \varepsilon) \\
R_{2}(t, \varepsilon) \\
R_{3}(t, \varepsilon)
\end{array}\right]+O(\varepsilon),
$$

$$
\begin{aligned}
R_{1}(t, \varepsilon) & =\frac{1}{t(1-t) \varepsilon^{3}}\left[16-\frac{68}{3} \varepsilon+\left(\frac{59}{3}+6 \zeta_{2}\right) \varepsilon^{2}+\left(-\frac{65}{12}-\frac{17}{2} \zeta_{2}+2 \zeta_{3}\right) \varepsilon^{3}\right]+O(\varepsilon), \\
R_{2}(t, \varepsilon) & =\frac{1}{t(1-t) \varepsilon^{3}}\left[8-\frac{16}{3} \varepsilon+\left(\frac{4}{3}+3 \zeta_{2}\right) \varepsilon^{2}+\left(\frac{14}{3}-2 \zeta_{2}+\zeta_{3}\right) \varepsilon^{3}\right]+O(\varepsilon), \\
R_{3}(t, \varepsilon) & =\frac{1}{12 t(8+t) \varepsilon^{3}}\left[-192+8 \varepsilon-8\left(4+9 \zeta_{2}\right) \varepsilon^{2}+\left(68+3 \zeta_{2}-24 \zeta_{3}\right) \varepsilon^{3}\right]+O(\varepsilon) .
\end{aligned}
$$

Homogenous solutions I

After decoupling for $F_{1}(t)$ we find the differential equation

$$
f_{1}^{(3)}(t)-\frac{2(4+5 t)}{t(1-t)(8+t)} f_{1}^{(2)}(t)+\frac{4}{t(1-t)(8+t)} f_{1}^{(1)}(t)=0
$$

with $F_{1}(t)=f_{1}(t) / t$ and
We the methods of [Immamoglu, van Hoeij (J.Symb.Comput.(2017))] implemented in Maple we find solutions for $f_{1}^{(1)}(t)$:

$$
\begin{aligned}
& g_{1}(t)=\frac{t^{2}(8+t)^{2}}{(4-t)^{4}}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{4}{3}, \frac{5}{3} ; z(t) \\
2
\end{array}\right], \\
& g_{2}(t)=\frac{t^{2}(8+t)^{2}}{(4-t)^{4}}{ }_{2} F_{1}\left[\begin{array}{c}
\left.\frac{4}{3}, \frac{5}{3} ; 1-z(t)\right] \\
2
\end{array},\right.
\end{aligned}
$$

with

$$
z(t)=\frac{27 t^{2}}{(4-t)^{3}}
$$

Other representations

- A similar solution was found for the analytic calculation of the ρ parameter at 3-loop order:
[Ablinger, Blümlein, De Freitas, van Hoeij, Imamoglu (J.Math.Phys.(2018))]

$$
\begin{aligned}
\psi_{1 a}^{(0)}(x) & =\frac{x^{2}\left(x^{2}-1\right)\left(x^{2}-9\right)^{2}}{\left(x^{2}+3\right)^{4}}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{4}{3}, \frac{5}{3} \\
2
\end{array} \frac{x^{2}\left(x^{2}-9\right)^{2}}{\left(x^{2}+3\right)^{3}}\right] \\
& \sim-(x-1)(x-3)(x+3)^{2} \sqrt{\frac{x+1}{9-3 x}} \mathrm{~K}\left(-\frac{16 x^{3}}{(x+1)(x-3)^{3}}\right) \\
& +\left(x^{2}+3\right)(x-3)^{2} \sqrt{\frac{x+1}{9-3 x}} \mathrm{E}\left(-\frac{16 x^{3}}{(x+1)(x-3)^{3}}\right)
\end{aligned}
$$

- In [Abreu, Becchetti, Duhr, Marzucca (JHEP (2022))] it was shown that a representation in terms of eMPLs and iterated Eisenstein integrals exists.

Homogeneous solutions II

- When decoupling for F_{3} first, we find:

$$
\begin{gathered}
F_{1}^{\prime}(t)+\frac{1}{t} F_{1}(t)=0, \quad g_{0}=\frac{1}{t} \\
F_{3}^{\prime \prime}(t)+\frac{(2-t)}{(1-t) t} F_{3}^{\prime}(t)+\frac{2+t}{(1-t) t(8+t)} F_{3}(t)=0,
\end{gathered}
$$

with

$$
\begin{align*}
& g_{1}(t)=\frac{2}{(1-t)^{2 / 3}(8+t)^{1 / 3}{ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} \\
2
\end{array} ;-\frac{27 t}{(1-t)^{2}(8+t)}\right]} \begin{array}{l}
g_{2}(t)=\frac{9 \sqrt{3} \Gamma^{2}(1 / 3)}{8 \pi} \frac{1}{(1-t)^{2 / 3}(8+t)^{1 / 3}} 2^{2} F_{1}\left[\begin{array}{c}
\frac{1}{3}, \frac{4}{3} \\
\frac{2}{3}
\end{array} 1+\frac{27 t}{(1-t)^{2}(8+t)}\right] \\
W(t)=\frac{1-t}{t^{2}}
\end{array} .
\end{align*}
$$

Full solution

- Once the homogenous solutions are found, we can obtain the full solution by variation of constants.
- E.g. we find:

$$
\begin{aligned}
F_{3}(t) & =\frac{1}{\epsilon^{2}}\left[\frac{10}{3}-\frac{t}{6}\right]+\frac{1}{\epsilon}\left[-\frac{31}{6}+\frac{3 t}{8}-\left(\frac{1}{3}-\frac{1}{6 t}-\frac{t}{6}\right) H_{1}(t)\right]+\left[\frac{3}{4} \ln (2) g_{1}(t)+\frac{1}{12}(10+\pi(-3 i+\sqrt{3})) g_{1}(t)\right. \\
& -\frac{g_{2}(t)}{3}+\frac{25}{54}\left[g_{1}(t) G(13 ; t)-g_{2}(t) G(7 ; t)\right]+\frac{28}{27}\left[g_{2}(t) G(8 ; t)-g_{1}(t) G(14 ; t)\right] \\
& \left.+\frac{1}{3}\left[g_{1}(t) G(16 ; t)-g_{2}(t) G(10 ; t)\right]\right] \zeta_{2}+\ldots
\end{aligned}
$$

with the alphabet:
$A=\{1,2, \ldots, 17\}=\left\{\frac{1}{t}, \frac{1}{1-t}, \frac{1}{8+t}, g_{1}, g_{2}, \frac{g_{1}}{t}, \frac{g_{1}}{1-t}, \frac{g_{1}}{8+t}, \frac{g_{1}^{\prime}}{t}, \frac{g_{1}^{\prime}}{1-t}, \frac{g_{1}^{\prime}}{8+t}, \frac{g_{2}}{t}, \frac{g_{2}}{1-t}, \frac{g_{2}}{8+t} \frac{g_{2}^{\prime}}{t}, \frac{g_{2}^{\prime}}{1-t}, \frac{g_{2}^{\prime}}{8+t}, t g_{1}, t g_{2}\right\}$
$G\left(w_{1}, \vec{w} ; t\right)=\int_{0}^{t} \mathrm{~d} t^{\prime} A_{w_{1}}\left(t^{\prime}\right) G\left(\vec{w} ; t^{\prime}\right)$, with the usual regularization at $t=0$ understood implicitly

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.
- Series expand the solution around $t \rightarrow 1^{-}$and obtain a power-log series.

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.
- Series expand the solution around $t \rightarrow 1^{-}$and obtain a power-log series.
- Analytically continue $\ln (1-t)$ for $t>1$.

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.
- Series expand the solution around $t \rightarrow 1^{-}$and obtain a power-log series.
- Analytically continue $\ln (1-t)$ for $t>1$.
- Use these values as initial values for a solution of the differential equation in the variable $w=t-1$.

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.
- Series expand the solution around $t \rightarrow 1^{-}$and obtain a power-log series.
- Analytically continue $\ln (1-t)$ for $t>1$.
- Use these values as initial values for a solution of the differential equation in the variable $w=t-1$.

Analytic continuation

General idea:

- Evaluate a series expansion around a potential singular point, e.g. $t=1^{-}$.
- Series expand the solution around $t \rightarrow 1^{-}$and obtain a power-log series.
- Analytically continue $\ln (1-t)$ for $t>1$.
- Use these values as initial values for a solution of the differential equation in the variable $w=t-1$.

Negatives:

- The letters of the iterated integrals have more singularities than we expect from the physical amplitude.
- We have to introduce a new set of constants for each step in the analytic continuation.
- At high weight the constants can be hard to evaluate numerically.

Prositives:

- We find exact integral representations.
- The boundary conditions for the new region are 'analytic'.
- We can extract 'analytic' series expansions.

Solutions

- After the analytic continuation we find exact integral representations.
- For numerical evaluation it is often simpler to consider expansions. We considered expansions around $x=0,1 / 2,1$ to find precise results for $x \in(0,1)$.
- The accuracy of the expansion coefficients depends on the numerical evaluation of the integral representations, e.g.

$$
\int_{0}^{1} \frac{g_{1}(t)}{8+t} \mathrm{Li}_{2}(t) \mathrm{d} t=0.06619 \ldots
$$

- Around $x=0$ we can use PSLQ to reconstruct the analytic expansions:

$$
\begin{aligned}
F_{1}^{(0)}(x) & =\frac{1}{x}\left(-\frac{1}{6}-\frac{3}{4} \ln (x)\right)+\frac{11}{4}-\frac{3}{4} \zeta_{2}+\frac{29}{6} \ln (x)+\frac{5}{4} \ln ^{2}(x) \\
& +x\left(-\frac{113}{16}-\frac{27}{8} \zeta_{2}+5 \zeta_{3}+\left[\frac{83}{24}+\frac{3}{2} \zeta_{2}\right] \ln (x)-\frac{3}{8} \ln ^{2}(x)-\frac{5}{6} \ln ^{3}(x)\right)+\ldots
\end{aligned}
$$

Summary and Outlook

Summary

- Massive operator matrix elements are important for the interretation of DIS precision data, the determination of parton distribution functions, and therefore LHC phenomenology.
- All 1st order factorizing cases have been calculated.
- At 3-loop order the OME $A_{Q g}$ depends on two elliptic sectors.
- We proposed a method how to obtain the x-space representation directly from the analytic results in the resummation variable t.
- The master integrals can be expressed as iterated integrals over kernels which depend on Gauss-Hypergeometric ${ }_{2} F_{1}$ functions.

Summary and Outlook

Summary

- Massive operator matrix elements are important for the interretation of DIS precision data, the determination of parton distribution functions, and therefore LHC phenomenology.
- All 1st order factorizing cases have been calculated.
- At 3-loop order the OME $A_{Q g}$ depends on two elliptic sectors.
- We proposed a method how to obtain the x-space representation directly from the analytic results in the resummation variable t.
- The master integrals can be expressed as iterated integrals over kernels which depend on Gauss-Hypergeometric ${ }_{2} F_{1}$ functions.

Outlook

- 192 master integrals depend on the elliptic sectors via the inhomogenous terms.
- Functional relations between the different iterated integrals (and their special values) have to be studied further.

Backup

-0000

Calculation of the 3-loop Operator Matrix Elements

The OMEs are calculated using the QCD Feynman rules together with the following operator insertion Feynman rules:
$\delta^{i j} \Delta \gamma_{ \pm}(\Delta \cdot p)^{N-1}, \quad N \geq 1$

$g t_{j i}^{a} \Delta^{\mu} \Delta \gamma_{ \pm} \sum_{j=0}^{N-2}\left(\Delta \cdot p_{1}\right)^{j}\left(\Delta \cdot p_{2}\right)^{N-j-2}, \quad N \geq 2$
$g^{2} \Delta^{\mu} \Delta^{\nu} \Delta \gamma_{ \pm} \sum_{j=0}^{N-3} \sum_{l=j+1}^{N-2}\left(\Delta p_{2}\right)^{j}\left(\Delta p_{1}\right)^{N-l-2}$
$\left[\left(t^{a} t^{b}\right)_{j i}\left(\Delta p_{1}+\Delta p_{4}\right)^{l-j-1}+\left(t^{b} t^{a}\right)_{j i}\left(\Delta p_{1}+\Delta p_{3}\right)^{l-j-1}\right]$
$N \geq 3$

$g^{3} \Delta_{\mu} \Delta_{\nu} \Delta_{\rho} \Delta \gamma_{ \pm} \sum_{j=0}^{N-4} \sum_{l=j+1}^{N-3} \sum_{m=l+1}^{N-2}\left(\Delta \cdot p_{2}\right)^{j}\left(\Delta \cdot p_{1}\right)^{N-m-2}$

$$
\left[\left(t^{a} t^{b} t^{c}\right)_{j i}\left(\Delta \cdot p_{4}+\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{m-l-1}\right.
$$

$$
+\left(t^{a} t^{c} t^{b}\right)_{j i}\left(\Delta \cdot p_{4}+\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{4}+\Delta \cdot p_{1}\right)^{m-l-1}
$$

$$
+\left(t^{b} t^{a} t^{c}\right)_{j i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{m-l-1}
$$

$$
+\left(t^{b} t^{c} t^{a}\right)_{j i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{5}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{3}+\Delta \cdot p_{1}\right)^{m-l-1}
$$

$$
+\left(t^{c} t^{a} t^{b}\right)_{j i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{4}+\Delta \cdot p_{1}\right)^{m-l-1}
$$

$$
\left.+\left(t^{c} t^{b} t^{a}\right)_{j i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}+\Delta \cdot p_{1}\right)^{l-j-1}\left(\Delta \cdot p_{3}+\Delta \cdot p_{1}\right)^{m-l-1}\right]
$$

$$
N \geq 4
$$

$\gamma_{+}=1, \quad \gamma_{-}=\gamma_{5}$

$\frac{1+(-1)^{N}}{2} \delta^{a b}(\Delta \cdot p)^{N-2}$
$\left[g_{\mu \nu}(\Delta \cdot p)^{2}-\left(\Delta_{\mu} p_{\nu}+\Delta_{\nu} p_{\mu}\right) \Delta \cdot p+p^{2} \Delta_{\mu} \Delta_{\nu}\right], \quad N \geq 2$

$$
\begin{gathered}
g^{2} \frac{1+(-1)^{N}}{2}\left(f^{a b e} f^{c d e} O_{\mu \nu \lambda \sigma}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right. \\
\left.+f^{a c e} f^{b d e} O_{\mu \lambda \lambda \sigma}\left(p_{1}, p_{3}, p_{2}, p_{4}\right)+f^{a d e} f^{b c e} O_{\mu \sigma \nu \lambda}\left(p_{1}, p_{4}, p_{2}, p_{3}\right)\right), \\
\\
O_{\mu \nu \lambda \sigma}\left(p_{1}, p_{2}, p_{3}, p_{4}\right)=\Delta_{\nu} \Delta_{\lambda}\left\{-g_{\mu \sigma}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}\right)^{N-2}\right. \\
+\left[p_{4, \mu} \Delta_{\sigma}-\Delta \cdot p_{4} g_{\mu \sigma}\right] \sum_{i=0}^{N-3}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}\right)^{i}\left(\Delta \cdot p_{4}\right)^{N-3-i} \\
-\left[p_{1, \sigma} \Delta_{\mu}-\Delta \cdot p_{1} g_{\mu \sigma}\right] \sum_{i=0}^{N-3}\left(-\Delta \cdot p_{1}\right)^{i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}\right)^{N-3-i} \\
+\left[\Delta \cdot p_{1} \Delta \cdot p_{4} g_{\mu \sigma}+p_{1} \cdot p_{4} \Delta_{\mu} \Delta_{\sigma}-\Delta \cdot p_{4} p_{1, \sigma} \Delta_{\mu}-\Delta \cdot p_{1} p_{4, \mu} \Delta_{\sigma}\right] \\
\\
\left.\times \sum_{i=0}^{N-4} \sum_{j=0}^{i}\left(-\Delta \cdot p_{1}\right)^{N-4-i}\left(\Delta \cdot p_{3}+\Delta \cdot p_{4}\right)^{i-j}\left(\Delta \cdot p_{4}\right)^{i}\right\} \\
-\left\{\begin{array}{c}
p_{1} \leftrightarrow p_{2} \\
\mu \leftrightarrow \nu
\end{array}\right\}-\left\{\begin{array}{c}
p_{3} \leftrightarrow p_{4} \\
\lambda \leftrightarrow \sigma
\end{array}\right\}+\left\{\begin{array}{c}
p_{1} \leftrightarrow p_{2}, p_{3} \leftrightarrow p_{4} \\
\mu \leftrightarrow \nu, \lambda \leftrightarrow \sigma
\end{array}\right\}, \quad N \geq 2
\end{gathered}
$$

N Space Evaluation

$$
\begin{align*}
\mathrm{BS}_{8}(N)-\mathrm{BS}_{8}(N-1)= & \frac{1}{N} \mathrm{BS}_{4}(N), \\
\mathrm{BS}_{4}(N)= & \sum_{\tau_{1}=1}^{N} \frac{4^{\tau_{1}}\left(\tau_{1}!\right)^{2}}{\left(2 \tau_{1}\right)!\tau_{1}^{2}} \\
\mathrm{BS}_{8}(N) \propto & -7 \zeta_{3}+\left[+3\left(\ln (N)+\gamma_{E}\right)+\frac{3}{2 N}-\frac{1}{4 N^{2}}+\frac{1}{40 N^{4}}-\frac{1}{84 N^{6}}+\frac{1}{80 N^{8}}-\frac{1}{44 N^{10}}\right] \zeta_{2} \\
& +\sqrt{\frac{\pi}{N}}\left[4-\frac{23}{18 N}+\frac{1163}{2400 N^{2}}-\frac{64177}{564480 N^{3}}-\frac{237829}{7741440 N^{4}}+\frac{5982083}{166526976 N^{5}}\right. \\
& +\frac{5577806159}{438593126400 N^{6}}-\frac{12013850977}{377864847360 N^{7}}-\frac{1042694885077}{90766080737280 N^{8}} \\
& \left.+\frac{6663445693908281}{127863697547722752 N^{9}}+\frac{23651830282693133}{1363413316298342400 N^{10}}\right] \tag{2}
\end{align*}
$$

Representations of the OME

- The logarithmic parts of $(\Delta) A_{g g}^{(3)}$ have been computed before [Behring et al., (2014)], [Blümlein et al. (2021)].
- N space
- Recursions available for all building blocks: $N \rightarrow N+1$.
- Asymptotic representations available.
- Contour integral around the singularities of the problem at the non-positive real axis.
- x space
- All constants occurring in the transition $t \rightarrow x$ can be calculated in terms of ζ-values.
- This can be proven analytically by first rationalizing and then calculating the obtained cyclotomic harmonic polylogarithms.
- Separate the $\delta(1-x)$ and + -function terms first.
- Series representations to 50 terms around $x=0$ and $x=1$ can be derived for the regular part analytically (12 digits).
- The accuracy can be easily enlarged, if needed.

Example of the analytic continuation

$$
\begin{aligned}
\hat{f}_{1}(t) & =H_{0,0,1}(t)=\mathrm{Li}_{3}(t) \\
\hat{f}_{1}\left(t=\frac{1}{x}\right) & =-2 \zeta_{2} H_{0}(x)+\frac{1}{6} H_{0}^{3}(x)+H_{0,0,1}(x)+\frac{i \pi}{2} H_{0}^{2}(x), \\
\hat{f}_{1}\left(t=-\frac{1}{x}\right) & =\zeta_{2} H_{0}(x)+\frac{1}{6} H_{0}^{3}(x)-H_{0,0,-1}(x), \\
f_{1}(x) & =\frac{1}{2} H_{0}^{2} \\
\tilde{f}_{1}(N) & =\frac{1}{N^{3}}
\end{aligned}
$$

