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Introduction

@ Polylogarithms play a significant role in scattering amplitudes for LHC
processes, SYM theory, supergravity, and string theory.

@ Suitable generalizations of classical polylogarithms are defined by
considering iterated integrals on closed Riemann surfaces.

@ Much of the literature on polylogarithms has focused on genus zero and
genus one Riemann surfaces, with higher-genus surfaces less understood.

e Proposals for higher-genus polylogarithm function spaces exist, but without
explicit formulas for use in physics. [Enriquez, 1112.0864]
[Enriquez, Zerbini, 2110.09341] [Enriquez, Zerbini, 2212.03119]

@ Today, we will explore a new construction of higher-genus polylogarithms.
@ Our method includes two key steps:

o We create a new set of integration kernels using convolutions of certain
functions defined on higher-genus Riemann surfaces.

o With these kernels, we build a generating function, which helps define our
higher-genus polylogarithms which are closed under taking primitives.

4747



String amplitudes motivation

@ String perturbation theory involves expanding in the string coupling
constant gs, which in turn is an expansion based on the genus of the string
world-sheet. [Figure taken from PhD thesis of J. Gerken]
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@ Furthermore, typically we also expand in the inverse string tension o/,
which corresponds to low energy and weak coupling regimes.

@ The resulting function space of these expansions is that of polylogarithms,
(or single-valued combinations thereof.)
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String amplitudes and special functions

@ Different types of special functions emerge depending on whether we are
considering open/closed strings, and depending on the genus:

Open string Closed string
(MPLs) e (sv. MPL’s)
(eMPLs) eMGEs
g=1 (= sv. eMPL’s)
Higher-genus Single-valued
g=2, polylogs analogues:
g>=2 (this talk) To be explored
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Higher genus curves in Feynman integrals

@ The appearance of hyperelliptic curves in Feynman integrals has also been
observed in a number of publications. See for example:

@ R. Huang and Y. Zhang, “On Genera of Curves from High-loop Generalized Unitarity Cuts,” JHEP 04
(2013), 080 [arXiv:1302.1023 [hep-ph]].

@ A. Georgoudis and Y. Zhang, “Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves,”
JHEP 12 (2015), 086 [arXiv:1507.06310 [hep-th]].
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The maximal cut of this diagram yields a hyperelliptic curve. Figure taken from [1507.06310].
@ C. F. Doran, A. Harder, E. Pichon-Pharabod and P. Vanhove, “Motivic geometry of two-loop Feynman
integrals,” [arXiv:2302.14840 [math.AG]].

@ R. Marzucca, A. J. McLeod, B. Page, S. Pégel, S. Weinzierl, “Genus Drop in Hyperelliptic Feynman

Integrals,” [arXiv:2307.11497 [hep-th]].
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Review of polylogarithms at genus zero and one
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Building Polylogarithms as Iterated Integrals

@ We want to construct polylogarithms in terms of iterated integrals on a
compact Riemann surface, 3, with genus h.

@ The polylogarithms we construct should have these qualities:

1. Homotopy Invariance: The polylogarithms should retain their value
when we smoothly change the path of integration, keeping the
endpoints constant.

2. Logarithmic Branch-Cuts: The integration kernels should only have
simple poles, meaning our integrals should show just logarithmic
irregularities at branch points.

3. Closed Under Integration: Our function space should remain intact
under integration, and form a basis for all iterated integrals on X.
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Homotopy-Invariant Iterated Integrals on a Surface

@ Let’s consider the differential equation: dI' = JT.

@ If we want the equation to be integrable, we need d?> = 0. This leads us to
the Maurer-Cartan equation for the connection 7:

daJ-JINT =0

@ Such a connection is called flat. The solution I to our differential equation
can be obtained by the path-ordered exponential (POE):

1
F(C) =Pexp . J() = Pexp/O dtJ(t)

@ Let’s denote J = J(t)dt, following a path C where t € [0, 1], C(0) = 2o, and
C(1) = z. Using physics conventions, we position J(t) to the left of J(t') for

t>t:
Pexp/J —1—|—/ dtJ(t /dt/ dt’ J(t

@ The flatness J leads to homotopy-invariant integrals over C, (though
results can differ for zop and z when the path circles around poles on ¥.)
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Genus 0: MPLs and Generating Series

@ Multiple polylogarithms (MPLs) are iterated integrals of rational
forms dz/(z — s) with z,s € C, on the Riemann sphere CP'.

@ They are defined recursively by: [A.B. Goncharov, math.AG/0103059]
?odt
G(51,52, " ,Sn: 2) :/ —— G(S2,- -+ ,Sm 1)
o =51
where we have the special case G((); z) = 1. The integer n > 0 is referred to
as the transcendental weight.
@ As a nested sum MPLs can be represented as:
221222 e zzk

Lim17-~7mk (Zl)""zk) = E P I
0<n <ny<---<ng 172 k

@ Multiple zeta values (MZV’s) are defined by the special case

Cmyoome = Limg,.omy (1,...,1)

(where the ordering of the indices is subject to conventions.)
11/47



Closure of MPLs Under Integration

@ Any integral of a rational function times a multiple polylogarithm (MPL) can
be expressed in terms of MPLs.

@ This is achieved by partial fractioning the rational function and/or using
integration by parts (IBP) identities. For example:

1 ! < 11 >
(x—s1)(x—s2) (s1—52) \(x—=51) (x—s57)

@ After partial fractioning, we distinguish the following cases:

/dt%G(f;t), /dtG(?;t), /dtth(E;t)
o (t—Db) 0 0

where 0 < k # 1. We then use IBP identities to iteratively reduce the value
of k. For example:

/dt o = 6(0:2) - 6(-1;2)
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Shuffle Algebra for Multiple Polylogarithms

@ Multiple polylogarithms satisfy a shuffle algebra, which is expressed as:

6(517527"'7Sk;z)'G(Sk+17""sf;z) = Z 6(50(1)750(2)7"'asa(r);z)a
shuffles o

@ The sum runs over all permutations o which are shuffles of (1,... k) and
(k+1,...,n).
@ These permutations preserve the relative order of the two partitions.

@ A simple example of the shuffle product of two multiple polylogarithms is:
G(s1;2) - G(52;2) = G(S1,52;2) + G(S2, 51; 2).

@ The proof of the shuffle product formula relies on the integral
representation of multiple polylogarithms.

@ A shuffle algebra structure holds for all the homotopy-invariant iterated
integrals which we consider.
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Regularization

@ Multiple polylogarithms with trailing zeroes do not have a Taylor expansion
in z around z = 0, but logarithmic singularities at z = 0.

@ We can use the shuffle product to remove trailing zeros, separating these
logarithmic terms, such that the rest has a regular expansion around z = 0.

@ For example, for G (s1,0; z) with s; # 0, we have:
G(s1,0;2) =G(0;2)G(s1;2) — G(0,51;2).

@ Both G(s;;z) and G(0, s1; z) are free of trailing zeros. We then define the
special cases:

G(0; z) = log(2) G (6n;z) = %Iog(Z)”,

where 5,, denotes a sequence of n zeros. These definitions follow the
tangential basepoint prescription:

X dt
— =log(x) — log(e) — log(x)
O+e
for a prescribed tangent vector (in C) with |¢| < 1.
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Single-Valued Multiple Polylogarithms (sv. MPLs)

@ Polylogarithms can be paired with their complex conjugates to eliminate
branch cuts, thereby creating single-valued functions.

@ For each G(a,b,...;Zz), we have a corresponding G*(a, b, . .. ; 2).
@ Generally, we can maintain the holomorphic derivative in the same form:
1
9,G*V(a,b,...;z) = EGSV(b7 e 2) [Brown, Schnetz]

and modify the antiholomorphic derivative to ensure single-valuedness.
o Examples: G*(a; 2) = G(a;2) + G(@;Z) = log |1 — Z|”

G¥(0,0,1,1;2) = G(0,0,1,1;2) + G(0,0, 1; 2)G(1; Z) + G(0, 0; 2)G(1, 1; 2)
+6(0;2)6(1,1,0;2) + G(1,1,0,0;2) + 2¢:G(1; 2)

@ We can also straightforwardly define 'single-valued’ MZV’s:
Gt = Codorte) = (16 (G110 01, 151

e Forinstance: (55 = 0, (5v, 1 = 2Can+1, (3% = 14G3Gs.
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Generating Series

@ A generating series for the polylogarithms can be constructed from the
Knizhnik-Zamolodchikov (KZ) connection:

m
Jxz(z Z e

@ The elements ey, - - - , e, are generators of a free Lie algebra £ associated
with the marked points s1,- -, sp,.

@ Choosing endpoints zop = 0 and z; = z, we can organize the expansion of
the path-ordered exponential in terms of the generators eq, - - - , ep:

m m m

4
Pexp/ Txz() =1+ eG(siz)+> Y eieG(sis;2)
0

i=1 i=1 j=1

3

NgE

+

=

m
Z eiejexG(sisjsk; z) + - - -
k=1

N
Il
N

J
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Genus 1: Elliptic Multiple Polylogarithms

@ Next, consider a compact genus-one surface, ¥, with
modulus 7, denoted as a lattice by X = C/(Z + 77Z).

@ For a surface with genus h > 1, there are multiple options for constructing a
connection: [Brown, Levin, arXiv:1110.6917]
[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]

[Broedel, Duhr, Dulat, Tancredi, arXiv:1712.07089]

1. A connection that is single-valued on %, but non-meromorphic (due to
Z-dependence), with at most simple poles.

2. A meromorphic connection that has at most simple poles, but is not
single-valued (and lives on the universal cover of X). This can be obtained with
a minor tweak of the first construction.

3. A connection which is meromorphic and single-valued but has poles of
arbitrary order. [Enriquez, Zerbini, 2110.09341]

@ The Brown-Levin construction opts for the first choice.

@ Note that there is an infinite set of integration kernels at genus one, even

for a single marked point z.
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The Brown-Levin Construction

@ Brown and Levin pioneered a method of homotopy-invariant iterated

integrals at genus one. [Brown, Levin, arXiv:1110.6917]
@ The key element to their construction is the so-called Kronecker-Eisenstein
(KE-) series:

/
fﬂaavr=wp<bmymz>ﬂ“mTW“ZHﬂﬂ

_ = an—l (n) .
01(27)01(al7) =2_ ")

n=0

ImT

@ The KE-series is single-valued on the torus, has a simple pole at z = 0 and
satisfies the following differential relation (for z £ 0):

2:Q(z.alr) = — - Q(z,al7)

@ They then constructed the flat connection Jp1,(z|7), which is valued in the
Lie algebra £, generated by elements a, b:
To(z|r) = % (dz—dz) b + dzad, Q(z,ads|7) a
T

@ Note that we have put o — ad, = [b, o]. Flatness can be proven using that
d, = dz0, + dz0z, and using the above differential equation.
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Homotopy-Invariant Iterated Integrals

@ We may write down homotopy-invariant iterated integrals on the torus by
expanding the path-ordered exponential in terms of words in a, b:

Pexp/ JeL(:|7) =14al(a; z|t) + bT(b; z|T)
0
+abTl(ab;z|T) + baTl(ba;z|T) + ...

@ The resulting coefficient functions I'(rv; z
polylogarithms.

7) are referred to as elliptic

@ While the connection is single-valued on the torus, the integrals are not and
have monodromies along the 2(- and B-cycles.

@ Note: In the physics literature we typically see the following functions:
~ z ~
F(mim o rizr) = / dzy g™ (zy—wa|r) T (02 v za]7)
0
@ We review the connection of these functions to the above construction next.
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Meromorphic Variant

@ We can define a meromorphic counterpart of the doubly- periodic
Kronecker-Eisenstein series and its expansion coefficients g(")(z|7):

HOhEar) 2 sy,
ds@niaaln) — 2 90

n=0

@ The meromorphic integration kernels g(")(z|7) are multiple-valued on the
torus, and actually live on the universal covering space, which is C.

@ Brown-Levin polylogarithms associated with words to — ab - - - b reduce to a
single integral over the meromorphic kernels. For example:

r(ab;Z|T):/ dt (2 I'r% f(l)(t|T)> __/ozdtg(l)(t|7-)——ﬁ((1);2|7')

@ More generally, I'(ab- - - b; z|7 can be expressed as:

r(ab---bizlr) = /dtg (tlr) = (—1)"F (3:2}7)
n
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Closure under integration

@ For the MPLs, we saw that partial fraction identities were essential for
splitting up a product of integration kernels.

@ We need similar identities for the function space to close under integration
at genus one. For example, we might encounter an integral of the type:

/z def) (¢ — ar) 1) (t — ay)
0

[Broedel, Mafra, Matthes, Schlotterer, arXiv:1412.5535]
@ The so-called Fay identities generalize the partial fraction relations. They
are generated by:
Q(Z1,0x1,T)Q(Zz,O[2,T) = Q(Z1,0é1 +C¥2,7’)Q(22 —Zl,az,T)
+Q(Zz,0&1 +0[2,T)Q(21 722,0[1,7')

@ For example we have that:

FO(E = D) = £ - D) - FOEF D)
A +FO0) + (e~ x)
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Alternative Construction via Convolutions

@ An alternative construction of the functions f)(z|7) is in terms of the scalar
Green function g(z|7) on X. The Green function is defined by:

0:0; g(2|7) = ~d(2) + ——, / d*2g(z|7) = 0
ImT s

@ It can be expressed in terms of the Jacobi theta function ¢; and the
Dedekind eta-function 7 as follows:
V1(2]7)
n(7)
@ We define the function f(!)(z|7) as the derivative of the Green’s function:
F®elr) = ~2eg(alr)

@ Subsequently, we can define higher dimensional convolutions of f
recursively as follows:

2 (z-2)?

" 2Im7T

g(zlr) = ~n

79t = - [ EX .g6m) Do), k22
b T

@ We will see in the following that similar convolutions underlie our
higher-genus generalizations of these kernels.
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Modular Properties of the Brown-Levin Construction

@ Let us consider the modular properties of the Brown-Levin construction.

@ We take a modular transformation on the modulus 7, z, and «a:

AT+ B - z Q

cr+D 2T Gy Cr+D
where A, B,C,D € Z with AD — BC = 1.

@ The Kronecker-Eisenstein series Q and the functions f(") transform as
modular forms of weight (1,0) and (n, 0), respectively:

Q(Z,a|7) = (Cr+ D)z, alr),  fM(E|F) = (Cr + D)'f M (z|7)

T—=T=

@ The connection Jg can be made modular invariant by assigning the

following transformation to the generators a, b:
- . ~ b

@ The extra contribution 27iCb to a is engineered so that:

Wd?B_ CT+D wdz
Im7 ~ Cr+DlImt
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Summary: The Brown-Levin construction

Step

Brown-Levin construction

Higher-genus construction

1. Integration kernels

N7y =

— Jr 2% aegxi) 6D (x—z7)

o1 () =
Js ?20(x,2) @'L(2) 0,021 )2) (r > 2)

Gl (x,y) =
Jx ?26(x,2) @M (2) 9,62 5(2,y) (s > 1)

2. Generating series

aQ(z, a|r) = 250 af(M (7| 7)

W) (x, pi B) = wy(x) + (axwﬁj(x) — 0xG(x, p)éllj) 8,
#3255, (x0lt2 Iy — oG =1 o))

X By B, - By,

3. Flat connection

(dT — T AT =0)

TgLx|T) = —dxb

+ ﬁdxb + dxad, Q(x, ady|7) a

T, p) = —madx e (x) by

+ waxH! (B b, + dxW(x, p;iB)d

4. Path-ordered exponential

Pexpfé( TpL(-lT) =
1+4al(a;x|T)+ bI(b; x|T)

+abT(ab; x|7) + baT(ba;x|T) + . ..

Pexp [ T(t,p) =
14Ty, yip) + b7 (x, y: p)
+aldryx,yip) + by (x, yvip)

+albyr ) (x, yip)+ b, T, yip) - -

5. Polylogs

e.g.
F(ab; x| T) =

Iy (zm s 7f(1)(t|7—))

eqg.
rx,yip) = = X (ar (80! g ()YK — 3y (1)YKT)

(o) - o/0) ffw! - o)




Brief overview of higher-genus Riemann surfaces
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Topology of a Compact Riemann Surface -

@ The topology of a compact Riemann surface ¥ without boundary is specified
by its genus h.

@ The homology group Hi(X,7Z) is isomorphic to Z?" and supports an
anti-symmetric non-degenerate intersection pairing denoted by J.

A choice of canonical homology basis on a compact genus-two Riemann surface X.

@ A canonical homology basis of cycles 2(; and B, with [,/ =1,--- /h has
symplectic intersection matrix J(2l;, B,) = —J(B,,2;) = jy, and
J(A,2) = J(By,B,) = 0.
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Canonical Basis of Holomorphic Abelian Differentials

@ A canonical basis of holomorphic Abelian differentials w; may be
normalized on 2A-cycles:

j{ w; =0y 74 wy =y
Ql/ KB/

@ The complex variables € denote the components of the period matrix Q of
the surface X.

@ By the Riemann relations, €2 is symmetric, and has positive definite
imaginary part:

Q'=Q Y=ImQ>0

@ We will use the matrix Y, = Im Q, and its inverse Y” = ((Im Q)‘l)” to raise
and lower indices:

=Y, @ =Y'e  YKyy=4
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Modular Transformations and Modular Tensors

@ A new canonical basis 2( and B is obtained by applying a modular
transformation M € Sp(2h,7Z), such that M'JM = J

@ Under a modular transformation, we have:
O=w(CQ+D), Q=(AQ+B)(CQ+D)?
V= (@Qct+0) "t y(ca+D)t

@ Modular tensors, generalize modular forms, replacing (Cr + D) of SL(2,Z)
with Q = CQ + D and R = (CQ + D)~1. It holds that:

(:) wir RI/ )7/1 = Y//j/ RII/RJIJ
=0 S’/IJ _ Ql/' QIJ’ YI’J'

@ A modular tensor 7 of arbitrary rank transforms as follows:

Jlrhidye Jﬁ(ﬁ) — Qllli .. Q/n/,,' lef{ . Q/ﬁj,% 7'/{7--- NATARES J%(Q)
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The Arakelov Green Function

@ The Arakelov Green function G(x,y|Q2) on X x ¥ is a single-valued version
of the Green function, defined by:  [D'Hoker, Green, Pioline, arXiv:1712.06135]
[G. Faltings, Ann. Math., 119(2), 1984]

0.6 (x, yIQ) = —75(x, y) + 7h(x) /z K()G(x,y1Q) = 0

where the Kahler form « is given by:

nzz—lhwl/\tblzﬁ(z)dzz /anl

@ The Arakelov Green function also obeys the following derivatives:
0x0yG(x,y) = =00y INE(x,y) + 7w wi(x) o' (y)
G (x,y) = w(x,y) — wwi(x)&'(y)

@ The prime form E(x, y) is a unique form that is holomorphic in x and y and
vanishes linearly as x approaches y.
@ In what follows we will not write the explicit dependence on the moduli 2.
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The Arakelov Green Function

@ An explicit formula for G(x, y) may be given in terms of the non-conformally
invariant string Green function G(x, y):

G(x,y) = G(x,y) = v(x) = v(y) + 10

The string Green function is given in terms of the prime form E(x, y) by:

G(x,y) = —log |[E(x,y)|> + 27 <|m /yxw,) <Im/yxw/>

The functions v(x) and 7o are given by:

100 = [ m@6w2) 0= [

Both x and G(x, y) are conformally invariant.

At genus one the (Arakelov) Green function only depends on a difference of
points G(X,¥)|p=1 = G(X = ¥)|p=1-

However, this translation invariance is absent on a Riemann surface ¥~ of
genus h > 1.
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The Interchange Lemma

@ The tensor ®/;(x), introduced by Kawazumi, compensates for the lack of
translation invariance at higher genus:  [Kawazumi, MCM2016]  [Kawazumi,
2017]

¢’J(x):/Zdzzg(x,z)az’(z)wj(z)

@ Note that the trace of ®/;(x) vanishes by the definition of the Arakelov
Green function.

@ In particular, the so-called interchange lemma provides a substitute for the
absence of translation invariance:

0G(x.y) wiy) + 8,G(x, y) wix) — Ex®(x) wily) — 9y @'y(y) wi(x) = 0

[E. D'Hoker, C. R. Mafra, B. Pioline, O. Schlotterer, arXiv:2008.08687]
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Construction of higher-genus polylogarithms
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Higher Convolution of the Arakelov Green Function

@ Inspired by the alternative construction of the Kronecker-Eisenstein kernels
through convolutions, we define the tensors ®;(x) and G"*5(x, y):

(0 = [ #20(.2)5" @204 @) (r>2)

Ghk(x,y) = Ldzzg(x,z)aﬂ(z) 8,6 (z,y) (s>1)

@ (We also encounter these tensors while decomposing cyclic products of
Szego kernels, see [D'Hoker, MH, Schlotterer, arXiv:2308.05044]).

@ At genus one, the derivatives of the tensor Gh**s for Iy = --- = I, = 1 equal
the Kronecker-Eisenstein integration kernels f(+1):

6 gl1 /s X y \h L= f(s+1 (X ,V|7')
@ The trace ¢+, = O for arbitrary genus implies that ®-tensors for arbitrary

r > 1 vanish identically for genus one.

@ In the next part: we will construct generating functions of our kernels, and
combine them into a flat connection.
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Generating Functions

@ Let us introduce a non-commutative algebra freely generated by B, for
I=1,---,h (loosely inspired by the approach of Enriquez and Zerbini
arXiv:2110.09341).

@ Next, we fix an arbitrary auxiliary marked point p on the Riemann surface &
and introduce the following generating functions:

H(X7p; B) = 8XQ(X,p) + Z 8xgh/2"'/’(X, p)BI1B/z C. BI,
r=1

Hy(X; B) = wy(x) + Y """ (x)B,By, - B,
r=1

@ By forming the combination W,(x, p; B) = H,(x; B) — H(x, p; B)B;, we obtain
a compact antiholomorphic derivative:

oV, (x, p; B) = —n@!(x) B; V,(x, p; B)

for x # p, which generalizes the genus-one differential relation for 2.
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The Flat Connection

@ Next, we extend to a Lie algebra £ freely generated by elements a’ and b,
for/=1,--- ,handset B, = ady, = [b}, ]

@ Our connection 7(x, p), on a Riemann surface X of arbitrary genus h with a
marked point p € ¥ and valued in the Lie algebra L is then given by:

J(x,p) = —mwdx &' (x) by + 7 dx H'(x; B) by 4 dx V(x, p; B) d'

@ Working out dy = dx0y + dx0x, we may show that:
dJ (%, p) = T (x,p) A T (x,p) = mdX A dx 5(x, p) [b), d]

proving that the connection is flat (away from x = p).

@ At genus one, J(x, p) reduces to the Brown-Levin connection, upon
relabeling a* = a and b; = b. In particular:

wl(xap;B) het = adp Q(Xfpa aJdb|7_)
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Expansion of the Connection

@ The connection J may be expanded in words in the basis (d, b;):

T (x,p) = m(dxw!(x) — dx@'(x))by + wdx Y D" (x) Y B,, - B, by
r=1

+ dXZ ( Dy d" I, axgll‘“lr_l(xvp)ajlr)Bll By, d

@ Like before, the flat connection 7 (x, p) integrates to a homotopy-invariant
path-ordered exponential '(x, y; p):

F(x,y;p) = Pexp/ J(t,p)
y

@ For example, for words with at most two letters in the basis (d', b)):

F(x,y;p) =1+ dTi(x,y;p) + bl (x,y; p)
+ddTy(x,y;p) + bibT (x,y; p)
+abT/(x,y;p) + bidT(x,y; p) +
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Summary: Construction of higher-genus polylogs

Step

Brown-Levin construction

Higher-genus construction

1. Integration kernels

®r) =

— fy Z2 oggixir) 6D x| )

Im~

ol =
Js 226(x, 2) &'1(2) 9,02 (2) (r > 2)

GMls(x,y) =
Jx 226(x,2) &"(2) 8,62 5(2,y) (s > 1)

2. Generating series

aQ(z, a|r) = £5° oM (7] 7)

W (x, pi B) = wy(x) + (a,o’1j(x) — 8xG(x, p)éllj) 8y,
+=2, (8x<»’1’2'“"/<x) - 6xg’1’2”"r71(x,p)a/r,)

X By B, - By,

3. Flat connection

Tg (x| T) = —dxb

+ s dxb + dxady Q(x, adp|T) a

T(x,p) = —m dx &/ (x) b,

+ waxH! (B b, + dxW(x, p;B)d

4. Path-ordered exponential

Pexo [ TpL(17) =
1+4al(a;x|T)+ bl(b;x|T)

+abT(ab; x|7) + bal(ba;x|T) + ...

Pexp [X T(t,p) =
1+ d'ry(x, y:p) + ;T (x, y; p)
+ddryx, vip) + bty (x, y: p)

+d'b,T ) (x, yi p)+ b, (x, yi p)+ - - -

5. Polylogs

eg.
I(ab; x|7) =

S (zm e 7,‘(1)(:\7))

eqg.
e, yip) = = [ (dt (80! ()X — 3,0/ (t)YKT)

+m(wlt) = &) fiw! - o)




Polylogarithms for Words without b,

@ The polylogarithms associated with words tv that do not involve any of the
letters b, are given by the following simple formula:

X t tr—1
e byip) = [ ) [Cwne) [ wi@)
y y y

which we’ll refer to as iterated Abelian integrals.
@ These polylogarithms are independent of the marked point p.
@ They obey the differential equations:

aXr/ﬂz”-/r(X?y;p) = w/l(X)I_IZ"'/r(X’ yv p)

@ For the case h = 1, we simply obtain:

1
M1...1v:2)],_, = ] (x=y)'
SN—— '

4
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Low Letter Count Polylogarithms

@ Next let us consider some cases involving the letters b,. For the
single-letter word b,, we obtain:

X
yip) =7 [ (!~ a)
y
@ For double-letter words with at least one letter b,, we obtain:
X t
Mx,y.p)=n / (dt (8: 'k ()Y = 0,k (1) YX!) + 7 (w(2) — @'(1)) / (W — a/))
y y

X

Mi(x,y:p) = (dt 0 ¥(t) — dt 8G(t, p)oj + 7 (W (t) - &(t)) / th>

/(x.y:p)

<\<\

( dt 0, (t) + dt 8:G(t, )&, + Tw(t )/yt(w/ - 5’))
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Meromorphic Variants of Polylogarithms

@ Lastly, let’s explore an instance showcasing where the meromorphic
variants of polylogarithms live in our function space.

@ Consider again the following higher-genus polylogarithm:

i) = [ de (~09(0) + 600 (e, p) + ma OV (Tu(t.y:p) - TlEip))
y

@ Upon specializing to genus h = 1 and setting p = y = 0, this reproduces the
Brown-Levin polylogarithm ['(ab; p|7) = —T (§; p|7).

@ The integrand with respect to t in the equation above can be viewed as a
higher-genus uplift of the Kronecker-Eisenstein kernel g™ (t|7):

t
gi(t,y;p) = 0¥ i(t) — 610:G(t, p) — 2mico(t) Y Im / wk
y
@ One may verify that indeed (for t # p):
&d(t,y:p) =0
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Modular Invariance and Hatted Basis

@ To investigate modular properties, let us define an alternative basis (d', b;)
of generators of the Lie algebra L:

a/ = a’ + 7TYUb1
@ In this basis, the connection [J(x, p) takes on a simplified form:
J(x,p) = —mwdx@'(x) by + dx V(x, p; B) &'

@ A modular transformation M € Sp(2h, Z), acts on &', B;, H,, and V¥, and on
the Lie algebra generators a’ and b; by:

ad—d =0,d+2xic"b
b/—>[7/=bjRj/

@ Then also
i =3 = Qe
@ The connection J(x, p) is seen to be manifestly invariant under Sp(2h, Z).
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Polylogarithms In The Hatted Basis

@ In the basis (@, b;), the expansion is given by:
F(x,y;p) = 14ad'T,(x,y;p) + bif(x,y; p)
+addTy(x,y; p) + bibst (x,y; p)
+a'b,f (x,y;p) + b T (x,y;ip) + -

@ The polylogarithms f(x,y; p) in the basis (&', b;) are modular tensors by the
Sp(2h,Z) invariance of the connection 7 (x, p).

o oyip) =R @y P (x,yip)

@ l|dentifying term by term in both expansions gives the relations ', = ', and
[y = IA'U, as well as the following relations:

M =r'—ay'r,
=T —7Y*ry
F,J = F/ — T F,K YKJ

r/] _ rU . TI'YIK rKJ - r/K YKJ + ﬂ,z Y/K Tkl YL/
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Low Letter Count Polylogarithms in the Hatted Basis

@ Let us write the expansion of the generating function W,(x, p; B) in the
following way:

Wy (x, p; B) = wy(x +ZB/1 By, f(x, p)
(0, p) = Byh ’v(x) — G (x, p)a
@ The polylogarithms for one- and two-letter words, starting with b, are:

X —
Fxyip) = —W/ &' = —mY" Tu(x,y:p)
y

. X ty -
M (x.y:p) = WZ/ u‘)'(fl)/ & =7V Y T (x,y: p)
y

y
f//(x,y; p)=— /yx dt (fjl(tﬂa) + mw(t) /yta,/>
(%, y:p) = /yx dt (f’f(tp) + mw(t) /yt@1> — Y T(%,y: p) Ts(%, ¥: p)

@ The expressions are more compact compared to the previous case.
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Conclusion
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Conclusion

@ We have presented an explicit construction of polylogarithms on
higher-genus compact Riemann surfaces.

@ Our construction relies on a flat connection whose path-ordered
exponential plays the role of a generating series for higher-genus

polylogarithms.

@ The flat connection takes values in the freely-generated Lie algebra
generated by elements ¢’ and b, for / = 1, --- , h, introduced by Enriquez
and Zerbini.

@ Although we have strong evidence the function space of our polylogarithms
is closed under integration, we have not yet proven this conjecture.

@ Our construction provides the first explicit proposal for a complete set of
integration kernels beyond genus one.
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Future Directions

1. Obtaining the separating and non-separating degenerations of the
polylogarithms for arbitrary genera.

2. Determining the differential relations with respect to moduli variations
satisfied by higher-genus polylogarithms.

3. ldentifying generalizations of the higher-genus modular graph tensors that
close under complex-structure variations and degenerations.

4. Re-formulation of higher-genus string amplitudes in terms of the
integration kernels and polylogarithms constructed in this work.
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Thank you for listening!
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Backup Slides



Simplified Representations

@ The polylogarithms with upper indices admit simplified representations in
terms of the iterated abelian integrals, their complex conjugates and
contractions with Y”.

@ For words with a single letter b; we have:

M(x,y;p) = «Y"(T)(x,y;: p) = Ts(x,y: p))
@ For two-letter words that contain at least one b,, we have:

r/(x,y;p) = 7Y T (x,y: p) + / dt (—3r¢j/(t) + 610:G(t, p) — mwi(t) Y T (t, y; P))
y
T(x,y: p) = oY (Cu(x,y: p) — Ti(x,y: )Tk (X, y: p))
/ dt (0:9'(1) — 5J2G(t.p) + mes(O)Y Tt y: )

Mxyp) = YIKYJL(FKL X,¥:P) + Tk (6 ¥:P) — Tk 06 Vi P)TL(x,v:P))
/ t(0:0k(t)YY — ()Y

1 (O YKTR(t,y: p) — 7wl () VKT (L, p))
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