....mmumtmur(>
r/ ¢

\.,‘

.
-
el "
-
- =
A TR o E ii!!
L "
) ™
)

Y ",‘- ..‘-, ,..' fan! ahe -
nr‘imrm U' W WK

ulated anneallng

' a .“ 4
A Y

|

A

[N
- e

T T :
— .

- &\
-—T, \
e § |
“’ﬁ\
L ol y
[—

R— : N
e
-

3/

Case study SI

Troels F. Rgnnow

What are Ising spin glasses?

D PHYS Troels F. Rennow | 2

What are Ising spin glasses?

»
»

DPHYS

What are Ising spin glasses?

D PHYS Troels F. Rennow | 4

What are Ising spin glasses?

5

DPHYS

What are Ising spin glasses?

L SN SN SEN SEN SN SN SN SEL SER SN The energy functional of spin glasses are given by:
T T T T T Y YT T Y H=Y Jss,+Y hs +const. with s =%I

an on on o op o o o o o i l‘

0 2 2 B . B B 2 B B 4 Finding the minimum of this functional is NP-hard
=000 and therefore have many potential applications
T T T T T T T T T T including:

L BB ZEB EB En SN ZEn JEm b ZEm N - Travelling salesman problem

L ZEn an Sun an Son e e 2 B 2B 4 - Knapsack problem

- 1rrrrererere - Finishing Super Mario 3 in best possible time
L D A A G A s A A A 4

L ZENN JEN N S SE S S Smm S S 4

D PHYS Troels F. Rennow | 6

Special purpose machines

Janus i D-Wave Il

These are fast special purpose machines which find the minimum of the previous functional.

Moreover, they are fast and it is hard to write codes for ordinary computers which can compete.

So can classical computers compete with these machines?

D PHYS Troels F. Rennow

7

Annealing and simulated annealing

Annealing

A 7000 year old neolithic technology

Slowly cool metal or glass
to improve its properties

Simulated annealing

Kirkpatrick, Gelatt and Vecchi, Science (1983)

A 30 year old optimisation technique

Slowly cool a model in a Monte Carlo simulation
to find the solution to an optimisation problem

We don’t always find the global minimum and have to try many times

D PHYS Troels F. Rennow | 8

How does simulated annealing on spin glasses
work?

1) Start at a random configuration

[N A A

2) Pick a random spin

N B N () I A

3) If the energy is lowered by flipping it, flip it.
Otherwise flip it with probability

([R N

4) Repeat this many times while gradually lowering the temperature.

D PHYS Troels F. Rennow | 9

The most “naive” implementation

= Open Matlab and write 20 lines of code:

function ising (N, sweeps)
M = N*N;
odd = 1:2:M;
even = odd + 1;
S = I-2*round(rand(1l,M));
Ju = (1 - 2*round(rand(M,M))) .* (diag(mod(l: (N*N-1), N) ~= 0,1) \
+ diag (ones (M-N, 1),N));

J = (Ju + Ju');

for beta= 0.01:(3.0 = 0.01)/ (sweeps—-1) :3.0,
r = rand (M, 1) ;
E= (J *S'") .*S';
U =1 <= exp(- 2* beta* E);
U(even) = 0;
S(U) =-S(U);
E = (J * S') .*S';
U =1 <= exp(- 2* beta* E);
U(odd) = 0;
S(U) =-=-5S(U0);

end

end

D PHYS Troels F. Rgnnow | 10

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001

D PHYS Troels F. Rgnnow | 11

What does the code do?

12

Troels F. Rgnnow |

Ep=(J-s)

DPHYS

The “high school” implementation

= |n high-school | did not know about matrices and neither
about Matlab - however, | knew C++.

= The natural approach is to implement sparse matrices:

inline voild update site(site &csite, schedule step const &sched, word const

&r) |
energy de = csite.h;
for(std::size . f.i = 0, J; 1 < csite.neighbour count(); ++1) {
] csite.index[1];

de —-= nudt * Csite.couplings[1i] * lattice.sitespin ;
}

de *= csite.spin;

1f(de <= 0 || rnd() < word(-1) * std::exp(-2 * sched.beta * de)) {
reference energy += 2 * de;
csite.spin = -csite.spin;

}
}

D PHYS Troels F. Rgnnow | 13

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001

C++, high-school 0.04

Keep It Simple, Stupid: Fancy datatypes and high-level
languages are likely to slow your code significantly down.

D PHYS Troels F. Rgnnow | 14

Identifying bottle necks

= How do we identify bottlenecks?

©0e e

@@ @ [Choose Target - J

Record

Target

(OO0 0]

Inspection Range

Instruments

g

ao:oo:on e

Run 0 of 0 I

|

(=ElC O (6)

View

Library

Q- Instrument Detail

Filter

Instruments

Choose a Template for the Trace Document:

¥

Memory
CPU

1/O Activity
Craphics

ﬁ iOS Simulator

All
Memory
CPU

File System

‘Ljosx

All
Memory
CPU

File System
Behavior

User

-

Time Profiler

Time Profiler

System Trace

lllllllllllll

Activity Monitor

Automation

Performs low-overhead time-based sampling of processes running on the system's CPUs.

15

Optimisations

energy de = csite.h;
for(std::size t 1 = 0,
J = csite.index[1];

de -= csite.couplings([i]

}

de *= csite.spin;
if(de <= 0 || rnd()

reference energy +=
csite.spin =

DPHYS

< word(-1)
2 * dejy;
-csite.spin;

j; 1 < csite.neighbour count();

* lattice.sites[]] .spin ;

* std::exp(-2 * sched.beta * de

)

)

{

Troels F. Rennow

T &r)

Optimisations

inline vold update site(site &csite, schedule step const &sched, word const &r) {

if(csite.de <= 0 || rnd() <Iword(—1) x std?:exp(-~ * sched.beta * csite.de)])
{
reference energy += (2 * csite.de);
csite.spin = -csite.spin;
csite.de = -csite.de;
energy nudt = 2 * csite.spin;
for (std::size t 1 = 0, j; 1 < csite.neighbour count(); ++1) {
J = csite.index[1];
lattice.sites[]].de -= nudt * csite.couplings[i] * lattice.sites[]].spin ;

D PHYS Troels F. Rgnnow | 17

Optimisations

inline voild update site(site &csite, schedule step const &sched, word const &r) {

if(csite.de <= 0 || rnd() < sched.levels[csite.de]) {
reference energy += (2 * csite.de);
csite.spin = -csite.spin;
csite.de = -csite.de;
energy nudt = 2 * csite.spin;
for(std::size t 1 = 0, j; 1 < csite.neighbour count(); ++1)
J = csite.index[1];
lattice.sites[j].de -= nudt * csite.couplings[i] * lattice.sites[]].spin ;

DPHYS

Troels F. Rennow

18

Benchmarking

_ Spin flips/ns Relative speedup
Matlab, “naive” code 0.001

C++, high-school 0.04

C++, optimised 0.5

Profile your code: This helps you identify where to improve

your code and sometimes you get a factor of 10 with little
extra effort.

D PHYS Troels F. Rgnnow | 19

Choosing the correct datatypes

= Currently we use integers to store spins. However, spins are
really binary variables:

87;:1—267;

= |n this way we can optimise memory usage by storing in
spins Iin single bits.

= Using binary operations we can update several spins
simultaneously and thereby optimise the computational
effort:

D PHYS Troels F. Rgnnow | 20

Current configuration

TS4=1

Computing update rates

= \We compute the energies bitwise T

S

l1=d1®d2 l2=d3®d4
h1=d1/\d2 h2=d3/\d4

e1 =10 DIy

e2 = (I3 Al2) ® hy @ ho

es = (Iy Alg) A (hy V ha) V By A b
eq = hy A ho

Result: = —(AE/2+2)

]

[
=
|

o

DPHYS

<« p1 = ezp(—8pP)
< po = exp(—4p)
+«p3=1

€4
You can effic\e/ntly compute bits with a given probability using the right algorithm

81=1 +1\T

82=1

Effective energy contributions
dy4 = 84D j3 D S0

+1
gl P .
di =81DJ1DSo \ d3 = s3 D j3 D So

-1
da = 82 @ j2 @ S
Now all we need to do is to compute the

probability of flipping each spin in the
word.

Is F. Rennow | | 21

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin

: 2.3
version 1

Put thought into datatypes and the underlying algorithm:
Choosing the correct datatypes with the correct algorithm,

we can improve the code.

D P H YS Troels F. Rennow

| 22

Checking the literature

= Reading the literature, we later found a more effective way
to compute the probability of updating a spin.

= This is just a small modification to our previous algorithm.

Result: = —(AE/2+2)

<+ p; = exp(—8p)
<+ p; = exp(—4p)
<4+ P3 =

D
Coo~=>
|

This gives correlations, but it turns out that they are negligible in most cases.

D PHYS Troels F. Rgnnow | 23

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin

: 2.3 2.300
version 1

C++, multispin

version 2 6.0

Always check literature:
You are not the first to consider a specific problem. With

more than 50 years digital computing in academia,
great ideas are around - use them!

D P H YS Troels F. Rennow

| 24

Use OpenMP and OpenMPI

= For many codes you have one or two loops which can be
made parallel in a straight-forward manner.

= The individual repetitions can be computed in parallel

alg = alg type(lattice, sched);
J* oo */
for (std::size t rep = repl; rep < repO+nreps; ++rep) {

alg.reset sites(rep);

JrE L. Y/

D PHYS Troels F. Rgnnow | 25

OpenMP for repetitions

It only requires few lines of code:

fpragma omp parallel num threads (n

{

)
g gmed m = omp get thread num();
w alg type(lattice, sched);
J

JS* oo xS

fpragma omp parallel num threads (n) {
unsigned n = omp get num threads();
unsigned m = omp get thread num();
std::size t r0 = rep0 + nreps * m / n;

std::size t rl = rep0 + nreps * (m + 1) / n;

std::size t offs = nreps * m / n * alg type::word size;

£ TTS1ze € rep = mlep < rl; ++rep) {
algs[m].reset sites(rep);

S e ——
}

DPHYS

Troels F. Rennow

| 26

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001
C++, high-school 0.04

C++, optim ; ;
Learn to write parallel codes: Exploit the full CPU and not

C++, multis just a fraction of it.
version 1

C++, multispin
version 2

C++, parallel,
multispin

D PHYS Troels F. Rgnnow | 27

Moving to GPUs

= Rewrite the entire code for NVIDIA Kepler cards

= ... and finally we are ready to compete with the special
purpose machines:

\

10° . Range 1 —_— CPU
NV|d|a faster — GPU
104 -
- [|
E n
Q
&~
W\Ju UUA 2 10
k=
473]
S 10’ D-Wave faster |
10° |
10! 10° 10! 102 103 10* 10°
DPHYS TOtal tlme TSA [mS] Troels F. Rgnnow | 28

DPHYS

Benchmarking

_ Spin flips/ns Relative speedup

Matlab, “naive” code 0.001

C++, high-school 0.04

C++, optim Hire a programmer: If you don’t have time or skills to

optimise your codes, it might be worth hiring someone to do
C++, muIt|<

version 1

C++, multispin 6.0 6.000
version 2

G, jperllie) 52.0 52.000
multispin

CUDA, GPU version 250 250.000

Troels F. Rennow

| 29

Conclusion
Price for one billion
: : Development cost
simulations

Matlab, “naive” code CHF 300.000 CHF 60 (2 hours)

C++, high-school CHF 7.500 CHF 300 (10 hours)

C++, optimised CHF 600 CHF 600 (20 hours)

C++, multispin

: CHF 130 CHF 2.400 (2 weeks)
version 1

C++, multispin

: CHF 50 CHF 4.800 (1 month)
version 2

C++,_pa_ra||e|, CHE 50 CHF 4.860 (1 month, 2
multispin hours)

CUDA, GPU version CHF 20 CHF 9.600 (2 months)

D PHYS Troels F. Rgnnow | 30

Conclusion

= Fancy datatypes will not do you any good if there is no
thought behind them.

= Use a profiler to optimise your codes.
= Check what has been done by other people.

= |f you cannot write good and fast codes yourself, you might
want to consider hiring someone to do that.

D PHYS Troels F. Rgnnow | 31

