
||Troels F. Rønnowr

Case study: Simulated annealing

Troels F. Rønnow
!1

||Troels F. Rønnow !2

What are Ising spin glasses?

||Troels F. Rønnow !3

What are Ising spin glasses?

||Troels F. Rønnow !4

What are Ising spin glasses?

||Troels F. Rønnow !5

What are Ising spin glasses?

||Troels F. Rønnow !6

What are Ising spin glasses?

H = Jij
ij
∑ sis j + hi

i
∑ si + const. with si = ±1

The energy functional of spin glasses are given by:

Finding the minimum of this functional is NP-hard
and therefore have many potential applications
including:
 - Travelling salesman problem
 - Knapsack problem
 - Finishing Super Mario 3 in best possible time

||Troels F. Rønnow !7

Special purpose machines

Janus IISUE D-Wave II

These are fast special purpose machines which find the minimum of the previous functional.
Moreover, they are fast and it is hard to write codes for ordinary computers which can compete.

So can classical computers compete with these machines?

||Troels F. Rønnow

Image credit ANFF NSW node, University of New South Wales

Annealing
A 7000 year old neolithic technology

Slowly cool metal or glass 
to improve its properties

!8

Annealing and simulated annealing

Simulated annealing 
Kirkpatrick, Gelatt and Vecchi, Science (1983)

A 30 year old optimisation technique

Slowly cool a model in a Monte Carlo simulation 
to find the solution to an optimisation problem

We don’t always find the global minimum and have to try many times

||Troels F. Rønnow !9

1) Start at a random configuration

2) Pick a random spin

3) If the energy is lowered by flipping it, flip it.
 Otherwise flip it with probability

4) Repeat this many times while gradually lowering the temperature.

How does simulated annealing on spin glasses
work?

||Troels F. Rønnow

▪ Open Matlab and write 20 lines of code:

!10

The most “naive” implementation

function ising(N, sweeps)
 M = N*N;
 odd = 1:2:M;
 even = odd + 1;
 S = 1-2*round(rand(1,M));
 Ju = (1 - 2*round(rand(M,M))) .* (diag(mod(1:(N*N-1), N) ~= 0,1) \
 + diag(ones(M-N,1),N));
 J = (Ju + Ju');
 for beta= 0.01:(3.0 - 0.01)/(sweeps-1):3.0,
 r = rand(M,1);
 E = (J * S') .* S';
 U = r <= exp(- 2* beta* E);
 U(even) = 0;
 S(U) = -S(U);
!
 E = (J * S') .* S';
 U = r <= exp(- 2* beta* E);
 U(odd) = 0;
 S(U) = -S(U);
 end
end

||Troels F. Rønnow !11

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

||Troels F. Rønnow !12

What does the code do?
 0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
 -1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0
 1 0 0 0 0 -1 0 0 1 0 0 0 0 0 0 0
 0 1 0 0 -1 0 -1 0 0 1 0 0 0 0 0 0
 0 0 1 0 0 -1 0 -1 0 0 1 0 0 0 0 0
 0 0 0 1 0 0 -1 0 0 0 0 1 0 0 0 0
 0 0 0 0 1 0 0 0 0 1 0 0 -1 0 0 0
 0 0 0 0 0 1 0 0 1 0 -1 0 0 -1 0 0
 0 0 0 0 0 0 1 0 0 -1 0 1 0 0 1 0
 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1
 0 0 0 0 0 0 0 0 -1 0 0 0 0 1 0 0
 0 0 0 0 0 0 0 0 0 -1 0 0 1 0 -1 0
 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 -1
 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0

||Troels F. Rønnow

▪ In high-school I did not know about matrices and neither
about Matlab - however, I knew C++.

▪ The natural approach is to implement sparse matrices:

!13

The “high school” implementation

inline void update_site(site &csite, schedule_step const &sched, word const
&r) {
 energy de = csite.h;
 for(std::size_t i = 0, j; i < csite.neighbour_count(); ++i) {
 j = csite.index[i];
 de -= nudt * csite.couplings[i] * lattice.sites[j].spin ;
 }
 de *= csite.spin;
!
 if(de <= 0 || rnd() < word(-1) * std::exp(-2 * sched.beta * de)) {
 reference_energy += 2 * de;
 csite.spin = -csite.spin;
 }
}

||Troels F. Rønnow !14

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

Keep It Simple, Stupid: Fancy datatypes and high-level
languages are likely to slow your code significantly down.

||Troels F. Rønnow

▪ How do we identify bottlenecks?

!15

Identifying bottle necks

||Troels F. Rønnow !16

Optimisations

inline void update_site(site &csite, schedule_step const &sched, word const &r) {
 energy de = csite.h;
 for(std::size_t i = 0, j; i < csite.neighbour_count(); ++i) {
 j = csite.index[i];
 de -= csite.couplings[i] * lattice.sites[j].spin ;
 }
 de *= csite.spin;
!
 if(de <= 0 || rnd() < word(-1) * std::exp(-2 * sched.beta * de)) {
 reference_energy += 2 * de;
 csite.spin = -csite.spin;
 }
}

||Troels F. Rønnow !17

Optimisations

inline void update_site(site &csite, schedule_step const &sched, word const &r) {
 if(csite.de <= 0 || rnd() < word(-1) * std::exp(-2 * sched.beta * csite.de))
{
 reference_energy += (2 * csite.de);
 csite.spin = -csite.spin;
!
 csite.de = -csite.de;
 energy nudt = 2 * csite.spin;
 for(std::size_t i = 0, j; i < csite.neighbour_count(); ++i) {
 j = csite.index[i];
 lattice.sites[j].de -= nudt * csite.couplings[i] * lattice.sites[j].spin ;
 }
 }
}

||Troels F. Rønnow !18

Optimisations

inline void update_site(site &csite, schedule_step const &sched, word const &r) {
 if(csite.de <= 0 || rnd() < sched.levels[csite.de]) {
 reference_energy += (2 * csite.de);
 csite.spin = -csite.spin;
!
 csite.de = -csite.de;
 energy nudt = 2 * csite.spin;
 for(std::size_t i = 0, j; i < csite.neighbour_count(); ++i) {
 j = csite.index[i];
 lattice.sites[j].de -= nudt * csite.couplings[i] * lattice.sites[j].spin ;
 }
 }
}

||Troels F. Rønnow !19

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

C++, optimised 0.5 500

Profile your code: This helps you identify where to improve
your code and sometimes you get a factor of 10 with little
extra effort.

||Troels F. Rønnow

▪ Currently we use integers to store spins. However, spins are
really binary variables:

▪ In this way we can optimise memory usage by storing in
spins in single bits.

▪ Using binary operations we can update several spins
simultaneously and thereby optimise the computational
effort:

!20

Choosing the correct datatypes

||Troels F. Rønnow

▪ We compute the energies bitwise

!21

Computing update rates

Effective energy contributions

-1

-1

-1

+1

+1
+1

-1-1

Current configuration

0
0
1
1

Result:

Now all we need to do is to compute the
probability of flipping each spin in the
word.

0

You can efficiently compute bits with a given probability using the right algorithm

||Troels F. Rønnow !22

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin
version 1 2.3 2.300

Put thought into datatypes and the underlying algorithm:
Choosing the correct datatypes with the correct algorithm,
we can improve the code.

||Troels F. Rønnow

▪ Reading the literature, we later found a more effective way
to compute the probability of updating a spin.

▪ This is just a small modification to our previous algorithm.

!23

Checking the literature

0
0
1
1

Result:

This gives correlations, but it turns out that they are negligible in most cases.

||Troels F. Rønnow !24

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin
version 1 2.3 2.300

C++, multispin
version 2 6.0 6.000

Always check literature:
You are not the first to consider a specific problem. With
more than 50 years digital computing in academia,
great ideas are around - use them!

||Troels F. Rønnow

▪ For many codes you have one or two loops which can be
made parallel in a straight-forward manner.

▪ The individual repetitions can be computed in parallel

!25

Use OpenMP and OpenMPI

!
alg = alg_type(lattice, sched);
!
/* ... */
!
for (std::size_t rep = rep0; rep < rep0+nreps; ++rep) {
 alg.reset_sites(rep);
 /* ... */
}

||Troels F. Rønnow !26

OpenMP for repetitions

#pragma omp parallel num_threads(n) {
 unsigned m = omp_get_thread_num();
 algs[m] = alg_type(lattice, sched);
}
!
/* ... */
!
#pragma omp parallel num_threads(n) {
 unsigned n = omp_get_num_threads();
 unsigned m = omp_get_thread_num();
 std::size_t r0 = rep0 + nreps * m / n;
 std::size_t r1 = rep0 + nreps * (m + 1) / n;
 std::size_t offs = nreps * m / n * alg_type::word_size;
 for (std::size_t rep = r0; rep < r1; ++rep) {
 algs[m].reset_sites(rep);
 /* ... */
 }
}

It only requires few lines of code:

||Troels F. Rønnow !27

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin
version 1 2.3 2.300

C++, multispin
version 2 6.0 6.000

C++, parallel,
multispin 52.0 52.000

Learn to write parallel codes: Exploit the full CPU and not
just a fraction of it.

||Troels F. Rønnow

CPU
GPU

D-Wave faster

NVidia faster

▪ Rewrite the entire code for NVIDIA Kepler cards
▪ … and finally we are ready to compete with the special

purpose machines:

!28

Moving to GPUs

||Troels F. Rønnow !29

Benchmarking
Spin flips/ns Relative speedup

Matlab, “naive” code 0.001 1

C++, high-school 0.04 40

C++, optimised 0.5 500

C++, multispin
version 1 2.3 2.300

C++, multispin
version 2 6.0 6.000

C++, parallel,
multispin 52.0 52.000

CUDA, GPU version 250 250.000

Hire a programmer: If you don’t have time or skills to
optimise your codes, it might be worth hiring someone to do
it.

||Troels F. Rønnow

Price for one billion
simulations Development cost

Matlab, “naive” code CHF 300.000 CHF 60 (2 hours)

C++, high-school CHF 7.500 CHF 300 (10 hours)

C++, optimised CHF 600 CHF 600 (20 hours)

C++, multispin
version 1 CHF 130 CHF 2.400 (2 weeks)

C++, multispin
version 2 CHF 50 CHF 4.800 (1 month)

C++, parallel,
multispin CHF 50 CHF 4.860 (1 month, 2

hours)

CUDA, GPU version CHF 20 CHF 9.600 (2 months)

!30

Conclusion

||Troels F. Rønnow

▪ Fancy datatypes will not do you any good if there is no
thought behind them.

▪ Use a profiler to optimise your codes.
▪ Check what has been done by other people.
▪ If you cannot write good and fast codes yourself, you might

want to consider hiring someone to do that.

!31

Conclusion

