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1. Historical 

2. Motivation: Bootstrability for =4 SYM𝒩

Idea 
Non-perturbative spectral data + conformal bootstrap: tight bounds on 

structure constants!

3. Objective: Fast QSC Solver

To build a Fast QSC Solver: to reinvent the numerical algorithm so that it allows 
to compute many states in a reasonable timescale. 

4. Technicalities: Quantum Spectral Curve

1.  can be parametrised  
by the Zhukovsky variable  which 
gives a set of “starting” parameters 

 
Use functional relations to obtain .

{Pa, Pa}
x(u)

{Δ𝚠𝚎𝚊𝚔 𝚌𝚘𝚞𝚙𝚕𝚒𝚗𝚐, ca,n, ca,n} .
{Qi, Qi}

2.  have a branch cut between 
. Sample them at a set of problem 

points , close to the branch cut. Impose 
a set of “gluing” conditions 
on and their analytic continuations 

, which ensure correct analytic 
properties. Use functional relations to 
compute  on the probe 
points . Perform a Fourier transform to 
get the updated parameters 

 

{Qi, Qi}
[−2g, 2g]

{u0}

{Qi, Qi}
{Q̃i, Q̃i}

{Pa, Pa, P̃a, P̃a}
{u0}

{Δ, c𝚄𝚙𝚍𝚊𝚝𝚎𝚍
a,n , ca,n,𝚄𝚙𝚍𝚊𝚝𝚎𝚍}

3. Numerical search: Newton’s method to 
solve 

⃗F ({c}, Δ) = {c𝚄𝚙𝚍𝚊𝚝𝚎𝚍
a,n − ca,n, ca,n 𝚄𝚙𝚍𝚊𝚝𝚎𝚍 − ca,n} = 0 .

5. Results

4. Precision control is achieved by seeing how 
close to zero, certain parameters, which are 
“gauge fixed” to be zero, are. 
Once the desired precision is reached, read off 
the value of  obtained.
Δ

Numerical spectrum of all states of  SYM with bare dimension 𝒩 = 4 ≤ 6

Numerical fits at strong coupling

6. Open Source 

We plan to make the code open-source and user-friendly.  The Solver will be available on 
GitHub and will include: 

1. C++ core code 
2. Auxiliary packages which allow to initialise from perturbative QSC solver of [Marboe, Volin 

’17 ’18].  
3. Python script which manages the parameters of the run and does not require babysitting 

from the user 
4. Mathematica notebook with the code prototype  
5. Numerical data for all already computed states 

so that it is possible for a user to run own states and continue those already computed.

7. Future directions 
1. The algorithm can be modified to be many other problems:  integrable boundaries, 

ABJM, , building Regge trajectories for non-integer spin, - and -deformations, 
etc. 

2. Construct systematic expansion of QSC at strong coupling.  
3. Combine with numerical conformal bootstrap to get bounds on structure constants. 

Can we dream of tight bounds as of 1d CFT? 
4. Combine with analytical conformal bootstrap at strong coupling.  
5. Possible insights to fixing of SoV measure.

AdS3 β γ

Bootstrability program has shown incredible bounds in for the 1d defect in  SYM: 𝒩 = 4

Spectrum from integrability (QSC-based numerics) 
[Grabner, Gromov, Julius ’20] [Julius ’21] [Cavaglia, 

Gromov, Julius, Preti ’21]

Bounds on structure constance with numerical 
conformal bootstrap (SDPB) [Cavaglia, Preti, Gromov, 

Julius ’21 ’22] 

1. The first step is to obtain the spectrum of local operators in the “bootstrability” spirit: all 
states up to some , in a wide range of coupling. Then, to use numerical conformal 
bootstrap. 

2. How to tame contribution from double-trace  operators? [Caron-Huot, Coronado, Trinh, 
Zahraee ’22] [Alday, Hansen, Silva ’22] 

3. We can continue the spectrum from weak to strong coupling. At strong coupling, spectrum 
can be used to extract OPE coefficients with the dispersive sum rules [Alday, Hansen, Silva 
’22 ’23] 

4. We can provide building blocks for resumming wrapping corrections [Basso, Georgoudis, 
Klemenchuk Sueiro ‘22] in Hexagon approach [Basso, Komatsu, Vieira ’15]

Δ𝚌𝚞𝚝𝚘𝚏𝚏

The running time of states depends on symmetries of the state, which results in symmetries of 
 and .  We have data up to the following coupling: 

“Left-right” and parity symmetric: ; “Left-right” symmetric and general parity: 
; General and parity symmetric: ; General: ;  Konishi:    

Pa Pa

g ∈ [0,5]
g ∈ [0,2] g ∈ [0,2] g ∈ [0,1] g ∈ [0,13]

At strong coupling, we do numerical fits for the spectrum of computed states. The expansion is 
expected to be of the form 

 

where  is the string mass level [Gubser, Klebanov, Polyakov ’98]. We provide a heuristic 
argument that  for all states in planar  SYM and give credence to it by 
fitting out data. For most of the states we have a prediction for the subleading coefficient , 
which turns out to be a simple rational number. 

Δ ≃ 2δ λ1/4 − Δ𝚌𝚘𝚗𝚜𝚝 +
d1

δ λ1/4

δ
Δ𝚌𝚘𝚗𝚜𝚝 = − 2 𝒩 = 4

d1

How can the community use the Solver?

⟨𝒪2𝒪2𝒪2𝒪2⟩ = ∑
τ,ℓ

C2
τ,ℓGτ+4,ℓ(u, v)

Bootstrability for  SYM? Breaking degeneracies at strong coupling𝒩 = 4

Quantum numbers (including ) of the state define the asymptotics of distinguished functions 
of “spectral parameter” :  where . Distinguished 
functions are connected by functional relations, and have a specific analytic structure; solving 
for them allows to extract non-perturbative spectral information.

Δ
u {Pa(u), Pa(u), Q(u)i, Qi(u)} a, i = 1,…,4

The main spirit:

Main idea for new algorithm

How do we test the concept for  SYM?𝒩 = 4

Consider the four-point function of 20’ operators: operators with 
different twists  are exchanged in the operator 
product expansion. Here  is the Lorentz spin label. 

τ ≡ Δ − ℓ
ℓ

First non-perturbative numerical data: Thermodynamic Bethe Ansatz for the Konishi operator 
[Gromov, Kazakov, Vieira ’08]. Linear convergence rate. 

Quantum Spectral Curve [Gromov, Kazakov, Leurent, Volin ’14]: the numerical algorithm with 
quadratic convergence rate [Gromov, Levkovich-Maslyuk, Sizov ’15]. Hard to go beyond 
ground state.
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EXACTC

At strong coupling, under a simple change of variables, , [Alday, Hansen, Silva  ’22] 
derived conformal bootstrap constraints on CFT-data combinations of type  and 

. The superscript refers to order in the strong coupling expansion. These sums 

are over over all operators with same  and , and need to be “unmixed” in order to extract 
individual predictions. 

For  and , there are two such operators, which we can unmix using our spectral 
data. Therefore, we obtain 

   

which are the first Bootsrability predictions at strong coupling for  SYM!

C2
τ,ℓ → fδ,ℓ

∑
k
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δ ℓ

δ = 2 ℓ = 0

f (0)
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4

,

𝒩 = 4

1. We wanted an algorithm which goes beyond the ground state, and can initialise any state, 
given the weak coupling solution. 

2. We wanted to initialise many states starting from the weak coupling QSC solver of [Marboe, 
Volin ’17 ’18]. We needed the solver to perform well at weak coupling (g ~ 1/1000) and for 
highly degenerate states which present at higher bare dimensions.  

3. We wanted an implementation with high efficiency.

Spectrum of all states with bare dimension ≤ 6 Spectrum of “left-right” and  parity symmetric states with bare 
dimension ≤ 6
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