

Moritz Kade
with M. Staudacher and M. Volk
IGST 2023

1. Key facts: Inversion relations

- The method of inversion relations was established for the 8 -vertex model [Stroganov'79] and other statistical models [Baxter'82]
- Soon after, applied to fishing-net vacuum graphs, interpreting QFT as an integrable lattice model [Zamolodchikov '80, Bazhanov,Kels,Sergeev'16]
- Bi-scalar fishnet theory which generates these graphs was found [Gürdogan,Kazakov'15] as an integrable limit of $\mathcal{N}=$ 4 SYM, another such limit is the brick-wall theory [Caetano,Gürdogan,Kazakov'16, Kazakov,Olivucci,Preti'19].
- Integrability of brick-wall model provided by "spinning" star-triangle relations
[Chicherin,Derkachov,Isaev,Olivucci '12-'23]
- Inversion relations can be used to calculate free energy in the thermodynamic limit in statistical models and the crit ical coupling in QFTs. This is the radius of convergence

$$
\kappa=\lim _{M, N \rightarrow \infty}\left(Z_{M N}\right)^{\frac{1}{M N}}
$$

for the expansion of the free energy
$Z=\sum_{M, N=1}^{\infty} Z_{M N}\left(\xi^{2}\right)^{M N}$

2. 8-vertex model

Calculate its free energy: Configuration corresponds to a rectangular graph with 4 -valent vertices on a torus, weighted as

Encode general vertex in R-matrix $\left(u=v_{1}-v_{2}\right)$
$R(u, \eta)=\left(\begin{array}{cccc}a(u, \eta) & 0 & 0 & d(u, \eta) \\ 0 & b(u, \eta) & c(u, \eta) & 0 \\ 0 & c(u, \eta) & b(u, \eta) & 0 \\ d(u, \eta) & 0 & 0 & a(u, \eta)\end{array}\right)=$
satisfying Yang-Baxter eq., crossing and unitarity
\qquad
for $f(u):=-\mathrm{i} \vartheta_{4}(0 \mid q) \vartheta_{4}\left(\left.\frac{\mathrm{i}(\eta+u)}{\sqrt{\vartheta_{3}}} \right\rvert\, q\right) \vartheta_{1}\left(\left.\frac{\mathrm{i}(\eta+u)}{\sqrt{\vartheta_{3}}} \right\rvert\, q\right)$. Using this, one can show that

$$
=[f(u) f(-u)]^{N} \cdot \mid \cdot \mathbb{1}^{\otimes N} .
$$

For a transfer matrix

$$
T_{N}(u):=\left|\begin{array}{|l|l|l|}
v_{2} & \ldots & \\
v_{1} & &
\end{array}\right|
$$

one can derive a inversion relation

$$
\begin{equation*}
T_{N}(u) \circ T_{N}(-u)=[f(u) f(-u)]^{N} \cdot \mathbb{1}^{\otimes N} . \tag{1}
\end{equation*}
$$

For a $M \times N$ toroidal lattice, the free energy in the thermodynamic limit is defined as

$$
\begin{equation*}
\kappa(u):=\lim _{M, N \rightarrow \infty} \operatorname{tr}\left[T_{N}(u)^{M}\right]^{\frac{1}{M N}} \tag{2}
\end{equation*}
$$

Eq. (1) and crossing of the R-matrix implies

$$
\begin{align*}
\kappa(u) \kappa(-u) & =f(u) f(-u) \tag{3a}\\
\kappa(u) & =\kappa(\eta-u)
\end{align*}
$$

(3b)
One finds the solution to be
$\log \kappa(u)=-\log c(u, \eta)$
$+\log \left[\frac{1}{\Gamma^{(1)}(p x \mid q) \Gamma^{(1)}\left(p^{2} x^{-1} \mid q\right)} \frac{\Gamma^{(2)}\left(p^{4} x^{-1} \mid q, p^{2}\right) \Gamma^{(2)}\left(p^{3} x \mid q, p^{2}\right)}{\Gamma^{(2)}\left(p^{2} x \mid q, p^{2}\right) \Gamma^{(2)}\left(p^{3} x^{-1} \mid q, p^{2}\right)}\right]$ with q the elliptic nome, $x=e^{-\frac{2 u}{\sqrt{v_{3}}}}$ and $p=e^{-\frac{4 n}{\sqrt{J_{3}}}}$. The function $\Gamma^{(r)}\left(z \mid q_{1}, \cdots, q_{r}\right)$ is the order-r elliptic gamma function [Felder,Varchenko'99].

3. Integrable fishnet QFTs from $\mathcal{N}=4$ SYM theory

- Starting point: γ-deformed $\mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM theory

For the sake of breaking supersymmetry, replace all products of two fields $A \cdot B$ in the $\mathcal{N}=4$ SYM action by $\mathrm{e}^{-\frac{1}{2} \operatorname{det}\left(\mathbf{q}_{A}\left|\mathcal{q}_{B}\right| \gamma\right)} A \cdot B$, where \mathbf{q}_{A} and \mathbf{q}_{B} are the $\mathfrak{s u}(4) R$-symmetry weight vectors of A and B, respectively, and $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ are the deformation parameters. Thus, they appear as powers of $q_{i}:=\mathrm{e}^{-\frac{\mathrm{i}}{2} \gamma_{i}}$ in the Lagrangian

- Double-scaling limit:
γ-deformed $\mathcal{N}=4 \mathrm{SU}(\mathrm{N})$ SYM theory with $\gamma_{i} \longrightarrow \mathrm{i} \infty\left(\Rightarrow q_{i} \rightarrow \infty\right)$ while the 't Hooft coupling simultaneously $\lambda \longrightarrow 0$ such that $\xi_{1}:=q_{1} \cdot \lambda, \xi_{2}:=q_{2} \cdot \lambda, \xi_{3}:=q_{3} \cdot \lambda$ stay fixed at a finite value.
This yield the so-called dynamical fishnet theory.
- Bi-scalar fishnet theory: Switch off $\xi_{1}=0, \xi_{2}=0$, rename $\xi:=\xi_{3}$

$$
\mathcal{L}^{\text {fishnet }}=\frac{\mathrm{N}}{2} \cdot \operatorname{tr}\left[\partial^{\mu} \phi_{1}^{\dagger} \partial_{\mu} \phi_{1}+\partial^{\mu} \phi_{2}^{\dagger} \partial_{\mu} \phi_{2}\right]+\mathrm{N}(4 \pi)^{2} \xi^{2} \cdot \operatorname{tr}\left[\phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}\right]
$$

- Brick-wall model: Switch off $\xi_{1}=0$.

$$
\mathcal{L}_{\text {int }}^{\text {brickwall }}=\mathrm{N} \cdot \operatorname{tr}\left[(4 \pi)^{2} \xi_{3}^{2} \phi_{1}^{\dagger} \phi_{2}^{\dagger} \phi_{1} \phi_{2}+(4 \pi)^{2} \xi_{2}^{2} \phi_{3}^{\dagger} \phi_{1}^{\dagger} \phi_{3} \phi_{1}+(4 \pi) \mathrm{i} \sqrt{\xi_{2} \xi_{3}}\left(\psi_{2} \phi_{1} \psi_{3}+\bar{\psi}_{2} \phi_{1}^{\dagger} \bar{\psi}_{3}\right)\right]
$$

4. Integrable QFTs from a lattice model perspective

Encode the 4 -valent vertices of the medial lattice as weights $\left(\eta=\frac{D}{2}\right)$. A medial line carries a spectral parameter u and a spin-label l. The weights are the deformed propagators of the Feynman diagram

and they satisfy a Yang-Baxter equation on the medial lattice (which is the star-triangle relation). Unitarity of these weights is obtained by Feynman bubble integrals

with $f_{l}(u):=\pi^{\frac{D}{2}\left(\frac{D}{2}-u+\frac{l}{2}\right)} \Gamma$. Similar to the 8 -vertex case, using the unitarity, one can derive inversion relations for the transfer matrices. These are taylored to match the models above.

5. Bi-scalar fishnet theory

To model the fishnet theory, the 4 -valent medial lattice consists purely of scalar rapidity lines, i.e. $\forall i: l_{i}=0$. At the leading order in N , its vacuum diagrams wrap a torus. One can build a transfer matrix (N even)

which should be understood as an integral kernel. Using the unitarity of the propagators gives the inversion relation
$T_{N}(u) \circ T_{N}(-u)=\left[f_{0}(u) f_{0}(-u)\right]^{N} \cdot \prod_{i=1}^{N} \delta^{D}\left(x_{i}-x_{i}^{\prime}\right)$.
The edge free energy is related to eq. (2) by $\kappa^{B}(u)=: \kappa_{e}^{B}(u) \kappa_{e}^{B}(D / 2-u)$. Together with crossing this yields

$$
\kappa_{e}^{B}(u) \kappa_{e}^{B}(-u)=1
$$

$$
\kappa_{e}^{B}(D / 2-u)=\kappa_{e}^{B}(u) f_{0}(u)
$$

(4a)
(4b)
A solution is
$\kappa_{e}^{B}(u)=\pi^{u} \frac{\Gamma\left(\frac{D}{2}-\frac{D \alpha}{2 \pi}\right)}{\Gamma\left(\frac{D}{2}\right)}$

$$
\prod_{l=1}^{\infty} \frac{\Gamma\left(D l+\frac{D}{2}-u\right) \Gamma(D l+u) \Gamma\left(D l-\frac{D}{2}\right)}{\Gamma\left(D l-\frac{D}{2}+u\right) \Gamma(D l-u) \Gamma\left(D l+\frac{D}{2}\right)}
$$

At $u=1$ and $D=4$ one recovers scalar propagators and the medial lattice is rectangular. One obtains for the bi-scalar fishnet
$\kappa_{e}^{B}(1)=\frac{1}{4} \sqrt{\pi / 2} \Gamma(1 / 4)^{2}$

6. New result: Brick-wall model

The vacuum diagrams can have rectangle, bi-scalar and brick-wall, fermionic regions wrapping a cycle of the torus. The transfer matrix is thus inhomogeneous. However, the free energy factorizes. For the brick-wall free energy one has itself an inhomogeneous, stacked transfer matrix $T_{N}^{2}(u):=$ $T_{N}^{+}(u) \circ T_{N}^{-}(u)$ with

and $T_{N}^{-}(u)$ the same with inverted shading. The inversion relation can be obtained by unitarity. Finally, solve
$\kappa_{e}^{F}(u) \kappa_{e}^{F}(-u)=1$
$\kappa_{e}^{F}(D / 2-u)=\kappa_{e}^{F}(u) f_{1}(u)$
(5a)
which can be done simultaneously as in the fishnet case. Notably, in $D=4$ and $u=3 / 2$ one finds

$$
\kappa_{e}^{F}(3 / 2)=\frac{\pi^{2}}{2}
$$

This corresponds to a brick-wall graph

Altogether, for $\xi_{2}=\xi_{3}$ the free energy is $\frac{\kappa_{e}^{B}(1)-\kappa_{e}^{F}(3 / 2)\left[1+\log \left(\frac{\kappa_{e}^{B}(1)}{\kappa_{e}^{E}(3 / 2)}\right)\right]}{\log \left(\frac{\kappa_{e}^{B}(1)}{\epsilon_{e}^{(}(3)}\right)^{2}}$ $\log \left(\frac{\kappa_{e}^{B}(1)}{k_{e}^{E}(3 / 2)}\right)^{2}$

