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1. Key facts: Inversion relations

�The method of inversion relations was established for the
8-vertex model [Stroganov’79] and other statistical models
[Baxter’82]

� Soon after, applied to fishing-net vacuum graphs, interpret-
ing QFT as an integrable lattice model [Zamolodchikov ’80,
Bazhanov,Kels,Sergeev’16]

�Bi-scalar fishnet theory which generates these graphs was
found [Gürdogan,Kazakov’15] as an integrable limit ofN =
4 SYM, another such limit is the brick-wall theory [Cae-
tano,Gürdogan,Kazakov’16, Kazakov,Olivucci,Preti’19].

� Integrability of brick-wall model provided by “spinning”
star-triangle relations
[Chicherin,Derkachov,Isaev,Olivucci ’12-’23]

� Inversion relations can be used to calculate free energy in
the thermodynamic limit in statistical models and the crit-
ical coupling in QFTs. This is the radius of convergence

κ = lim
M,N→∞

(ZMN)
1

MN

for the expansion of the free energy
Z =

∑∞
M,N=1ZMN (ξ2)MN .

2. 8-vertex model

Calculate its free energy: Configuration corresponds to a rect-
angular graph with 4-valent vertices on a torus, weighted as

a b

c d

Encode general vertex in R-matrix (u = v1 − v2)

R(u, η) =


a(u, η) 0 0 d(u, η)

0 b(u, η) c(u, η) 0
0 c(u, η) b(u, η) 0

d(u, η) 0 0 a(u, η)

 =

v1

v2

satisfying Yang-Baxter eq., crossing and unitarity

v1

v2

= f (u)f (−u) v1

v2

for f (u) := −iϑ4(0|q)ϑ4(i(η+u)√
ϑ3

|q)ϑ1(i(η+u)√
ϑ3

|q). Using this, one
can show that

· · ·

v1 v1 v1

v2

= [f (u)f (−u)]N ·
v2

· 1
⊗

N .

For a transfer matrix

TN(u) :=
· · ·

v1 v1 v1

v2

one can derive a inversion relation

TN(u) ◦ TN(−u) = [f (u)f (−u)]N · 1
⊗

N . (1)

For a M ×N toroidal lattice, the free energy in the thermo-
dynamic limit is defined as

κ(u) := lim
M,N→∞

tr
[
TN(u)

M
] 1
MN . (2)

Eq. (1) and crossing of the R-matrix implies

κ(u)κ(−u) = f (u)f (−u)
κ(u) = κ(η − u)

(3a)

(3b)

One finds the solution to be
log κ(u) = −log c(u, η)

+ log

[
1

Γ(1)(px|q)Γ(1)(p2x−1|q)
Γ(2)(p4x−1|q, p2)Γ(2)(p3x|q, p2)
Γ(2)(p2x|q, p2)Γ(2)(p3x−1|q, p2)

]
with q the elliptic nome, x = e

− 2u√
ϑ3 and p = e

− 4η√
ϑ3. The func-

tion Γ(r)(z|q1, · · · , qr) is the order-r elliptic gamma function
[Felder,Varchenko’99].

3. Integrable fishnet QFTs from N = 4 SYM theory

� Starting point: γ-deformed N = 4 SU(N) SYM theory
For the sake of breaking supersymmetry, replace all products of two fields A · B in the N = 4 SYM action by
e−

i
2 det(qA|qB|γ)A · B, where qA and qB are the su(4) R-symmetry weight vectors of A and B, respectively, and

γ = (γ1, γ2, γ3) are the deformation parameters. Thus, they appear as powers of qi := e−
i
2γi in the Lagrangian.

�Double-scaling limit:
γ-deformed N = 4 SU(N) SYM theory with γi −→ i∞ (⇒ qi → ∞) while the ’t Hooft coupling simultaneously
λ −→ 0 such that ξ1 := q1 · λ, ξ2 := q2 · λ, ξ3 := q3 · λ stay fixed at a finite value.
This yield the so-called dynamical fishnet theory.

�Bi-scalar fishnet theory: Switch off ξ1 = 0, ξ2 = 0, rename ξ := ξ3.

Lfishnet =
N

2
· tr

[
∂µϕ†1∂µϕ1 + ∂µϕ†2∂µϕ2

]
+ N(4π)2ξ2 · tr

[
ϕ†1ϕ

†
2ϕ1ϕ2

]
�Brick-wall model: Switch off ξ1 = 0.

Lbrickwall
int = N · tr

[
(4π)2ξ23ϕ

†
1ϕ

†
2ϕ1ϕ2 + (4π)2ξ22ϕ

†
3ϕ

†
1ϕ3ϕ1 + (4π)i

√
ξ2ξ3

(
ψ2ϕ1ψ3 + ψ̄2ϕ

†
1ψ̄3

)]

4. Integrable QFTs from a lattice model perspective

Encode the 4-valent vertices of the medial lattice as weights (η = D
2 ). A medial line carries a spectral parameter u and

a spin-label l. The weights are the deformed propagators of the Feynman diagram
v = (v, l1)w = (w, l2)

2πv
D

2πw
D

x x′

u = v − w

=
1[

(x− x′)2
]u

[
̸x− ̸x′

(x− x′)2·
1
2

]|l1−l2|

,

v = (v, l1)w = (w, l2)

2πv
D

2πw
D

x

x′

u
=

η
−

(
v

−
w

)

=
1[

(x− x′)2
]D

2−u

[
̸x− ̸x′

(x− x′)2·
1
2

]|l1−l2|

and they satisfy a Yang-Baxter equation on the medial lattice (which is the star-triangle relation). Unitarity of these
weights is obtained by Feynman bubble integrals

v1 = (v1, l)

v2 = (v2, 0)

= fl(u)fl(−u) · δD(x− x′)

with fl(u) := π
D
2
Γ(D2−u+ l

2)

Γ(u+ l
2)

. Similar to the 8-vertex case, using the unitarity, one can derive inversion relations for the

transfer matrices. These are taylored to match the models above.

5. Bi-scalar fishnet theory

To model the fishnet theory, the 4-valent medial
lattice consists purely of scalar rapidity lines, i.e.
∀i : li = 0. At the leading order in N, its vacuum
diagrams wrap a torus. One can build a transfer
matrix (N even)

TN(u) :=
· · ·
· · ·

v1 v1 v1

v2

which should be understood as an integral kernel.
Using the unitarity of the propagators gives the
inversion relation

TN(u)◦TN(−u) = [f0(u)f0(−u)]N ·
N∏
i=1

δD(xi−x′i).

The edge free energy is related to eq. (2) by
κB(u) =: κBe (u)κ

B
e (D/2−u). Together with cross-

ing this yields

κBe (u)κ
B
e (−u) = 1

κBe (D/2− u) = κBe (u)f0(u)

(4a)

(4b)

A solution is

κBe (u) = πu
Γ
(
D
2 − Dα

2π

)
Γ
(
D
2

) ·
∞∏
l=1

Γ
(
Dl + D

2 − u
)
Γ (Dl + u) Γ

(
Dl − D

2

)
Γ
(
Dl − D

2 + u
)
Γ (Dl − u) Γ

(
Dl + D

2

).
At u = 1 and D = 4 one recovers scalar propa-
gators and the medial lattice is rectangular. One
obtains for the bi-scalar fishnet

κBe (1) =
1

4

√
π/2 Γ (1/4)2 .

6. New result: Brick-wall model

The vacuum diagrams can have rectangle, bi-scalar and
brick-wall, fermionic regions wrapping a cycle of the torus.
The transfer matrix is thus inhomogeneous. However, the
free energy factorizes. For the brick-wall free energy one has
itself an inhomogeneous, stacked transfer matrix T 2

N(u) :=
T+
N (u) ◦ T−

N (u) with

T+
N (u) :=

· · ·
· · ·

(v′
1, 0) (v1, 1) (v′

1, 0) (v1, 1)

v2

.

and T−
N (u) the same with inverted shading. The inversion

relation can be obtained by unitarity. Finally, solve

κFe (u)κ
F
e (−u) = 1

κFe (D/2− u) = κFe (u)f1(u)

(5a)

(5b)

which can be done simultaneously as in the fishnet case.
Notably, in D = 4 and u = 3/2 one finds

κFe (3/2) =
π2

2
.

This corresponds to a brick-wall graph

Altogether, for ξ2 = ξ3 the free energy is

κe =
κBe (1)− κFe (3/2)

[
1 + log

(
κBe (1)
κFe (3/2)

)]
log

(
κBe (1)
κFe (3/2)

)2 .


