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Setting: 2D bulk CFT
Symmetry: V ir × V ir,
generated by modes of T and T̄ .

Lattice description
Critical 2D lattice model on the cylinder → periodic spin chain in
the Hamiltonian limit.

▶ Low energy eigenstates of H identified with conformal
primaries and descendants

▶ Can make a lattice discretization of the Virasoro generators
(“Koo-Saleur generators”)

Lattice description useful e.g. for non-unitary CFT.

Goal: lattice description of topological defects
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Boundaries and interfaces in 2D

Boundary

Interfaces

1D defects in 2D CFTs

CFT 1 CFT 2

(Here: CFT 1 = CFT 2)
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Conformal defects

▶ T − T̄ continuous across defect.

▶ Fixed points of RG flow.

▶ Show presence of internal symmetries,
and order-disorder dualities of
Kramers–Wannier type.

▶ Can relate a defect to a boundary by “folding”, the condition
on T − T̄ guarantees conformal b.c.

Topological defects ⊂ conformal defects

▶ T, T̄ independently continuous across the defect

▶ Can deform continuously without changing the partition
function, and without changing correlation functions as long
as it does not cross the operator insertions (hence the name)
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Simplest example:
defects in diagonal minimal models

Defects labelled the same way as primary fields,
by Kac labels r, s.

Example: Ising model: r ∈ {1, 2}, s ∈ {1, 2, 3}:

Kac table indices Dimension Primary field Name

(1, 1) or (2, 3) 0 1 Identity
(1, 2) or (2, 2) 1

16 σ Spin
(2, 1) or (1, 3) 1

2 ϵ Energy

H = R0 ⊗ R̄0 ⊕R 1
16

⊗ R̄ 1
16

⊕R 1
2
⊗ R̄ 1

2

Z(q, q̄) = χ0(q)χ̄0(q̄) + χ 1
16
(q)χ̄ 1

16
(q̄) + χ 1

2
(q)χ̄ 1

2
(q̄)
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CFT CFT

Direct channel defects (extending in time):
The defect acts on Z by changing the Virasoro modules though
fusing:

Defects also fuse with each others, obeying fusion rules:

Da ×Db =
∑
c

NabcDc
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CFT

CFT

Crossed channel defects (extending in space):
The defect acts as an operator, whose eigenvalues depend on the
Virasoro module:

Fusion of the defects is now seen as products of operators.
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Want a lattice realization of the defects

▶ Well controlled, e.g. can put on computer

▶ Useful when other approaches fail (e.g. due to non-unitarity)

In particular: Integrable lattice models based on the
Temperley-Lieb (TL) algebra

▶ Describe all minimal model CFTs (RSOS lattice models)

▶ Also non-unitary CFTs, e.g. through 6-vertex model, loop
model

▶ Can use integrability and TL for the construction
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Quick overview of
TL based lattice models

Row to row transfer matrix T(u):

T ↑

with

T =

and where R(u) = is in terms of the Temperley-Lieb algebra.
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More specifically,

Rj(u) = sin(γ − u)1+ sin(u)ej

with γ depending on the model (q = eiγ)
and ej fulfilling the Temperley-Lieb relations:

e2j = dej , ejej±1ej = ej

Pictorially: ej = with == d

(technically: affine TL since periodic system – also have translation
generator)
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Hamiltonian limit

H = T(0)−1∂T

∂u

∣∣∣∣∣
u=0

We obtain the Temperley-Lieb Hamiltonian

H = −
∑
j

ej

Different representations of TL give different models: XXZ, RSOS,
Ising, Potts...
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General idea:
Introduce impurities (spectral parameter
inhomogeneities) to realize the defects.

Summary of results:

▶ Construction of all (r, s) defects in Temperley-Lieb based
models. Previously, only (1, s) defects were realized on the
lattice.

▶ Checks include computing modified spectrum in the direct
channel, eigenvalues of defect operators in the crossed
channel, fusion of defects and entanglement entropy in the
presence of defects.
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PAUSE
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Part II: Using impurities
to realize defects on the lattice

Construction and results.
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CFT CFT

Direct channel defects (extending in time):
Impurity Hamiltonians, where the spectral parameter has different
values on some sites. The defect acts on Z by changing the
Virasoro modules though fusing ⇒ modified values for the
conformal dimensions. We can compute the effect on the
spectrum.
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CFT

CFT

Crossed channel defects (extending in space):
Operators D made by a transfer matrix with a different value of
the spectral paramenter throughout, or products of such transfer
matrices. A defect acts as an operator on the state space, and we
can compute its eigenvalues.

16 / 37



Direct channel, single impurity
One of the R-matrices has a
different spectral parameter vj

T(u) =

In particular, we can tune this value such that we obtain a
generator of the braid group:

gj = (−q)1/21+ (−q)−1/2ej

g−1
j = (−q)−1/21+ (−q)1/2ej

Taking vj = iv, v → ∞ we obtain Rj = gj .
Taking vj = iv, v → −∞ we obtain Rj = g−1

j .
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v → −∞:

T ↑

j+1

v → ∞:

T ↑

j+1
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H = − sin γT−1(0) ∂
∂uT(u)

∣∣
u=0

with one impurity u = iv, v → −∞:

H = −
∑

k ̸=j,j+1Ek − gjEj+1g
−1
j

with the modified interaction

j j+2

This defect is clearly topological, as the line decouples from
the rest and can be continuously deformed.
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Ising representation
of the Temperley-Lieb algebra

H = − 1√
2

∑
k ̸=j(1+ σz

k)

− 1√
2

∑
k ̸=j(1+ σx

kσ
x
k+1)−

1√
2
(1+ σy

j σ
x
j+1)

This is the Ising duality defect.
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3 state Potts representation
of the Temperley-Lieb algebra

Obtain Potts analog of the Ising duality
defect (absence of the transverse field term
and a modified nearest neighbor interaction)
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Crossed channel: impurities
along the entire row

All of the R-matrices have the
modified spectral parameter

T(u) = .

T (u) with u → ±i∞ gives a “hoop operator”
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Modular invariance:
same Z in direct and crossed

Modular invariance
already on the lattice

M
o
d
u
la
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Tr(TdTdTd....) = Tr(TT T̃TT...)
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In terms of Kac labels: ±i∞ corresponds
to a defect of type (1, 2).

Example: in Ising, the ground state
conformal dimension goes from
h1,1 + h1,1 = 0 to h1,1 + h1,2 = 1/16.

Can obtain all defects of type (1, s) this way, through fusion.
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▶ Type (1, s) known since a while:
Aasen, Fendley and Mong
2016 and 2020,
Belletête et al 2020...

▶ These are the ones that are topological
on the lattice, thanks to the braiding.
(If time permits: further discussion
in terms of the center of TL).

▶ Would like to obtain (r, 1) type defects as well.
We can then construct all defects (r, s) through fusion.

Fusion examples (Diagonal M.M.):
D1,2 ×D1,2 = D1,1 +D1,3

D1,2 ×D2,1 = D2,2
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Defect flow as a means
to obtain r-type defects

At vj → ±i∞ we have a defect of type (1, 2).
At vj = 0 we have no defect, or equivalently the identity defect
(1, 1).

What happens in between?
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Ising model example, vj = iv, w = exp(v).
GS energy, flow from (1, 2) to (1, 1)

Effective system size governed by h1,3. Interpret the spectral
parameter inhomogeneity in terms of local perturbation of the CFT
by ϕ1,3.
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Defect flows in minimal models
Márton Kormosa, Ingo Runkel, Gérard M. T. Watts, arXiv: 0907.1497

D = (1, 2)

I = (1, 2)

D′ = (2, 1)

By changing the impurity we can change the flow, reaching
D′ = (2, 1) instead of I = (1, 1).
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r-type defects generally no longer topological on the lattice,
R-matrix is no longer forming a braid generator. Can only be
topological in the continuum.
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Another way to check the
construction: entanglement entropy

Contributions: central charge c for bulk,
g for boundary/defect.

For a subsystem located symmetrically around the defect:

SD(r) =
c

3
ln

[
L

π
sin

πr

L

]
+ S0 + ln gD,

(S0 non-universal but independent of defect.)

Compare entanglement entropy with and without the defect ⇒
measure gD
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Ising:

g(1,2) =
√
2

Potts:

g(1,2) =
√
3, g(2,1) =

1 +
√
5

2
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Ising model, (1,2) defect
(Ananda Roy, Hubert Saleur, arXiv 2111.04534)
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Potts model, (1,2) and (2,1) defects
(Madhav Sinha, LGS, Fei Yan, Ananda Roy, Hubert Saleur, in preparation)

1.5 2.0 2.5 3.0
ln L sin( r

L )

1.2

1.4

1.6

1.8

2.0

S s
ym

(r)
(c11, c12, c21) = (0.805, 0.752, 0.697), ( S12, S21) = (0.52, 0.46)

(1,1)
(1,2)
(2,1)

Expected offsets for (12) and (13) are ln(
√
3) ≈ 0.549

and ln(1+
√
5

2 ) ∼ 0.481 (Work in progress!)
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Further notes on being
topological on the lattice

T, T̄ being continuous across the defect
translates to the condition

[D,Ln] = [D, L̄n] = 0 ∀n

in the crossed channel, where Ln are the Virasoro generators.

Hoop operators (defects of type (1, s)) generate the full center of
the TL algebra.

Meanwhile, the lattice discretizations of the Virasoro generators
are also constructed from TL generators. (Koo-Saleur generators.)
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Conclusion: Any s-type defect will obey

[D,Ln] = [D, L̄n] = 0 ∀n

already on the lattice.

r-type defects will generally not be topological on the lattice, only
in the continuum.

Can check that the r-type defects commute with Koo-Saleur
generators in the continuum limit. (Future work.)
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Summary

▶ Lattice realization of topological
defects through impurities
(spectral parameter inhomogeneities)

▶ s-type defects straightforward to
construct, topological on the lattice

▶ Can flow from s-type defects to r-type defects. These are
only topological in the continuum limit

▶ Can compute entanglement entropy in the presence of s- and
r-type defects

Future directions

▶ Confirming that r-type defect construction really is
topological in the continuum limit

▶ Mixed fusion of defects in the direct and crossed channel
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Thank you!
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