A Large Twist Limit for Any Operator in $\mathcal{N}=4$ SYM

Gwenaël Ferrando

Based on JHEP 06 (2023) 028 [arXiv:2303.08852] with A. Sever, A. Sharon, and E. Urisman

אוניברסיטת TEL AVIV תלאביב UNIVERSITY

Introduction and Motivation

- holography: explicit dictionary, many tests but no proof,
- ideal example: $\mathcal{N}=4$ SYM in the planar limit, but still too complicated, many results remain conjectural,
- further simplification: fishnet theory. Origin of integrability is better understood, holography has been derived. [Gürdoğan and Kazakov (2015)] [Gromov, Kazakov, Korchemsky, Negro, and Sizov (2018)] [Gromov and Sever (2019)]

$$
\text { How to progressively go back to } \mathcal{N}=4 \text { SYM? }
$$

Outline

1. A Few Facts About the Fishnet Theory
2. A Short Operator: $\operatorname{Tr}(F Z)$
3. Mixing Between Operators and Between Scaling Limits

A Few Facts About the Fishnet Theory

From $\mathcal{N}=4$ SYM to The Fishnet Theory

Start from γ-deformed $\mathcal{N}=4$ SYM:

$$
\mathcal{L}=-N \operatorname{Tr}\left[\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+D^{\mu} \phi_{i}^{\dagger} D_{\mu} \phi^{i}+\psi_{\dot{\alpha} A}^{\dagger} \emptyset^{\dot{\alpha} \alpha} \psi_{\alpha}^{A}\right]+\mathcal{L}_{\text {int }}
$$

where

$$
\begin{gathered}
D_{\mu}=\partial_{\mu}+\mathrm{i} g\left[A_{\mu}, \cdot\right] \\
F_{\mu \nu}=-\frac{\mathrm{i}}{g}\left[D_{\mu}, D_{\nu}\right]=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+\mathrm{i} g\left[A_{\mu}, A_{\nu}\right]
\end{gathered}
$$

and

$$
\begin{aligned}
\mathcal{L}_{\text {int }}=N g^{2} \operatorname{Tr}\left[2 \mathrm{e}^{-\mathrm{i} \epsilon^{j k} \gamma_{k}} \phi_{i}^{\dagger} \phi_{j}^{\dagger} \phi^{i} \phi^{j}-\frac{1}{2}\left\{\phi_{i}^{\dagger},\right.\right. & \left.\left.\phi^{i}\right\}\left\{\phi_{j}^{\dagger}, \phi^{j}\right\}\right] \\
& + \text { Yukawa interactions . }
\end{aligned}
$$

Set $\gamma_{1}=\gamma_{2}=0$ and take the double-scaling limit

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{1}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \gamma_{3}}}{8 \pi^{2}} \quad \text { fixed } .
$$

Denoting $\phi_{1}=X, \phi_{2}=Z$, the fishnet Lagrangian is

$$
\mathcal{L}_{\text {fishnet }}=-N \operatorname{Tr}\left(\partial^{\mu} X^{\dagger} \partial_{\mu} X+\partial^{\mu} Z^{\dagger} \partial_{\mu} Z-(4 \pi)^{2} \xi_{1}^{2} X^{\dagger} Z^{\dagger} X Z\right) .
$$

[Gürdoğan and Kazakov (2015)]
Single, chiral interaction vertex:

We will work in the planar limit $N \rightarrow+\infty$.

Properties

- Non-unitary,

Properties

- Non-unitary,
- Bulk of the diagrams $=$ pieces of square lattice,

Properties

- Non-unitary,
- Bulk of the diagrams = pieces of square lattice,
- Conformal theory for any value of ξ_{1}^{2} (upon addition of specific double-trace counter-terms),
[Sieg and Wilhelm (2016)]
[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

Properties

- Non-unitary,
- Bulk of the diagrams $=$ pieces of square lattice,
- Conformal theory for any value of ξ_{1}^{2} (upon addition of specific double-trace counter-terms),
[Sieg and Wilhelm (2016)]
[Grabner, Gromov, Kazakov, and Korchemsky (2017)]
- Integrable: related to a non-compact $S O(1,5)$ spin chain,
[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)]
[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]

Properties

- Non-unitary,
- Bulk of the diagrams $=$ pieces of square lattice,
- Conformal theory for any value of ξ_{1}^{2} (upon addition of specific double-trace counter-terms),
[Sieg and Wilhelm (2016)]
[Grabner, Gromov, Kazakov, and Korchemsky (2017)]
- Integrable: related to a non-compact $S O(1,5)$ spin chain,
[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)] [Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]
- Holographic dual derived from first principles: chain of point particles with local interactions.

Aside: Loom for CFTs

Generalization of fishnet CFT based on arbitrary Baxter lattice (set of intersecting lines)

Same properties: non-unitary, conformal, integrable
[Kazakov and Olivucci (2022)]
[Alfimov, Ferrando, Kazakov, and Olivucci (in progress)]

Aside: Loom for CFTs

Feynman diagrams exhibit Yangian invariance
[Chicherin, Kazakov, Loebbert, Müller, Zhong (2017)]
[Corcoran, Loebbert, and Miczajka (2021)]
[Duhr, Klemm, Loebbert, Nega, and Porkert (2022)]
[Kazakov, Levkovich-Maslyuk, and Mishnyakov (2023)]

Generalization of fishnet CFT based on arbitrary Baxter lattice (set of intersecting lines)

Same properties: non-unitary, conformal, integrable
[Kazakov and Olivucci (2022)]
[Alfimov, Ferrando, Kazakov, and Olivucci (in progress)]

Graph-Building Operators

Conformal dimension of $\operatorname{Tr}\left(Z^{J}(x)\right)$: the 2-point function has an iterative structure.

The graph-building operator
\widehat{H} is an integral operator with kernel

The graph-building operator \widehat{H} is an integral operator with kernel

Its action on an arbitrary function Φ is

$$
[\widehat{H} \Phi]\left(x_{1}, \ldots, x_{J}\right)=\int \frac{\Phi\left(y_{1}, \ldots, y_{J}\right)}{\prod_{k=1}^{J}\left(x_{k}-y_{k}\right)^{2} y_{k, k+1}^{2}} \mathrm{~d}^{4} y_{1} \ldots \mathrm{~d}^{4} y_{J}
$$

The graph-building operator \widehat{H} is an integral operator with kernel

Its action on an arbitrary function Φ is

$$
[\widehat{H} \Phi]\left(x_{1}, \ldots, x_{J}\right)=\int \frac{\Phi\left(y_{1}, \ldots, y_{J}\right)}{\prod_{k=1}^{J}\left(x_{k}-y_{k}\right)^{2} y_{k, k+1}^{2}} \mathrm{~d}^{4} y_{1} \ldots \mathrm{~d}^{4} y_{J}
$$

The 2-point function is essentially reduced to the computation of

$$
\sum_{M=0}^{+\infty} \xi_{1}^{2 M J} \widehat{H}^{M}=\frac{1}{1-\xi_{1}^{2 J} \widehat{H}}
$$

\Longrightarrow one needs to diagonalise \widehat{H}

Physical Eigenvectors

Eigenvectors of \widehat{H} with eigenvalue $E=\xi_{1}^{-2 J}$ represent primary operators of the fishnet theory (and their descendants). This is given by the representation of the conformal group $\left(\Delta\left(\xi_{1}^{2}\right), \ell, \bar{\ell}\right)$ under which the eigenvector tranforms.

Example: $J=2$, eigenvectors can be written explicitly, physical states correspond to symmetric traceless tensors of arbitrary rank $\ell \geqslant 0$, their dimensions are

$$
\Delta_{\ell, \pm}=2+\sqrt{(\ell+1)^{2}+1 \pm 2 \sqrt{(\ell+1)^{2}+4 \xi_{1}^{4}}}
$$

Comments and Shortcomings of the Fishnet Theory

Comments and Shortcomings of the Fishnet Theory

- The previous results are exact. In particular, for $\ell=0$,

$$
\Delta_{0,-}=2+\sqrt{2-2 \sqrt{1+4 \xi_{1}^{4}}}=2 \pm 2 \mathrm{i} \xi_{1}^{2}+O\left(\xi_{1}^{4}\right)
$$

is the exact dimension of $\operatorname{Tr}\left(Z^{2}\right)$. Reproducing the perturbative expansion requires to take into account the counter-terms.
We did not need them!

Comments and Shortcomings of the Fishnet Theory

- The previous results are exact. In particular, for $\ell=0$,

$$
\Delta_{0,-}=2+\sqrt{2-2 \sqrt{1+4 \xi_{1}^{4}}}=2 \pm 2 \mathrm{i} \xi_{1}^{2}+O\left(\xi_{1}^{4}\right)
$$

is the exact dimension of $\operatorname{Tr}\left(Z^{2}\right)$. Reproducing the perturbative expansion requires to take into account the counter-terms. We did not need them!

- On the other hand, $\Delta_{0,+}$ is the dimension of $\operatorname{Tr}(Z \square Z)+\ldots$ which we do not know exactly because there is mixing.
- One finds only two operators for each ℓ; this means that many operators are protected in the fishnet theory.
- One finds only two operators for each ℓ; this means that many operators are protected in the fishnet theory.
- The fishnet theory is a logarithmic CFT: the dilatation operator is not diagonalisable.
- One finds only two operators for each ℓ; this means that many operators are protected in the fishnet theory.
- The fishnet theory is a logarithmic CFT: the dilatation operator is not diagonalisable.
- Neither fermions nor gauge boson in the fishnet theory.
[Gürdoğan and Kazakov (2015)]

How can one incorporate back these protected or logarithmic operators?

New Double-Scaling Limits

Operator-dependent limit:

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{n}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{\gamma_{3}}{n}}}{8 \pi^{2}} \quad \text { fixed }
$$

New Double-Scaling Limits

Operator-dependent limit:

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{n}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{\gamma_{3}}{n}}}{8 \pi^{2}} \text { fixed }
$$

Example: for $\operatorname{Tr}(Z F)$, one must take $n=2$ and the only diagrams that remain are

New Double-Scaling Limits

Operator-dependent limit:

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{n}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{\gamma_{3}}{n}}}{8 \pi^{2}} \text { fixed }
$$

Example: for $\operatorname{Tr}(Z F)$, one must take $n=2$ and the only diagrams that remain are

Following the procedure outlined previously, we find that

$$
\Delta_{\operatorname{Tr}(F Z)} \underset{g \rightarrow 0, \xi_{2} \text { fixed }}{\longrightarrow} 2+\sqrt{5-4 \sqrt{1+\xi_{2}^{4}}} .
$$

General Situation: Mixing

If we turn to longer operators, such as $\operatorname{Tr}\left(F Z^{J}\right)$ for $J>1$, then $n=1+1 / J$.

But there is some form of mixing with $\operatorname{Tr}\left(X X^{\dagger} Z^{J}\right)$ (same double-scaling limit) and $\operatorname{Tr}\left(Z^{J}\right)$ (fishnet limit).

The relevant graph-building operator is a 3×3 matrix. We will show that it is integrable.

A Short Operator: $\operatorname{Tr}(F Z)$

Feynman Diagrams

Double-scaling limit:

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{2}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{\gamma_{3}}{2}}}{64 \pi^{4}} \quad \text { fixed }
$$

Relevant interactions:

$$
\begin{aligned}
& -\mathrm{i} N_{c} g \operatorname{Tr}\left(\partial_{\mu} X^{\dagger}\left[A^{\mu}, X\right]+\partial_{\mu} X\left[A^{\mu}, X^{\dagger}\right]\right), \\
& \quad 2 N_{c} g^{2} \operatorname{Tr}\left(X^{\dagger} A_{\mu} X A^{\mu}\right), \quad \text { and } \quad 2 N_{c} g^{2} \mathrm{e}^{-\mathrm{i} \gamma_{3}} \operatorname{Tr}\left(X^{\dagger} Z^{\dagger} X Z\right) .
\end{aligned}
$$

Typical diagram:

Graph-Building Operator

\widehat{H}_{A} depends on the gauge:

Graph-Building Operator

\widehat{H}_{A} depends on the gauge:

However, there exists a gauge-independent operator \widehat{H}_{F} acting on antisymmetric tensors $\Psi_{F}^{\mu \nu}$ and such that: if $\Psi_{F}^{\mu \nu}=\partial_{2}^{\mu} \Psi_{A}^{\nu}-\partial_{2}^{\nu} \Psi_{A}^{\mu}$, then

$$
\left[\widehat{H}_{F} \psi_{F}\right]^{\mu \nu}=\partial_{2}^{\mu}\left[\widehat{H}_{A} \psi_{A}\right]^{\nu}-\partial_{2}^{\nu}\left[\widehat{H}_{A} \Psi_{A}\right]^{\mu} .
$$

$\Longrightarrow\left\langle\operatorname{Tr}(Z F)(x) \operatorname{Tr}\left(Z^{\dagger} F\right)(y)\right\rangle$ is gauge-independent in the double-scaling limit.

One can invert \widehat{H}_{F} :

$$
\left[\widehat{H}_{F}^{-1} \Psi_{F}\right]^{\mu \nu}=\frac{1}{16}\left(\partial_{2}^{\mu} x_{12}^{4} \square_{1} \partial_{2}^{\rho} \Psi_{F, \rho}^{\nu}-(\mu \leftrightarrow \nu)\right)
$$

Eigenvectors are fixed by the conformal covariance of the operator: three-point functions involving a scalar of dimension 1 and a rank-2 antisymmetric tensor of dimension 2 .

Spectrum:

- $\left(\Delta_{\ell, \pm}, \ell, \ell\right)$ for $\ell \geqslant 1$ with

$$
\Delta_{\ell, \pm}=2+\sqrt{(\ell+1)^{2} \pm 4 \xi_{2}^{2}} .
$$

Spectrum:

- $\left(\Delta_{\ell, \pm}, \ell, \ell\right)$ for $\ell \geqslant 1$ with

$$
\Delta_{\ell, \pm}=2+\sqrt{(\ell+1)^{2} \pm 4 \xi_{2}^{2}} .
$$

- $\left(\Delta_{\ell, \pm}^{\prime}, \ell+2, \ell\right) \oplus\left(\Delta_{\ell, \pm}^{\prime}, \ell, \ell+2\right)$ for $\ell \geqslant 0$ (tensors with $\ell+2$ indices and mixed symmetry) with

$$
\Delta_{\ell, \pm}^{\prime}=2+\sqrt{(\ell+2)^{2}+1 \pm 2 \sqrt{(\ell+2)^{2}+4 \xi_{2}^{4}}}
$$

Spectrum:

- $\left(\Delta_{\ell, \pm}, \ell, \ell\right)$ for $\ell \geqslant 1$ with

$$
\Delta_{\ell, \pm}=2+\sqrt{(\ell+1)^{2} \pm 4 \xi_{2}^{2}} .
$$

- $\left(\Delta_{\ell, \pm}^{\prime}, \ell+2, \ell\right) \oplus\left(\Delta_{\ell, \pm}^{\prime}, \ell, \ell+2\right)$ for $\ell \geqslant 0$ (tensors with $\ell+2$ indices and mixed symmetry) with

$$
\Delta_{\ell, \pm}^{\prime}=2+\sqrt{(\ell+2)^{2}+1 \pm 2 \sqrt{(\ell+2)^{2}+4 \xi_{2}^{4}}} .
$$

The dimension of $\operatorname{Tr}(Z F)$ is $\Delta_{0,-}^{\prime}$.

Other Short Operators

We performed a similar analysis for the following operators:

$$
\begin{aligned}
\operatorname{Tr}\left(X X^{\dagger} Z\right) \text { and } \operatorname{Tr}\left(X^{\dagger} X Z\right) & \Longrightarrow n=2 \\
\operatorname{Tr}\left(\psi_{4} Z\right) \text { or } \operatorname{Tr}\left(\psi_{1}^{\dagger} Z\right) & \Longrightarrow n=\frac{4}{3} \\
\operatorname{Tr}\left(\psi_{2} Z\right) \text { or } \operatorname{Tr}\left(\psi_{3}^{\dagger} Z\right) & \Longrightarrow n=4
\end{aligned}
$$

Mixing Between Operators and Between Scaling Limits

Fishnet Contributions

We focus on $\operatorname{Tr}\left(Z^{J} F\right)$ and $\operatorname{Tr}\left(Z^{J} X X^{\dagger}\right)$ for $J>1$.

Fishnet Contributions

We focus on $\operatorname{Tr}\left(Z^{J} F\right)$ and $\operatorname{Tr}\left(Z^{J} X X^{\dagger}\right)$ for $J>1$.
Let us consider the 2-pt function $\left\langle\operatorname{Tr}\left(Z^{J} F\right)(x) \operatorname{Tr}\left(\left(Z^{\dagger}\right)^{J} F\right)(y)\right\rangle$. When $\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow+\infty$, the dominant contributions are

Fishnet Contributions

We focus on $\operatorname{Tr}\left(Z^{J} F\right)$ and $\operatorname{Tr}\left(Z^{J} X X^{\dagger}\right)$ for $J>1$.
Let us consider the 2-pt function $\left\langle\operatorname{Tr}\left(Z^{J} F\right)(x) \operatorname{Tr}\left(\left(Z^{\dagger}\right)^{J} F\right)(y)\right\rangle$. When $\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow+\infty$, the dominant contributions are

But $\operatorname{Tr}\left(Z^{J} F\right)$ is absent from the fishnet theory, so more graphs need to be taken into account.

Mixing

There is still an iterative structure: the graph-building operator is actually a matrix $\widehat{\mathcal{H}}$ with one row (and one column) for each state that participate in the mixing.

In our case, there are 3 intermediate states: $\operatorname{Tr}\left(Z^{J}\right), \operatorname{Tr}\left(Z^{J} F\right)$ and $\operatorname{Tr}\left(Z^{J} X X^{\dagger}\right)$.

$\widehat{\mathcal{H}}$ is defined such that 2-point functions are essentially matrix elements of $\frac{1}{1-\hat{\mathcal{H}}}$

Example:

$$
\begin{aligned}
& \left\langle\operatorname{Tr}\left(A^{\mu}\left(x_{0}\right) Z\left(x_{1}\right) \ldots Z\left(x_{J}\right)\right) \operatorname{Tr}\left(Z^{\dagger}\left(z_{J}\right) \ldots Z^{\dagger}\left(z_{1}\right)\right)\right\rangle \\
& \quad=-\frac{i}{2} \int \frac{\left\langle x_{0}, x_{1}, \ldots, x_{J}\right|\left(\frac{1}{1-\hat{\mathcal{H}}}\right)_{A \emptyset}^{\mu}\left|y_{1}, \ldots, y_{J}\right\rangle}{\left(4 \pi^{2}\right)^{J} \prod_{i=1}^{J}\left(y_{i}-z_{i}\right)^{2}} \frac{\prod_{i=1}^{J} \mathrm{~d}^{4} y_{i}}{\pi^{2 J}} .
\end{aligned}
$$

The problem is still to diagonalise $\widehat{\mathcal{H}}$, and physical states correspond to those with eigenvalue equal to 1 .

Double-Scaling Limit

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{1+1 / J}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{J}{J+1} \gamma_{3}}}{8 \pi^{2}} \quad \text { fixed }
$$

Each matrix element scales differently:

$$
\widehat{\mathcal{H}}=\xi_{1+1 / J}^{2(J+1)}\left(\begin{array}{ccc}
g^{-2} \widehat{\mathcal{H}}_{\emptyset \emptyset} & g^{-1} \widehat{\mathcal{H}}_{\emptyset A} & g^{-1} \widehat{\mathcal{H}}_{\emptyset X} \\
g^{-1} \widehat{\mathcal{H}}_{A \emptyset} & \widehat{\mathcal{H}}_{A A} & \widehat{\mathcal{H}}_{A X} \\
g^{-1} \widehat{\mathcal{H}}_{X \emptyset} & \widehat{\mathcal{H}}_{X A} & \widehat{\mathcal{H}}_{X X}
\end{array}\right) .
$$

Double-Scaling Limit

$$
\mathrm{e}^{-\mathrm{i} \gamma_{3}} \rightarrow \infty, \quad g \rightarrow 0, \quad \xi_{1+1 / J}^{2}=\frac{g^{2} \mathrm{e}^{-\mathrm{i} \frac{J}{J+1} \gamma_{3}}}{8 \pi^{2}} \quad \text { fixed }
$$

Each matrix element scales differently:

$$
\widehat{\mathcal{H}}=\xi_{1+1 / J}^{2(J+1)}\left(\begin{array}{ccc}
g^{-2} \widehat{\mathcal{H}}_{\emptyset \emptyset} & g^{-1} \widehat{\mathcal{H}}_{\emptyset A} & g^{-1} \widehat{\mathcal{H}}_{\emptyset X} \\
g^{-1} \widehat{\mathcal{H}}_{A \emptyset} & \widehat{\mathcal{H}}_{A A} & \widehat{\mathcal{H}}_{A X} \\
g^{-1} \widehat{\mathcal{H}}_{X \emptyset} & \widehat{\mathcal{H}}_{X A} & \widehat{\mathcal{H}}_{X X}
\end{array}\right)
$$

Some eigenvalues will diverge, some will go to zero. We focus on those which remain finite:

$$
\widehat{\mathcal{H}} \Psi=E \Psi, \quad \text { with } \quad E=E_{0}+O(g), \quad E_{0} \neq 0
$$

At leading order, only the above 3×3 submatrix is relevant. Writing

$$
\Psi=\left(\begin{array}{c}
\Psi_{\emptyset, 0}\left(x_{1}, \ldots, x_{J}\right) \\
\Psi_{A, 0}^{\mu}\left(x_{0}, x_{1}, \ldots, x_{J}\right) \\
\Psi_{x, 0}\left(x_{0}, x_{1}, \ldots, x_{J}\right)
\end{array}\right)+O(g)
$$

we get $\Psi_{\emptyset, 0}=0$ and

$$
\xi_{1+1 / J}^{2(J+1)} \widehat{\mathfrak{H}}\binom{\Psi_{F, 0}}{\Psi_{X, 0}}=E_{0}\binom{\Psi_{F, 0}}{\Psi_{X, 0}}
$$

for $\Psi_{F, 0}^{\mu \nu}=\partial_{0}^{\mu} \Psi_{A, 0}^{\nu}-\partial_{0}^{\nu} \Psi_{A, 0}^{\mu}$, and some 2×2 matrix $\widehat{\mathfrak{H}}$ depending on all 9 matrix elements of $\widehat{\mathcal{H}}$.
$\widehat{\mathfrak{H}}$ is a complicated matrix of integral operators but it is local and gauge invariant (contrary to $\widehat{\mathcal{H}}$) and can be inverted:

$$
\widehat{\mathfrak{H}}^{-1}=\left(\begin{array}{cc}
\theta \cdot \partial_{0} x_{J 0}^{2} x_{10}^{2} \partial_{0} \cdot \partial^{(\theta)} & 2 \theta \cdot \partial_{0}\left(\frac{\theta \cdot x_{J 0}}{x_{J 0}^{2}}-\frac{\theta \cdot x_{10}}{x_{10}^{2}}\right) x_{J 0}^{2} x_{10}^{2} \\
2\left(\frac{x_{10} \cdot \partial^{(\theta)}}{x_{10}^{2}}-\frac{x_{J 0} \cdot \partial^{(\theta)}}{x_{J 0}^{2}}\right) x_{J 0}^{2} x_{10}^{2} \partial_{0} \cdot \partial^{(\theta)} & \partial_{0, \mu} x_{J 0}^{2} x_{10}^{2} \partial_{0}^{\mu}+8 x_{10} \cdot x_{J 0}
\end{array}\right)
$$

where θ^{μ} is a polarisation vector such that $\left\{\theta^{\mu}, \theta^{\nu}\right\}=0$. It encodes the tensor structure: $\Psi^{\mu \nu} \mapsto \Psi=\theta^{\mu} \theta^{\nu} \Psi_{\mu \nu}$.

Integrability

We can construct a transfer matrix

$$
T(u)=\operatorname{tr}_{6}\left(L_{Y_{0}}^{\left(\rho_{0}\right)}(u) L_{Y_{1}}^{(1,0,0)}(u) \cdots L_{Y_{j}}^{(1,0,0)}(u)\right)
$$

such that

$$
T(0)=(-1)^{J+1} \widehat{\mathfrak{H}}^{-1}
$$

Integrability

We can construct a transfer matrix

$$
T(u)=\operatorname{tr}_{6}\left(L_{Y_{0}}^{\left(\rho_{0}\right)}(u) L_{Y_{1}}^{(1,0,0)}(u) \cdots L_{Y_{j}}^{(1,0,0)}(u)\right)
$$

such that

$$
T(0)=(-1)^{J+1} \widehat{\mathfrak{H}}^{-1}
$$

We have checked that the 6×6 Lax matrices are solution to the RLL equation

$$
R_{12}(u-v) L_{Y, 1}^{\left(\rho_{0}\right)}(u) L_{Y, 2}^{\left(\rho_{0}\right)}(v)=L_{Y, 2}^{\left(\rho_{0}\right)}(v) L_{Y, 1}^{\left(\rho_{0}\right)}(u) R_{12}(u-v),
$$

where $R_{12}(u)$ is the usual $O(5,1)$-invariant R-matrix.

The Lax matrices for sites $1, \ldots, J$ are the usual ones for scalar representations:

$$
L_{Y, M N}^{(1,0,0)}(u)=u^{2} \eta_{M N}-u\left(Y_{M} \partial_{Y^{N}}-Y_{N} \partial_{Y^{M}}\right)-\frac{1}{2} Y_{M} Y_{N} \square_{Y} .
$$

Embedding space: $1 \leqslant M \leqslant 6$, metric $\eta^{M N}=\operatorname{diag}(1,1,1,1,1,-1)$, and $Y^{M} Y_{M}=0$.

But the representation at site 0 is reducible and the Lax matrix appears to be new:

$$
L_{Y, M N}^{\left(\rho_{0}\right)}(u)=u^{2} \eta_{M N}-u q_{M N}^{\left(\rho_{0}\right)}+\mathcal{L}_{Y, M N}
$$

where the conformal generators are

$$
q_{M N}^{\left(\rho_{o}\right)}=\left(\begin{array}{cc}
Y_{M} \partial_{Y^{N}}-Y_{N} \partial_{Y^{M}}+\Theta_{M} \partial_{\Theta^{N}}-\Theta_{N} \partial_{\Theta^{M}} & 0 \\
0 & Y_{M} \partial_{Y^{N}}-Y_{N} \partial_{Y^{M}}
\end{array}\right)
$$

and the operator \mathcal{L}_{Y} is
$\mathcal{L}_{Y}^{M N}=-\frac{1}{2}\left(\begin{array}{cc}\left(\Theta \cdot \partial_{Y}\right) Y^{M} Y^{N}\left(\partial_{Y} \cdot \partial_{\Theta}\right) & \left(\Theta \cdot \partial_{Y}\right)\left[Y^{M} \Theta^{N}-Y^{N} \Theta^{M}\right] \\ {\left[Y^{N} \partial_{\Theta}^{M}-Y^{M} \partial_{\Theta}^{N}\right]\left(\partial_{Y} \cdot \partial_{\Theta}\right)} & \frac{1}{2}\left[Y^{M} \square_{Y} Y^{N}+Y^{N} \square_{Y} Y^{M}\right]+2 \eta^{M N}\end{array}\right)$.

Conclusion

- Twisting the correlators, one can devise a double-scaling limit for any operator in $\mathcal{N}=4$ SYM such that an iterative structure emerges.
[Cavaglià, Grabner, Gromov, and Sever (2020)]
- In most cases, this involves mixing with other operators, including fishnet operators. But integrability is always present.
- Regarding holography, the fishchain picture appears to be generic.

Conclusion

- Twisting the correlators, one can devise a double-scaling limit for any operator in $\mathcal{N}=4$ SYM such that an iterative structure emerges.
[Cavaglià, Grabner, Gromov, and Sever (2020)]
- In most cases, this involves mixing with other operators, including fishnet operators. But integrability is always present.
- Regarding holography, the fishchain picture appears to be generic.
- The graph-building operator $\widehat{\mathcal{H}}$ can also be used to study corrections in g. For instance, corrections to the fishnet limit.
- It would be interesting to study three-point functions of operators with different double-scaling limits.

Thank you for your attention!

