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Introduction and Motivation

▶ holography: explicit dictionary, many tests but no proof,

▶ ideal example: N = 4 SYM in the planar limit, but still too
complicated, many results remain conjectural,

▶ further simpli�cation: �shnet theory. Origin of integrability is better
understood, holography has been derived. [Gürdo§an and Kazakov (2015)]

[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2018)] [Gromov and Sever (2019)]

How to progressively go back to N = 4 SYM?
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A Few Facts About the Fishnet Theory



From N = 4 SYM to The Fishnet Theory

Start from γ-deformed N = 4 SYM:

L = −NTr

[
1

4
FµνF

µν + Dµϕ†i Dµϕ
i + ψ†

α̇A�D
α̇αψA

α

]
+ Lint ,

where
Dµ = ∂µ + i g [Aµ, ·] ,

Fµν = − i

g
[Dµ,Dν ] = ∂µAν − ∂νAµ + i g [Aµ,Aν ] ,

and

Lint = N g2 Tr

[
2 e− i ϵijkγk ϕ†i ϕ

†
j ϕ

iϕj − 1

2

{
ϕ†i , ϕ

i
}{

ϕ†j , ϕ
j
}]

+ Yukawa interactions .



Set γ1 = γ2 = 0 and take the double-scaling limit

e− i γ3 → ∞ , g → 0 , ξ21 =
g2 e− i γ3

8π2
�xed .

Denoting ϕ1 = X , ϕ2 = Z , the �shnet Lagrangian is

L�shnet = −N Tr
(
∂µX †∂µX + ∂µZ †∂µZ − (4π)2ξ21X

†Z †XZ
)
.

[Gürdo§an and Kazakov (2015)]

Single, chiral interaction vertex:

We will work in the planar limit N → +∞.



Properties

▶ Non-unitary,

▶ Bulk of the diagrams = pieces of square lattice,

▶ Conformal theory for any value of ξ21 (upon addition of speci�c
double-trace counter-terms), [Sieg and Wilhelm (2016)]

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]

▶ Integrable: related to a non-compact SO(1, 5) spin chain,

[Zamolodchikov (1980)][Chicherin, Derkachov, and Isaev (2012)]

[Gromov, Kazakov, Korchemsky, Negro, and Sizov (2017)]

▶ Holographic dual derived from �rst principles: chain of point
particles with local interactions. [Gromov and Sever (2019)]
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Aside: Loom for CFTs

Feynman diagrams exhibit Yangian
invariance
[Chicherin, Kazakov, Loebbert, Müller, Zhong (2017)]

[Corcoran, Loebbert, and Miczajka (2021)]

[Duhr, Klemm, Loebbert, Nega, and Porkert (2022)]

[Kazakov, Levkovich-Maslyuk, and Mishnyakov (2023)]

Generalization of �shnet CFT based
on arbitrary Baxter lattice (set of
intersecting lines)

Same properties: non-unitary,
conformal, integrable
[Kazakov and Olivucci (2022)]

[Al�mov, Ferrando, Kazakov, and Olivucci (in progress)]
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Graph-Building Operators

Conformal dimension of Tr(Z J(x)): the 2-point function has an iterative
structure.

〈
Tr(Z J(x))Tr(Z †J(y))

〉
↔

+∞∑
M=0

ξ2JM1



The graph-building operator
Ĥ is an integral operator
with kernel

Its action on an arbitrary function Φ is[
ĤΦ

]
(x1, . . . , xJ) =

�
Φ(y1, . . . , yJ)∏J

k=1(xk − yk)2y2k,k+1

d
4y1 . . . d

4yJ

The 2-point function is essentially reduced to the computation of

+∞∑
M=0

ξ2MJ
1 ĤM =

1

1− ξ2J1 Ĥ
.

=⇒ one needs to diagonalise Ĥ
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The graph-building operator
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ĤΦ

]
(x1, . . . , xJ) =

�
Φ(y1, . . . , yJ)∏J

k=1(xk − yk)2y2k,k+1

d
4y1 . . . d

4yJ

The 2-point function is essentially reduced to the computation of

+∞∑
M=0

ξ2MJ
1 ĤM =
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Physical Eigenvectors

Eigenvectors of Ĥ with eigenvalue E = ξ−2J
1 represent primary operators

of the �shnet theory (and their descendants). This is given by the
representation of the conformal group (∆(ξ21), ℓ, ℓ̄) under which the
eigenvector tranforms.

Example: J = 2, eigenvectors can be written explicitly, physical states
correspond to symmetric traceless tensors of arbitrary rank ℓ ⩾ 0, their
dimensions are

∆ℓ,± = 2+

√
(ℓ+ 1)2 + 1± 2

√
(ℓ+ 1)2 + 4ξ41 .

[Grabner, Gromov, Kazakov, and Korchemsky (2017)]



Comments and Shortcomings of the Fishnet Theory

▶ The previous results are exact. In particular, for ℓ = 0,

∆0,− = 2+

√
2− 2

√
1+ 4ξ41 = 2± 2 i ξ21 + O(ξ41)

is the exact dimension of Tr
(
Z 2

)
. Reproducing the perturbative

expansion requires to take into account the counter-terms.
We did not need them!

▶ On the other hand, ∆0,+ is the dimension of Tr(Z□Z ) + . . . which
we do not know exactly because there is mixing.
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▶ One �nds only two operators for each ℓ; this means that many
operators are protected in the �shnet theory.

▶ The �shnet theory is a logarithmic CFT: the dilatation operator is
not diagonalisable.

▶ Neither fermions nor gauge boson in the �shnet theory.
[Gürdo§an and Kazakov (2015)]

How can one incorporate back these protected or logarithmic operators?
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New Double-Scaling Limits

Operator-dependent limit:

e− i γ3 → ∞ , g → 0 , ξ2n =
g2 e− i

γ3
n

8π2
�xed

Example: for Tr(ZF ), one must take n = 2 and the only diagrams that
remain are

Following the procedure outlined previously, we �nd that

∆Tr(FZ) −→
g→0 ,ξ2 �xed

2+

√
5− 4

√
1+ ξ42 .
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General Situation: Mixing

If we turn to longer operators, such as Tr
(
FZ J

)
for J > 1, then

n = 1+ 1/J.

But there is some form of mixing with Tr
(
XX †Z J

)
(same double-scaling

limit) and Tr
(
Z J

)
(�shnet limit).

The relevant graph-building operator is a 3× 3 matrix. We will show that
it is integrable.



A Short Operator: Tr(FZ )



Feynman Diagrams

Double-scaling limit:

e− i γ3 → ∞ , g → 0 , ξ22 =
g2 e− i

γ3
2

64π4
�xed .

Relevant interactions:

− iNcg Tr
(
∂µX

†[Aµ,X ] + ∂µX [Aµ,X †]
)
,

2Ncg
2 Tr

(
X †AµXA

µ
)
, and 2Ncg

2 e− i γ3 Tr
(
X †Z †XZ

)
.

Typical diagram:



Graph-Building Operator

ĤA depends on the gauge:

However, there exists a gauge-independent operator ĤF acting on
antisymmetric tensors Ψµν

F and such that: if Ψµν
F = ∂µ2Ψ

ν
A − ∂ν2Ψ

µ
A, then[

ĤFΨF

]µν
= ∂µ2

[
ĤAΨA

]ν
− ∂ν2

[
ĤAΨA

]µ
.

=⇒
〈
Tr(ZF )(x) Tr

(
Z †F

)
(y)

〉
is gauge-independent in the double-scaling

limit.
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ĤAΨA

]µ
.

=⇒
〈
Tr(ZF )(x) Tr

(
Z †F

)
(y)

〉
is gauge-independent in the double-scaling

limit.



One can invert ĤF :[
Ĥ−1

F ΨF

]µν
=

1

16

(
∂µ2 x

4
12□1∂

ρ
2Ψ

ν
F ,ρ − (µ↔ ν)

)
.

Eigenvectors are �xed by the conformal covariance of the operator:
three-point functions involving a scalar of dimension 1 and a rank-2
antisymmetric tensor of dimension 2.



Spectrum:

▶ (∆ℓ,±, ℓ, ℓ) for ℓ ⩾ 1 with

∆ℓ,± = 2+
√
(ℓ+ 1)2 ± 4ξ22 .

▶ (∆′
ℓ,±, ℓ+ 2, ℓ)⊕ (∆′

ℓ,±, ℓ, ℓ+ 2) for ℓ ⩾ 0 (tensors with ℓ+ 2
indices and mixed symmetry) with

∆′
ℓ,± = 2+

√
(ℓ+ 2)2 + 1± 2

√
(ℓ+ 2)2 + 4ξ42 .

The dimension of Tr(ZF ) is ∆′
0,−.
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Other Short Operators

We performed a similar analysis for the following operators:

Tr
(
XX †Z

)
and Tr

(
X †XZ

)
=⇒ n = 2

Tr(ψ4Z ) or Tr
(
ψ†
1Z

)
=⇒ n =

4

3

Tr(ψ2Z ) or Tr
(
ψ†
3Z

)
=⇒ n = 4



Mixing Between Operators and Between

Scaling Limits



Fishnet Contributions

We focus on Tr
(
Z JF

)
and Tr

(
Z JXX †) for J > 1.

Let us consider the 2-pt function
〈
Tr
(
Z JF

)
(x) Tr

(
(Z †)JF

)
(y)

〉
. When

e− i γ3 → +∞, the dominant contributions are

But Tr
(
Z JF

)
is absent from the �shnet theory, so more graphs need to

be taken into account.
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Mixing

There is still an iterative structure: the graph-building
operator is actually a matrix Ĥ with one row (and one
column) for each state that participate in the mixing.

In our case, there are 3 intermediate states: Tr
(
Z J

)
, Tr

(
Z JF

)
and

Tr
(
Z JXX †).



Ĥ is de�ned such that 2-point functions are
essentially matrix elements of 1

1−Ĥ

Example:〈
Tr(Aµ(x0)Z (x1) . . .Z (xJ)) Tr

(
Z †(zJ) . . .Z

†(z1)
)〉

= − i

2

� ⟨x0, x1, . . . , xJ |
(

1
1−Ĥ

)µ

A∅
|y1, . . . , yJ⟩

(4π2)J
∏J

i=1(yi − zi )2

∏J
i=1 d

4yi
π2J

.

The problem is still to diagonalise Ĥ, and physical states correspond to
those with eigenvalue equal to 1.



Double-Scaling Limit

e− i γ3 → ∞ , g → 0 , ξ21+1/J =
g2 e− i J

J+1γ3

8π2
�xed

Each matrix element scales di�erently:

Ĥ = ξ
2(J+1)
1+1/J

g−2Ĥ∅∅ g−1Ĥ∅A g−1Ĥ∅X
g−1ĤA∅ ĤAA ĤAX

g−1ĤX∅ ĤXA ĤXX

 .

Some eigenvalues will diverge, some will go to zero. We focus on those
which remain �nite:

ĤΨ = EΨ , with E = E0 + O(g) , E0 ̸= 0 .
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At leading order, only the above 3× 3 submatrix is relevant. Writing

Ψ =

 Ψ∅,0(x1, . . . , xJ)
Ψµ

A,0(x0, x1, . . . , xJ)

ΨX ,0(x0, x1, . . . , xJ)

+ O(g) ,

we get Ψ∅,0 = 0 and

ξ
2(J+1)
1+1/J Ĥ

(
ΨF ,0

ΨX ,0

)
= E0

(
ΨF ,0

ΨX ,0

)
for Ψµν

F ,0 = ∂µ0Ψ
ν
A,0 − ∂ν0Ψ

µ
A,0, and some 2× 2 matrix Ĥ depending on all

9 matrix elements of Ĥ.



Ĥ is a complicated matrix of integral operators but it is local and gauge

invariant (contrary to Ĥ) and can be inverted:

Ĥ−1 =

 θ · ∂0 x2J0x210 ∂0 · ∂(θ)
2 θ · ∂0

(
θ·xJ0
x2
J0

− θ·x10
x210

)
x2J0x

2

10

2

(
x10·∂(θ)

x210
− xJ0·∂(θ)

x2
J0

)
x2J0x

2

10 ∂0 · ∂(θ) ∂0,µ x2J0x
2

10 ∂
µ
0
+ 8 x10 · xJ0


×

∏J−1

i=1 x2i,i+1
∏J

i=1 □i

(−4)J+1
,

where θµ is a polarisation vector such that {θµ, θν} = 0. It encodes the
tensor structure: Ψµν 7→ Ψ = θµθνΨµν .



Integrability

We can construct a transfer matrix

T (u) = tr6
(
L
(ρ0)
Y0

(u)L
(1,0,0)
Y1

(u) · · · L(1,0,0)YJ
(u)

)
such that

T (0) = (−1)J+1Ĥ−1 .

We have checked that the 6× 6 Lax matrices are solution to the RLL
equation

R12(u − v)L
(ρ0)
Y ,1 (u)L

(ρ0)
Y ,2 (v) = L

(ρ0)
Y ,2 (v)L

(ρ0)
Y ,1 (u)R12(u − v) ,

where R12(u) is the usual O(5, 1)-invariant R-matrix.
[Zamolodchikov and Zamolodchikov (1979)]
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The Lax matrices for sites 1, . . . , J are the usual ones for scalar
representations:

L
(1,0,0)
Y ,MN (u) = u2ηMN − u (YM∂Y N − YN∂YM )− 1

2
YMYN□Y .

Embedding space: 1 ⩽ M ⩽ 6, metric ηMN = diag(1, 1, 1, 1, 1,−1), and
YMYM = 0.



But the representation at site 0 is reducible and
the Lax matrix appears to be new:

L
(ρ0)
Y ,MN(u) = u2ηMN − u q

(ρ0)
MN + LY ,MN ,

where the conformal generators are

q
(ρ0)
MN =

(
YM∂Y N − YN∂YM +ΘM∂ΘN −ΘN∂ΘM 0

0 YM∂Y N − YN∂YM

)
and the operator LY is

LMN
Y = −1

2

(
(Θ · ∂Y )Y

MY N (∂Y · ∂Θ) (Θ · ∂Y )
[
YMΘN − Y NΘM

][
Y N∂M

Θ − YM∂N
Θ

]
(∂Y · ∂Θ)

1

2

[
YM□YY

N + Y N□YY
M
]
+ 2ηMN

)
.



Conclusion

▶ Twisting the correlators, one can devise a double-scaling limit for any
operator in N = 4 SYM such that an iterative structure emerges.

[Cavaglià, Grabner, Gromov, and Sever (2020)]

▶ In most cases, this involves mixing with other operators, including
�shnet operators. But integrability is always present.

▶ Regarding holography, the �shchain picture appears to be generic.

▶ The graph-building operator Ĥ can also be used to study corrections
in g . For instance, corrections to the �shnet limit.

▶ It would be interesting to study three-point functions of operators
with di�erent double-scaling limits.
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Thank you for your attention!


