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Scattering Amplitudes A,, in Quantum Field Theory
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Collider Experiments

» Theoretical predictions for outcome of elementary particle collisions,
central for experiments such as the LHC at nearby CERN, Geneva

» Exhibit remarkably deep mathematical structures
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Maximally Supersymmetric Yang-Mills (MSYM) Theory
SU(N) gauge group

» Proven as ideal theoretical laboratory for developing new paradigms
leading to significant practical applications.

[Bern,Dixon,Dunbar,Kosower’94] [Henn’13]
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Maximally Supersymmetric Yang-Mills (MSYM) Theory
SU(N) gauge group

» Proven as ideal theoretical laboratory for developing new paradigms
leading to significant practical applications.
[Bern,Dixon,Dunbar,Kosower’94] [Henn’13]

» Cluster algebras? Crucial role in MSYM, recently discovered in
Higgs+jet amplitudes in quantum chromodynamics (QCD).

[Chicherin,Henn,GP’20]
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Maximally Supersymmetric Yang-Mills (MSYM) Theory
SU(N) gauge group

» Proven as ideal theoretical laboratory for developing new paradigms
leading to significant practical applications.
[Bern,Dixon,Dunbar,Kosower’94] [Henn’13]

» Cluster algebras? Crucial role in MSYM, recently discovered in
Higgs+jet amplitudes in quantum chromodynamics (QCD).

[Chicherin,Henn,GP’20]

> Here, focus on planar limit N — co with A = g%, N fixed.
Integrable structure = Exact physical quantities in g% = \/(47)?!

[Minahan,Zarembo’02]. .. [Beisert,Eden,Staudacher’06]. .. [Gromov,Kazakov,Leurent,Volin’13]. ..
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Maximally Hellicity Violating (MHV) Gluon Amplitudes

Gluons are massless — helicity h = S - p = +1 good quantum number.

Simplest choice: MHV, A (1*,...i,....57,...,n%)
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Maximally Hellicity Violating (MHV) Gluon Amplitudes

Gluons are massless — helicity h = S - p = +1 good quantum number.

Simplest choice: MHV, A (1*,...i,....57,...,n%)

In planar N' =4 SYM, they are

» remarkably, dual to null polygonal Wilson loops.
Alday,Maldacena] [Drummond,Korchemsky,Sokatchev] [Brandhuber,Heslop, Travaglini
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» hence dual conformal invariant (in appropriate normalization)
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A, = ABPS exp R, (u; ;)

2 2
Ty Ty
Uij =5 5
x2 .x2
3,7 j+1,i+1

» hence dual conformal invariant (in appropriate normalization)
= First nontrivial amplitude for n = 6.
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The Amplitude at Strong Coupling

Via gauge/string duality, at leading strong-coupling order R,, ~ —2g(Area)
of string ending on null polygon at boundary of AdS space. ' eidacens

Xin

Image Credit: A. Sever

Classically integrable geometric problem = auxiliary integral equations of
Thermodynamic Bethe Ansatz (TBA) type

[Gaiotto,Moore, Neitzke] [Alday, Gaiotto,Maldacena] [Alday,Maldacena,Sever, Vieira]
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TBA: An Example

» M identical relativistic particles of mass m, rapidity 5.
» In circle of circumference L, with short-distance pairwise interactions.

> Thermodynamic limit M, L — oo with & fixed.

Extremize free energy F:
o FIT _y [ efH/T] .L R - f‘
= L =2 [coshBIn(1-1/Y)dB

given in terms of Y-function Y = £L*2 total density of states
p1<density of occupied states

which obeys nonlinear integral TBA equation:

1nY:%cosh5+%/Mﬁ—ﬁ’)ln(l—l/}/)dﬁ’

for some kernel ¢.
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The (Six-particle) Origin of Intriguing Observations

In w; — 0 ‘origin’ limit, arrive at exact expression, [P#PxomGr20]
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The (Six-particle) Origin of Intriguing Observations

In w; — 0 ‘origin’ limit, arrive at exact expression, [P#PxomGr20]

T —F 7r i
Rg= /Ly W (u1u2u;>,)— /421 2 4 —) +Co,
24 ui+1
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The (Six-particle) Origin of Intriguing Observations

In w; — 0 ‘origin’ limit, arrive at exact expression, [P#PxomGr20]

r _Fﬂ' 71' 7r (%
Rg= 0 A2 (uyugusg) — /3 /4 Zl 2 —) +Co,
24 ui+1

in terms of tilted anomalous dimension & Beisert-Eden-Staudacher kernel,

1
Io=4¢ | ———| =4¢"[1-K(a)+K*(a)+...
T [1+K<a>]ﬂ FH-HE) A
K(a) = 2cosa cosalKso sinaKe, Koo = Kons1 2m+1 5
= sinaKeo cosalKe, Koo = Kop+1,2m etc,
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The (Six-particle) Origin of Intriguing Observations

In w; — 0 ‘origin’ limit, arrive at exact expression, [P#PxomGr20]

r _Fﬂ' 71' 7r (%
Rg= —HIHQ (uyugusg) — /3 /4 Zl 2 —) +Co,
24 ui+1

in terms of tilted anomalous dimension & Beisert-Eden-Staudacher kernel,

1
Io=4¢ | ———| =4¢"[1-K(a)+K*(a)+...
T [1+K<a>]ﬂ FH-HE) A
K(a) = 2cosa cosalKso sinaKe, Koo = Kons1 2m+1 5
= sinaKeo cosalKe, Koo = Kop+1,2m etc,

i [ odt Ji(21)J; (29t
where K =2j(—1)”+]f%—( gt) ]1( g )a
0 -

and similarly for Cy. Tilt/deformation removed for o = 7/4.
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Comparison: Finite-coupling numerics & weak/strong coupling analytics

[Basso,Dixon,GP’20]

r
. . o
Anomalous Dimensions s
g

© ¢ finite coupling
0.8 1 ° a=0

© — o=Tv4
0.6 ° W a=1v/3

0.4

0.2 1
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Tilt Appearances & Applications

[Korchemsky]. .. [Beisert,Eden,Staudacher]

» « = m/4 recovers usual cusp anomalous dimension,

Topa = 49° = 8Gog" +88Cug" - 4[2196 +8(G)?] ¢ + +O(¢"),

» « =0 appeared previously in lightlike limit of “simplest 4-point
correlator” Of MSYM [Coronado] [Kostov,Petkova,Serban] [Belitsky,Korchemsky]

2
Iy = = In cosh (27g)
and more recently in Coulomb branch amplitudes, ‘o ot Coronadel
off-shell Sudakov and higher-point on-shell form factors

[Belitsky,Bork,Pikelner,Smirnov] [Sever, Tumanov,Wilhelm]

» « =7/3 new = application in 3-pt structure constants of operators
with large spin, polarization PereimGonealves Vieis

[Physical significance of a? More quantities for other values of a?J
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This talk

Origins of n-point amplitudes provide first instance of new tilt angle values!

7

Rn:Z(Fa_FWM)XPEnu

where P> quadratic-logarithmic polynomials of u;j, and

,withk=1,...,n-5, p=0,1,2.

~\
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This talk

Origins of n-point amplitudes provide first instance of new tilt angle values!

r

Rn:Z(Fa_FWM)XPEnu

where P> quadratic-logarithmic polynomials of u;j, and

——, withk=1,...,n-5, p=0,1,2.
2 3 3(n_4)7W| ) 7n 7p )

~

To arrive at this result, we first found:

J

[Basso,Dixon,Liu,GP]

1. n-gluon generalizations of origin limits — cluster algebras

2. Amplitude kinematic dependence, Pf” — pert. data & bootstrap

3. Values of oo — thermodynamic Bethe ansatz (TBA)
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Classifying n-gluon origin limits o™

0@ wi=uj1504—~0, i=1,2,3.

Q However, in general n(n —5)/2 dual conformal cross ratios, but only
3(n - 5) independent kinematic variables = Cannot set all u; j - 0!

7 3 well-defined notion of region of positive kinematics, where
amplitudes believed to be singularity-free.

[Arkani-Hamed,Bourjaily,Cachazo,Goncharov,Postnikov,Trnka] [Arkani-Hamed,Lam,Spradlin]

= Look at boundary of this region, as first place for potential origin-type
divergent behavior! Completely captured by Gr(4,n) cluster algebras.
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Cluster Algebras [Fomin,Zelevinsky'01A]
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Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of

» A set of variables X, the cluster (X-)coordinates
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Cluster Algebras [Fomin,Zelevinsky'01A]

They consist of
» A set of variables X, the cluster (X-)coordinates

» Grouped into overlapping subsets {X1,..., Xy} of rank d, the clusters

» Constructed recursively from initial cluster via mutations, encoded
d-dimensional matrix B with elements b;;.

Mutation associated to coordinate X:

1/X; k=i,

X - X = b
R P A S R TS

In new cluster, B — B’ with

b, _ —bz'j fOFi=k0rj:k
9o bij + max (0, —b;y, ) by + bj, max (0, bkj) otherwise. ’

Exchange graph: Clusters=vertices, mutations=edges
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Example: The six-particle positive region
Described by Gr(4,6) ~ As cluster algebra
. Xy
Initial cluster { X}, Xo, A3}
Origin limit clusters Xs

Positive region maps to interior
of exchange graph/polytope,
described by oo > X; > 0.

= XoXs Up= —X1X2 o1
1= 0+ 20 X)) A+ Xp+ Xp X3 27 Tr X0 3T T4+ X X5

u

In initial cluster, big = bag = —bay = —b3p =1 =

1 L XX
XQ, 3_1+X2'

X{ZXl(l-i-XQ), XQIZ

All X; — 0: Boundary vertex. All but one X; - 0: Boundary edge etc.
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Definition: Higher-point Origins
By analogy with n = 6 analysis

Origin point Iimit}

Boundary vertex/cluster X; — 0 where > 3(n—5) cross ratios vanish

Example: n=7
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Definition: Higher-point Origins
By analogy with n = 6 analysis

Origin point Iimit]

Boundary vertex/cluster X; — 0 where > 3(n—>5) cross ratios vanish

Example: n =7
» Find 28 out of 833 clusters:
02(7) oUp = 1, Ujsi = 0.

> Resolved into L/R:
ui_l/qu — 0 faster
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Definition: Higher-point Origins
By analogy with n = 6 analysis

Origin point Iimit}

Boundary vertex/cluster X; — 0 where > 3(n—>5) cross ratios vanish

®9®egq

Example: n=7 @‘ @
» Find 28 out of 833 clusters: ’ \
057): ui=1, wujsy—0. @ @
» Resolved into L/R: @
ui_l/uiﬂ — 0 faster @ @®
» All of them contiguously @ @
connected by mutations ® 1
@7®7@
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Origin Limit of n =7 Amplitude

Find, based on bootstrapped data through L =4 loops,

[Drummond,GP,Spradlin] [Dixon,Drummond,Harrington,McLeod,GP,Spradlin] [Dixon,Liu]

3
Rr(ur +ur =1,uiz17 < 1) = ZciPZU) ’
=1
h (7)
where lel+1+2ll“2,
P = z7+2z +Zzzl+3,

PV = Zz liva - Zz liva,

and ll =In Ui = In Ui+1,i+4-

Quadratic-logarithmic behavior not only on
origin points, but also on lines between them!
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The Higher-point Challenge

Gr(4,n) cluster algebra becomes infinite for n > 8!

y Based on previously observed contiguity, devise algorithm:
1. Start with origin point cluster (> 3(n —5) u;; - 0 as X; - 0)

2. Mutate to generate new origin points until condition is no longer met
For n = 8§, find 1188 clusters.

v~ All contained in 121460 clusters selected by natural proposal to
render Gr(4,n) finite by “tropicalization”

[Henke, GP’19]
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Origins for n=8 particles: Exchange Graph

.J A e

Figure: Different origin limit classes color-coded as 1, 2, ', 4, 5, 6, 7, 8, 9. May
be viewed as half-sphere with two O, at north pole and with Og's at equator.
Missing half-sphere is parity image, omitted for simplicity. Same-colored vertices
of different shape denote different directions of approach within each origin class.
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‘ Origin Class ‘ up Uz U3 U4 U Ug U7 US| V1 Vg V3 U4 ‘ #
O1 (super) o o o 0 O O O O0O|O0 1 0 1 4
Oy o o o o0 o o0 1 1|0 0 1 0180
Os 0 0 0 0 0 1 0 1 0 0 1 0 | 288
Og¢ o o o o0 1 O O 1|0 1 0 0128
07 o o o0 O 1 0 0O 1|10 0 1 0256
Og o o o 1 0o O O 1|0 1 0 o0/128
Og o o o 1 o O O 1|0 0O 0 1176

Table: All dihedrally inequivalent origin classes for n = 8. Zeros represent
infinitesimal values. There are nine infinitesimal cross ratios for all origins except
for the super-origin O which has ten. All nonzero cross ratios are close to unity.

The last column lists the number in each class, taking into account dihedral

symmetry, parity, and direction of approach.

U = Uj+1,5+4 5

Vi = Uj+1,i+5
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Perturbative data and bootstrap

As with n =7, from n = 8 perturbative data (L = 2 and symbol-level L = 3)

» Amplitude indeed exhibits exponentiated quadratic-logarithmic
behavior in all origin points.

» Also in higher-dimensional subspaces of kinematics, dictated by cluster
algebras! Ay x Ay, 2x As, 2 x A3z up to dihedral transformations.

» Turn logic around: Assume latter behavior and dihedral symmetry,
continuity, dual superconformal symmetry = Fixes all logu;
polynomials in all different origin limits.
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Outline

Introduction & Motivation

Classifying Origins with Cluster Algebras

Quadratic Logarithms from Bootstrap

Tilt Angles & Finite Coupling from TBA

Conclusions & Outlook
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The TBA for Amplitudes at Strong Coupling

In general kinematics, TBA equations for 3(n —5) Y-functions,
[Alday,Maldacena,Sever, Vieira]

I Yyo(0) = To.o(6) + Z/];(:(‘;? K540 -6") In (1+ Y3 (6)).

summed over b=0,+1, t = 5,5+ 1, for some kernels K, with
kqo(0) = i%sinh (260 — ima/2)
and driving terms
I,,5(0) = aps —mgTscosh @ + (—=1)°imgossinh @,

Basso,Sever,Vieira

depending on convenient kinematic variables {0y, 75, ©s},
s=1...n-5. 1/7s ~ temperatures, ¢s ~ chemical potentials.
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Solving the TBA at Origins

» Different origins correspond to 7, |ps| > 1, |@s| — 75 > 1.

Labeled by sequence X, = (h1, ..., hn-5) with hg = ©s/|ps|-

>1 if a=hg

> Expect Ya,s = {O otherwise

> TBA linearizes: In (1 +Yy;) = 0pp, InYy, 4

Solve by Fourier transform (In z conjugate to 6).

A _ r do 210/
1) __.o[ 27 cosh (26) : 1(6).-

E.g. n =6, only Y7 1 survives and

Vz(Inuy — zlnug + 2% Inug)

InY;1(2)=-
’ 2(1+23)
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Minimal Area=Free Energy

[Alday,Maldacena,Sever,Vieira] [Bonini,Fioravanti,Piscaglia,Rossi]

- g Z(—l)“f #(99)2 [Lig(_ya,s) N %1og(1+Ya,3)1og(ya,s/1a,5)]

:...:—4—9 OO%S (2)

T JO

2(1- )P (2)

Sn(2) = ZI (120 Yi() = (1+2)(1+22)(1 - 23009

where P> (z) polynomial of degree 3n — 14 in z and quadratic in
{087TSJ SDS}
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Minimal Area=Free Energy

[Alday,Maldacena,Sever,Vieira] [Bonini,Fioravanti,Piscaglia,Rossi]

Ry~ g Y (-1)" / #(99)2 [Lig(_ya,s) N %log(l Yl log(Yms/Ia’S)]

a,s

__ 4g [>dz VA
=...=- ZSn(z _7r25£

T JO

02 g (-2)Su(2),
2mi2

A(1- )P (2)
(1+2)(1+22)(1 - z3(n=4))

Sn(z) = Z T,(1/2)InY,(2) =
where P> (z) polynomial of degree 3n — 14 in z and quadratic in
{US7TSJ SOS}

Integral of rational function. Rewrite as contour integral and deform
contour to surround poles of S,,(2), all on unit circle.
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Finite-coupling Origins at any Multiplicity
For n = 6, sum over residues matches strong-coupling expansion of known
finite-coupling formula with
; 200/ A
F = = — 27,0’ Y —_— 5
a(9) =Gz =-"9) 72 sin (2«r)
i.e. S,(2) predicts values of a (+kinematic dependence P*")!

Finite-coupling conjecture Vn: Move G(z,g) as exact function of g inside
integral:

1 dz

Rn = _5 C. Qﬂ_iz(z_]-/z)g(zvg)sn(z)v

with Q(z,g) = Q(Z,g) - Fcusp(g)-
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Conclusions

[Finite-coupling amplitudes in origin limits for any particle number n!]

1. Cluster algebras = Classification of origin limits
2. Perturbative bootstrap = logQ(uij) kinematic behavior

3. Thermodynamic Bethe Ansatz = coupling-dependent coefficients I,

Next Stage
> log”(u; ;) terms?
» More integrable limits? Exact scattering in general kinematics?

> Maximal transcendentality principle relates I'; /4 in MSYM and QCD.
Other values of a7

» Origin story for higher-point correlators?
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All eight-particle origin clusters

27/38

Conclusions & Outlook
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Octagon origins:Mod out by direction of approach to limit
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Kinematic dependence in origin limits

In terms of convenient (OPE) variables ¢, 75, 05, inequivalent limits
correspond to |ps|, s — co and are thus labeled by X, = (h1,...,hy-5)

with hg = @s/|@s|-
Kinematic dependence then encoded in quadratic polynomial
s, cos a cos (3a)

_ S 2iay2
Fo = 12(n—4)cos(2a)|Q"( eI

where
3(n -4-s)

by _n—5_ s+11
Qn(z) - Z( 1)

s=1 1-

€h,.s(2) Hb
with
s=[2ps —Ts+ (-1)°0s] = 2752 + [£ps — Ts — (—l)sas]zz,

bs = 3(1 - hyhgi1)z — (1 + hshgi1)23 for s odd, and similarly with
bs - 2°bs(1/2) for s even.

GP — Finite-coupling Scattering at Clusters of Origin Limits Conclusions & Outlook

29/38



Weak coupling expansion of T',,

L=1]L=2 L=3 L=4
Toct 4 ~16(, 256(4 —3264(s
[ eusp 4 —8(» 884 ~876¢s — 32¢2
IMhex 4 —4(o 34C4 ~903 ¢ - 24C§
Co | -3¢ | T | -8 +2¢F | B¢ + 623 - 40(3¢5

r
—% =142 + 82 (3 + 5¢2) Cag
442

—8¢?[(25 +42¢ +35¢") (s +45° (3] g% + ..,

D(«a) = 462ng2 - 462(3 + 502)C4g4

= [(30+63¢® +35¢") s+ 125° G| g° + ...,

Ijoct = FO ) Fcusp = F7r/4 ) Fhex = 117r/3
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Strong coupling: Expansion & Comparison with String Theory

Expanded T, to four orders in 1/g, and Cj to two. For example,

2
04 0("), D) =amg [y - %]+ O(").

*~ rsin (2a)
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Strong coupling: Expansion & Comparison with String Theory

Expanded T, to four orders in 1/g, and Cj to two. For example,

2
04 0("), D) =amg [y - %]+ O(").

*~ rsin (2a)

—2g(Area)

Via gauge/string duality, at leading strong-coupling order W ~ ¢

Alday,Maldacena]

of string ending on W at boundary of AdS space. !

Image Credit: A. Sever
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Strong coupling: Expansion & Comparison with String Theory

Expanded T, to four orders in 1/g, and Cj to two. For example,
8ag 1 2

+0(s"), D(a)=dmg[ ;- 5]+ 0(").

*~ rsin (2a)

Via gauge/string duality, at leading strong-coupling order W ~ e~29(Area)
of string ending on W at boundary of AdS space. "/ eldacensd

At uq = ug = uz — 0:

[Alday,Gaiotto,Maldacena] [Basso,Sever, Vieira)
In & 3 ™ 7T _
N O T R
Tewsp A7 12 6 72
Image Credit: A. Sever
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Strong coupling: Expansion & Comparison with String Theory

Expanded T, to four orders in 1/g, and Cj to two. For example,
8ag 1 2

+0(s"), D(a)=dmg[ ;- 5]+ 0(").

*~ rsin (2a)

Via gauge/string duality, at leading strong-coupling order W ~ e~29(Area)
of string ending on W at boundary of AdS space. "/ eldacensd

At uq = ug = uz — 0:

[Alday,Gaiotto,Maldacena] [Basso,Sever, Vieira)

In & 3 ™ 7T _
B T T T Lo (u)

Towp | dm 1276 72

Perfect agreement!

Can also confirm Fhex- [Ito,Satoh,Suzuki .
Image Credit: A. Sever
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Strong coupling expansion of I',,
Letting a = o/, find

Rag s1 asy  a(s182+ass)

La= sin (27a) 1= 2V 4\ 8(VA)3 e

where
ske1 = (U (1) = (3 + @)} + (-1 {ehp(1) - u(3 - @)},

and 95 (2) = 01 1InT(2) the polygamma function.
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Comparison: Finite-coupling numerics & weak/strong coupling analytics

Log of Determinants D(a)
2g
1.6
1.4
1.2 1
14
> - -
0.8 ° finite coupling
oct
cusp
097 K hex
°
0.4 1 <
o
o
0.2 1
0 T T T T T T 1
0 1 2 3 4 5 6 7

Dot = D(O) , Dcusp = D(7T/4) 5 Dhex = D(7T/3)
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Integrability in Scattering Amplitudes/Wilson Loops?

GP — Finite-coupling Scattering at Clusters of Origin Limits Conclusions & Outlook 34/38



Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however,
particular collinear limit.

GP — Finite-coupling Scattering at Clusters of Origin Limits Conclusions & Outlook 34/38



Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables 7,0, ¢, given by 7 — oo.

1

_ 27+20
27 ’ =e
eT+1

Uz = Uy uu3 ,

1
1+e20 +2e° T coshp+e 27

us =
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Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables 7,0, ¢, given by 7 — oo.

In convenient normalization,

— chusp(02+72+§2)
W = Ege2
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Integrability in Scattering Amplitudes/Wilson Loops?

Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables 7,0, ¢, given by 7 — oo.

In convenient normalization, conformal
symmetry implies

We = Z o~ EiT+ipio+ai¢ P(0)1;) P (1]0)
b
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In convenient normalization, conformal
symmetry implies
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Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables 7,0, ¢, given by 7 — oo.

In convenient normalization, conformal
symmetry implies

WG — Z(/*l-;/rﬂp/rrﬂl;u P(OW%)P(I/)AO)
»i

» Propagation of flux tube excitation

» Emission/Absorption

Wilson Loop ‘Operator Product Expansion (OPE)’

Alday,Gaiotto,Maldacena,Sever,Vieira
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» Emission/Absorption

Wilson Loop ‘Operator Product Expansion (OPE)’
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MSYM: 1); mapped to excitations of integrable SL(2,R) spin chain,
equivalently of Gubser-Polyakov-Klebanov string = exact E, P
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Not yet understood in general kinematics. Good starting point, however,
particular collinear limit. In new kinem. variables 7,0, ¢, given by 7 — oo.

In convenient normalization, conformal
symmetry implies

WG — Z(fl':/,—-i/)/frﬂl,u7)(0|,l/}i)73(wi|0)
»i

» Propagation of flux tube excitation

» Emission/Absorption

Wilson Loop ‘Operator Product Expansion (OPE)’

Alday,Gaiotto,Maldacena,Sever,Vieira

MSYM: 1); mapped to excitations of integrable SL(2,R) spin chain,
equivalently of Gubser-Polyakov-Klebanov string = exact E, P

[Basso-+Sever, Vieira)

[Belitsky,Bonini,Bork,Caetano,Cordova,Drummond,Fioravanti,Hippel,Lam,Onishchenko, GP,Piscaglia,Rossi. .
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A Path to Originality

U OPE
double scaling
origin
u,
U,
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A Path to Originality

U OPE » Origin does not intersect collinear limit
double scaling
origin » However part of
Only simpler, gluon flux tube excitations
Cont”bute, [Basso,Sever,Vieira] [Drummond,GP)]
DS _ <
u Wﬁ = Z Wﬁ[N , €.8
2 N=1

- a du - u)T u)o
Wen = D¢ ¢f o Ha(u)e e (mpe (e,
a=1
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A Path to Originality
> Origin does not intersect collinear limit

Uy OPE

double scaling

origin » However part of
Only simpler, gluon flux tube excitations
Contr'bute, [Basso,Sever,Vieira] [Drummond,GP)]

oo
m = > Wen
2 N=1

- a du - u)T u)o
Wen = D¢ ¢f o Ha(u)e e (mpe (e,
a=1

u,

» Origin: ¢ — T — oo, outside of radius of convergence of sum &
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A Path to Originality

U

u,

OPE
double scaling
origin

> Origin does not intersect collinear limit

» However part of
Only simpler, gluon flux tube excitations
Contr'bute, [Basso,Sever,Vieira] [Drummond,GP)]

= > Wen]» €8
No1

- a du - u)T u)o
We) = e ¢/%ﬂa(u)e Ea(u)7+pa(u)o
a=1

» Origin: ¢ — T — oo, outside of radius of convergence of sum &

> Pert. resummation: Wey

(’)(92N ) = We[1] good up to 3 loops ©
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Only simpler, gluon flux tube excitations
Contr'bute, [Basso,Sever,Vieira] [Drummond,GP)]
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2 N=1
ad du
a -Eq(u)T+ u)o
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A Path to Originality

U OPE > Origin does not intersect collinear limit
double scaling
origin » However part of
Only simpler, gluon flux tube excitations
Contr'bute, [Basso,Sever,Vieira] [Drummond,GP)]

0 WE® =Y Wy » e8
2 N=1

- a du - u)T u)o
We) = e ¢/%ﬂa(u)e Ea(u)7+pa(u)o
a=1

u,

» Origin: ¢ — T — oo, outside of radius of convergence of sum &
> Pert. resummation: Wey ~0(g? 2) = We[1] good up to 3 loops ©
» Pert. resummation for NV 2 2 possible, but much harder ®

» As we'll see however, not really necessary! ©

GP — Finite-coupling Scattering at Clusters of Origin Limits Conclusions & Outlook 35/38



Sommerfeld-Watson Transform

Similar to Regge theory, where it amounts to analytic continuation in spin,

+o0+i€ if(a)da
2sin (wa)’

Z;l(—l)“f(a) -

provided f(z) decays faster than 1/z as z — .

M
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Sommerfeld-Watson Transform

Similar to Regge theory, where it amounts to analytic continuation in spin,

+oo+i€

NI e AOLLE

. 9
s e 2sin (7a)

provided f(z) decays faster than 1/z as z — oo. Indeed the case, and in
fact can deform contour to run parallel to imaginary axis, C.

C

~
=
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Sommerfeld-Watson Transform

Similar to Regge theory, where it amounts to analytic continuation in spin,

+oo+i€

> (0@~ [ SR

. 9
s e 2sin (7a)

provided f(z) decays faster than 1/z as z — oo. Indeed the case, and in
fact can deform contour to run parallel to imaginary axis, C.

C

~
=

Finally, closing contour around a = 0 on the left-hand side yields all
nonvanishing terms at origin at finite coupling!
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Secretly Gaussian integral

Origin=0PE integrand in modified integration contour. Can recast as
infinite-dimensional integral,

£=N [ Tlder(©)e s,
1=1

where M = (1+K)-Q and F(&,¢,7,0) complicated Fredholm
determinant. Remarkably, observe that perturbatively

E=N f [ dé e EM+omDE,
=1

becomes Gaussian but with modified kernel= evaluate explicitly!

GP — Finite-coupling Scattering at Clusters of Origin Limits Conclusions & Outlook 37/38



Higher Loops and Legs: The Amplitude Bootstrap

Evade Feynman diagrams by exploiting analytic structure

QFT Property Computation
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Evade Feynman diagrams by exploiting analytic structure

QFT Property Computation

. L
Physical Branch Cuts Aé ) ,L=3,4
[Gaiotto,Maldacena, [Dixon,Drummond, (Henn,)
Sever, Vieira] Duhr/Hippel,Pennington]
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Higher Loops and Legs: The Amplitude Bootstrap

Evade Feynman diagrams by exploiting analytic structure

QFT Property Computation
. L

Physical Branch Cuts Aé ) ,L=3,4
[Gaiurro.Xlal(,lacona‘ :I’)ixun.Dl'unnnom,L (Hmm“)
Sever, Vieira) Duhr/Hippel,Pennington]

Cluster Algebras A(3)

7,MHV

[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu,Volovich] Spradlin]

AMHV:A(——+...+)
ANMHV:A(———+...+)
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Higher Loops and Legs: The Amplitude Bootstrap

Evade Feynman diagrams by exploiting analytic structure

QFT Property Computation
: (L)
Physical Branch Cuts AG ,L=3,4
[Gaiotto,Maldacena, [Dixon,Drummond, (Henn,)
Sever, Vieira] Duhr/Hippel,Pennington]
(3)

Cluster Algebras A?,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu,Volovich] Spradlin]

- - (5) 403) (4)

Steinmann Relation AG 7A7,NMHV7A7,MHV
[Steinmann] [Caron-Huot,Dixon,. . .]

[Dixon,. .., GP,Spradli;l]

AMHV:A(——+...+)
ANMHV:A(———+...+)
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Higher Loops and Legs: The Amplitude Bootstrap

Evade Feynman diagrams by exploiting analytic structure

AMHV:A(——+...+)
ANMHV:A(———+...+)

QFT Property

Computation

Physical Branch Cuts

[Gaiotto,Maldacena,

Sever, Vieira)

AP 1 -34

[Dixon,Drummond, (Henn,)

Duhr/Hippel,Pennington]

Cluster Algebras

A(3)

7,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu,Volovich] Spradlin]
. . (3) 43 )
Steinmann Relation AG 7A77NMHV7A7,MHV

[Steinmann)]

[Caron-Huot,Dixon,. . .

[Dixon,. .., GP,Spradlin]

Cluster Adjacency

[Drummond,Foster,
Gurdogan]|

Extended Steinmann

Coaction Principle

€Y
AZNMHV

[Drummond,Foster,
Gurdogan, GP]

o A©® 4D
6 416 MHV

[Caron-Huot,Dixon,Dulat,
McLeod,Hippel, GP]
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Evade Feynman diagrams by exploiting analytic structure

AMHV:A(——+...+)
ANMHV:A(———+...+)

QFT Property

Computation

Physical Branch Cuts

[Gaiotto,Maldacena,

Sever, Vieira)

AP 1 -34

[Dixon,Drummond, (Henn,)

Duhr/Hippel,Pennington]

(3)

Cluster Algebras A?,MHV
[Golden,Goncharov, [Drummond, GP,
Spradlin,Vergu,Volovich] Spradlin]

- - (5) 403) (4)

Steinmann Relation AG 7A77NMHV7A7,MHV

[Steinmann)]

[Caron-Huot,Dixon,. . .

[Dixon,. .., GP,Spradlin]

Cluster Adjacency

[Drummond,Foster,

Gurdogan]|
Extended Steinmann

Coaction Principle

[Drummond,Foster,
Gurdogan, GP]

o A©® 4D
6 416 MHV

[Caron-Huot,Dixon,Dulat,
McLeod,Hippel, GP]

See also recent S(A7) - A7 work by ot
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