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1la. Historical background

ed pp wave solutions: In M theory,
(see also Figueroa-O’Farrill, Papadopoulos, hep-th/0106308)

' 9
ds? = 2dztde™ + H(zt,2")(dz )2+ 3 da?
—
- 1 5 Z
Fp = dxz™ Ndyp, AH=§|¢|

eIn particular, important class: H(zt,z') = ; A;ja'ad.
eKowalski-Glikman solution (PLB 1984)

2
—f56;5, 1=1,2,3
Ay = 2 |
—?52‘7, Z:4,...,9
o = ,uda:l/\dazz/\da:3

has maximal susy! Only other such solutions (theorem) are
Minkq1, AdS4 x ST and AdS7 x S%.



eBlau, Figueroa-O'Farrill,
Hull, Papadopoulos, hep-th/0110242
new type II B solution:

Aij = —p28i 0 = plw+ *w)
w = dxl Adz? Ade3 A dz?
Then
8 . 8 .
ds® = 2dztde™ —p? Y (2)?(dzT)2 + Y (da')?
Fg = igd:c+ A (dzt A dz? A de3 A da® + da® A dz® A de” A da®)

IS also a max. susy solution of type IIB! Only other is Minkig
and AdSs x S°! (also a theorem)

eMoreover, pp wave solutions receive no quantum string correc-
tions Horowitz and Steif (PRL 1990) = exact string solutions! Like
AdSs x S° and Minkowski.



eString in type IIB pp wave (D. Berenstein, J. Maldacena, HN, 2002):
massive scalars,

oralnt XI 2 X/I 2 XI 2 .
/dt/o g da{z[:[( R €S -1 2) ]—I—ferml}

2ma’ 2 2

oGO to H and discretize o0 =

(x1)2 (X{ X! 1)? x12
K ) 2 ! L 2GD

1 + fermi.
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eCan we get it from N = 4 SYM on the boundary S3 x R; (of
global AdSs x S°), KK reduced on S3 to QM Hamiltonian on R;?
Use CFT operator-state correspondence for R* vs. S3 x R and
define a Hamiltonian acting on states.

eGopakumar and Gross (NPB 1995). states obtained in large N, by

considering only planar "words’ are acted upon by Cuntz oscil-

lators, aaaE = 008 2o ahan = 11 — |0)(0].

eBut now also, for " dilute gas approximation’’ states, replace by

" Cuntz oscillators at each site”, aja;f. = ll,a;r-aj = 11 —|0)(0|.



e Then, the Hamiltonian is (modulo 1/J corrections)
bltol o gsN 1,1 | oIt 2
H= Z{ b+ 5= (0 +007) = (o + 00| }

and reduces to string pp wave Ham. for X! = (b! + bIT)/\/_
eMoreover, diagonalization: standard in condensed matter. Go

27mjn

to discrete momentum space, b = \/_Z an , Choose

backward + forward waves, al, = (c! ; + ¢! 2)/\/5 and do a

Bogoliubov transformation (mixing ¢'s and ¢'’s into &'s), to find
free oscillators (H = 52, wn (@ 11 4 & 53,2)) with

4gs N
wn:\/l—l— Js SanWJn
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e[ hus, "BMN states”

J J . .
1 2miln _ 2mikn o o
ana’,|0) = T . 2. ¢ e Zlol zF e 777k
eFinally: w, 10oPappror. 4 4 A gin2mn — 1 4 A _gin2 R
- Wn 22 J = 22 2

(47gsN = gy, N = N) is = 14eigenvalue of Hyxx1/» (Heisen-
berg Ham.) — integrability, Bethe ansatz (standard one).



1b. Introduction

eUse pp wave (Penrose limit) to better understand AdS/CFT
dualities.

eUnderstand what deformations we can have for the pp wave
method.

o3 interesting TT deformaion: preserves integrability



oT'T deformation in holography:
motion in the bulk, vs. deforming the gravity background

elLatter is well defined in AdSs x S3 x T%, but for "single-trace
deformations’, given by TsT transformation in bulk.

eExtend to AdSs x S°: (T'sT)?. Take Penrose limit — first on
TT(AdS3 x S3 x T?), then on TT(AdSs x S°).

elnterpret in N = 4 SYM: spin chain of dipole theory, likely
noncommutative.
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oT'T deformation of discretized string worldsheet in AdSs x S° —
difficult, not clear.

eDiscretize, then deform: QM spin chain — OK. (use Gross et al.,
2019)

oln N = 4 SYM: deform the large charge sector, to an equivalent
one.
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2. TT deformations in 2d, 4d and 1d

eDeformation defined in 2d, by T'(z)T'(z) (zZamolodchikov). Equiva-
lently, by (detT},,,) — understood in terms of renormalized quan-
tities, by normal ordering %(TaﬁTaﬁ — (T%,)?), in point splitting
regularization.

eBut, equivalently, (Cavaglia, Negro, Szeczenyi, Tateo 2016 and Bonelli,

Doroud, Zhou, 2018) realized that can deform classical £ by detT},,
at each point in deformation,

1

12



eGeneralization to higher dimensions: several possibilities.
1.eHVelP? = gHPg¥? — g¥PgH? can be generalized

2. power of detTy,,: (— detTW)é.

3. (Marika Taylor 2018) with TH*"T},;,, — ﬁT“MTV,/.

4. ...

e\What is the holographic dual?

eMcGough, Mezei, Verlinde 2016: RG flow in r = 1/z (radial coordi-
nate) = we can define theory by Dirichlet boundary condition at
z = € instead of at z = 0: TT deformation.
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eBut not satisfying — what is the normal holographic dual (de-
fined at z = 0) of T'T deformation?

eFor AdSz x S3 x T* with NS flux < MP/&,. Instead of dou-
ble trace T'(2)T(z) = (CF_1 T;(2)) (28— T;(2)), single trace def.:

J
construct string worldsheet vertex operators for "single trace’”,

p
"T()T(Z)" = ) Ti(2)Ti(2)
i=1

— similar properties to double trace deformation Giveon, Itzhaki,
Kutasov, 2017.
eCorresponds to TsT (T-duality/shift/ T-duality) transformation
(via string worldsheet vertex operators) on CFT» directions z and
t.
14



0 AdS3 x S3 x T* with NS flux,
R2ds® = e?P(—dt® + dz?) + dp® + %(05 + 03 + 03) + ds*(T?)
H = —2€2pdt/\da?/\dp+%01/\0'2/\0'3,

via TsT with shift z — z +~t, —2v = [2/R?, leads to (R? ~ I%k)

ds? k(—dt? + dz?
182 = K . +_2;” ) § kde® + kdsg: + dst
s = T €
o vk e 29 2w, e 29
(& = — €
12 —2 12 —2¢
p B2 _|_ € ¢ B2 —‘F (& ¢
2e2? 1
H = -— th/\da:/\dqb—i—zal/\ag/\cn
<1 + %e%)
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e AdSs x S°: do 2TsT's, on (01) and (23) (conjectured to be
dual to noncommmutative theory, Maldacena, Russo 1999; Hashimoto,
Itzhaki 1999) on Euclidean theory, then back:
e20(—dt? + dz?)
ds® = e + dp? + ds2
ver o L 4~

— _(G_QP + ,}/262p)2

—2p 2
P = Pg—| 2p _ | —2p 2 2p 20 2, € |
0 —1l0ge og(e ™’ +~v%ef) =" =e T
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eOne dimension (QM) (Gross, Kruthoff, Rolph, Shaghoulian, 2019). In

2d,

85 A
but, assuming the I\/IcGough, Mezei, Verlinde holography, on the
flow = TH, = —16ATT and then one finds

95501 (T7)? + T, T
/ W /2 —2XT7,

and the energy deformation

E(\) = 4—1/\ (1 ~ 1 - 8)Ey + 16>\2J2> |
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eDimensional reduction: TT¢ — 7™ =0and T7, = - then as if
J = 0 above, 1 —+1—8)\E
BOy = 10

leading to a deformed Hamiltonian that is a function of the
undeformed one,

H()) = 4—1A (1 — 1 8>\Ho> — £.(Ho).
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3. Penrose limits of single-trace TT
deformations of AdSs x S3 x T and AdSs x S° vs.
N =4 SYM

e After a transformation of coordinates, we can put the metric in
the form in the Penrose theorem,

R 2ds® = 2dVdU + adV? 4+ Y B;dvdY' + Y Ci;dY'dY?
g ]
after which we do Penrose’s rescaling ;

v i Yy
U=u, V=—, Y ==, R—
R? R

eResults in pp wave in Rosen coordinates; need to transform to
usual Brinkmann coords.
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0 AdS3 x S3 x T*: motion in (¢, p,v) gives pp wave metric

ds® = 2dzTdx + H(ac"')(d:v"')Q + d@? + dz° 4 diys + ds?(T?) |
H(w—l_) — ANQESOQ + AzzT5 + Ayny
o 2
where Ay = 1642, Ass=—8)s2 1 — 4~e?r

(1 4 2ve2r)?
4

Aai = oy (LT 20eP)OE +47) = 6]

E
P = msin (x+\/4,u2—2fy) , if 4u®—2y >0,
H- = 2y

and also a B field: only p(z1) dependence.
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eoln light-cone gauge ¢+t = 7 and conformal gauge, the string

action is

Sstring

1

4o

2wa/pt ' ' 1 — 4~e2r(T)
/ do / dr |73 0. X9, X" — 8y e
0 iF+
42 (1 £ 29e? D) (u? + YE?) — 6yp?e
(1 + 2~e2r(1))2
—E01a’ 4 4pt sin®(4ut) (0oy101y2 — 01y100y2)] -

1 + 2ye20(7) B

164%15
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e AdSs x S°: motion in (¢, p,v), so pp wave metric

ds? = 2dzTde™ + [AQOQOSOQ + Az73 + Agggﬂ (dzT)24dp°+(dF3)2+(dga)?

21 o 8’7264p o ’7468/0
(1 + ~2e?r)?
E2(1 + 72€4p) - M2€2p 2 2 1- 72€4p
— 2~72e2P(3 — ~2e*P) — (—=2E2~2e2P + 12
(1 & 2ei)2 7€’ (3 —v7€e™) — ( e + p )1+7264p

and a B field: also p(z1) dependence

Agy —n®, Agp =24

Azz =

Y
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e [ he string action in light-cone gauge T = 7 and conformal
gauge is

1 2ralpt . 2' i 5 5 1 — 8’)/264p(7-) _ 7468[)(T)
Sstring — _47‘-0//0 do‘/d’]‘ ] Z@aX abX - 2/~L "2 (1 +,y264p(7'))2
i~

1 — ’7264P(T)
1+ 72@4P(T)

— 123 — 73 [(—ZEQVQGQ”(T) + 1?)
EQ(]_ + 72€4p(7')) o ‘u2€2p(T)

+ (1 4+ ’7264/0(7_))2

226207 (3 _ 7264;)@))] } 4 e, o
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N =4 SYM interpretation:

eAs usual, X! = X} exp[—iwT + ik;o], ki, =
eOnly simple modes are y;, with the usual

2
Wy n:
— = 4|1+ L :
L4 \l (pa/pt)2

ng

a/pt
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Symmetries

0 AdSs x S°: In pp limit, PSU(2,2[4) D SO(4,2) x SO(6) breaks
to [SO(4)1 x SO(2)1] x [SO(4)s x SO(2)5]. SO(2)1: X7 trans-
lations, SO(2)>: X~ translations.

o7 T def.: XT = 7 notasymmetry = 250(2)1; SO(4)1 — SO(3) —
SO(2),. So [30(2)’1] x [SO(6)] — [30(2)’1} x [SO(4) x SO(2)5]

eBut 4 also generators e; and e;‘, and e = —p_. Undeformed or
deformed, same:

e, = —cos(uat)o; — psin(ua™)j'o_

Exr = —U Siﬂ(,ua:"‘)@i - ,u2 COS(,UJ£C+)§Z(9_ .
epp algebra: @i ~ €; + e; M;; = x;0; — x;0; = i(a;-raj — a;r-ai)

h=—-py = —Mzagai , Moz = xp03 — x302.
i
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¢S0O(4)> maintained < R-symmetry of 4 of the fermions (with
J > 0) = susy still N = 4.

eSpin chain: Z = X! + iX?2 charged under J = 0y, P, i =
1,2,3, 4. Insertions into Tr[Z7] of string modes.

eUndeformed case: D,Z = 8,Z + [A;, Z] and .

eDeformed case: still 2 index refers to transverse scalar symme-
try, so insertions of & unchanged. Also, interactions are still
[®?, PI]2.

eBut D;Z insertions changed: (01) and (23) singled out = dipole
theory, likely noncommutative.
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4. TT deformations of string worldsheet on
AdSs x S° pp wave, vs. N =4 SYM spin chain
deformation

eOne possibility: TT deform string worldsheet, then discretize.
Still corresponds to a spin chain? Unclear (likely no):

L = /dxﬁ—)ZL{

I
\/ 14 2X(—(X])2 + (X! — X[ 1)2%/a®)(1 = M2(XD?/2) — (1 — 2p2(XDH?)

2X(1 = AuF(X{)?/2)
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e\We could try the same, with

7 a,{e_i‘”t - (a,{)TeW
Xi — ,
V2
eFollowing the same steps doesn’t give a diagonal Hamiltonian,
- I — I 71 I 71 : I\2
since Aj = [(aj + a; ) — (aj+1 -+ ajJrl)} doesn’t lead to Zj(Aj)
as before. Now there is time dependence.
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eAlso in (Pozsgay, Jiang, Takacs, 2019 and Manchetto, Sfondrini, Yang
2019), argued that for spin chains, TT corresponds to Bargheer,
Beisert, Loebert 2018,2019 deformation: Bethe-Yang equations

N
e’ TT S(pp,p;) = 1
k#j
deformed to

N
ezij—Ha(XjY—YjX) H S(pj,

k#£j
= S(pj,pp) — X=X S(p: )

pr) =1
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eNote also that Baggio, Sfondrini 2018 consider the above deforma-
tion for AdSz x S3 x T pp wave in T% directions and it matches
the free massless boson on worldsheet T'T' deformation, but Sfon-
drini, van Tongeren 2019 consider it for AdSg X S° and find some
other deformation.
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eBut rather, we use the Gross et al.

mation of QM system (note: dim.red.

T(T) in 1d). Then,

1
H\) = u——
(A) u4)\

1 —

prescription for T'T defor-

of TT-holography, not

\

and so the eigenenergies are

E(X\,g°N,n/J) = p

al(a)" + (al)Tal al + (al)l a-+1 + (al, )T
1 — )
SA“Z” ( > T2 ( NG V2
1 g°N ™
~~ |1 —4l1—=8)\ \/ —sm2
A J p\l 1+ 72

eDeformation preserves integrability! (Hgy has conserved quan-
tities = f(Hp) also has).

31
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Deformation of N =4 SYM

eSymmetries now continue to be the same: [SO(2)1 x SO(4)1] x
[SO(2)s x SO(4)5], also N = 4 susy (unique!) = Deformed
sector within ' =4 SYM.

epp wave has symmetry operators

h:£e+:_a—|—7£e—:_a—a '
e, = — cos(uzT)o; — psin(uzM)Go_, i=1,..,8

Eer = —psin(ua)d; + p? cos(ua™)g'o_
EMij — ajiaj - :z;j&&- y i,j — 1, ...,40?"5, ceey 3.
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eAlgebra

[eia 6;
[h7 ez
(M, e

eDefine

= (ue)dj;
I N
= —dikej + 06, [Myj, er] = o;pe; + 5]ke:<
e te] pel — e
YT vae T
M;; = z(a;raj — a;[az-) :
th = " a,:-rai.
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e hen

n
(+i)H = uZaj = ) cns {/\uo Zag,i&o,i]
) 1

n>1
is obtained from

n
a; = Z Cn {AMZ&OJQO,J] ag.; »

n>0

1
4\

(1-vVI=8\z)= vz Y &A\"a"

n>0

% (1-vVi=8xz)= Y X" 2" = \/

n>1
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e T hus (Go,ao,z‘,agi) and (e, ai,a;f) satisfy the same algebra if also
e = epg and

mn
M=) KA'“OZ&%J&OJ] Moi;-
n>0

e | hus we have equivalence of the 2 sets.

eUndeformed generators on undeformed BMN operators give

_ 0 _
@05 = 5pya, (@007 = (@0,
2

where %, i = 1,...,4 are 4 scalars inserted inside Tr[Z7] and In
refers to insertion inside the trace.
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eOperators of deformed sector: vacua: same, e = eg — unde-
formed pT — J. Same vacuum Tr[Z7], but insert

n
5
A (Z on {/\“qu}?m ) d,; 777!

alt|0) ~ 3" Tr
[ n>0 9 J

e— Deformed BMN sector, equivalent to original one — H()\)
has both same eigenstates (undeformed BMN sector) and new
eigenstates (deformed BMN sector), since they are equivalent.
H()) in undeformed eigenstates gives E(\), H(\) in deformed

eigenstates gives Ej.

27ml

e J .

eObs: H) = f(\, Hp) gives in general Ly # g(\, Lg).
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5. Conclusions

eExtended holographic dual of "single-trace T'T deformations”
from AdSsz x S3 x T to AdSs x S° and took Penrose limit: spin
chain of a dipole theory (noncommutative?)

o7 T of string worldsheet on AdSg X S° pp wave discretized —
difficult to solve.

o1'I" of spin chain (discretized string worldsheet on pp wave), via
Gross et al. gives a deformed N = 4 SYM large charge sector
equivalent to the original one.
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