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Aspects of the information paradox solved

In 2019 the game changed due to the west and east coast Replica
Wormhole papers

1 We now know what Hawking "missed"
2 Effective theory (i.e. semi-classical gravity) finds a way to be consistent with unitarity: no

information is lost when a BH evaporates
3 Effective theory finds a clever way to hide the microscopic physics (string theory fuzzballs??) by

introducing a new concept the "island" (an observer-dependent saddle, the replica wormhole)



Hawking’s paradox

The Hawking process gives rise to an entanglement paradox

∑
n e
−nω/2T |n〉|ñ〉

· Each emitted mode has an entangled partner behind the horizon

There is a flux of entanglement ... measured by the thermodynamic entropy of the outgoing modes

dS

dt
= −

∫
dω

2π

∑
n

pn(ω) log pn(ω) pn(ω) = Z−1e−nω/T

· When the BH evaporates away where are the partners?



QFT entropy calculations
• Computations of QFT entropies are standard ρR = TrRc |ψ〉〈ψ|

e(1−n)S(n)(R) ≡ Tr ρnR = 〈ψ|⊗neRc ⊗ ηR |ψ〉⊗n

• Partition function on a replicated spacetime glued together in the right
way

|ψ0〉

〈ψ0|

ηR = cyclic perm on R

eRc = identity on Rc

|ψ〉 = U|ψ0〉



The replica wormhole (island)
• In semi-classical gravity geometry does not fluctuate but that doesn’t
stop the boundary conditions fluctuating
• Gravity can conjure up new saddles where replicas are connected together
in an additional region I (the island)

ηR → ηR ⊗ ηI

I picks up the purifiers of R lowering S

∂I raises S ... delicate competition

Saddle with the smallest S dominates



A variational problem

• In the n→ 1 limit, boils down to a remarkable variational problem

S(ρmicro
R ) = min

I
SI (R) SI (R) ≡ ext

∂I

{A(∂I )

4G
+ S(ρscR∪I )

}
∂I =Quantum Extremal Surface(s)

• What does it mean?

· When there is an island S(ρmicro
R ) 6= S(ρscR ) implies that the microscopic state of the radiation

ρmicro
R is NOT equal to the semi-classical state ρscR

· The true state of the Hawking radiation ρmicro
R is subtly correlated at the microscopic level

and unitary can—and is—maintained (Page curve). We can compute the correlations via the
mutual information

I (R1,R2) = S(R1) + S(R2)− S(R1 ∪ R2)

Correlations appear when the island for R1 ∪ R2 is not the union of the islands for R1 and R2.



• If you have access to a subset R and an island I saddle dominates then
the modes inside the BH on I can really (i.e. at the microscopic level) be
"decoded" from your R. This includes things that fall into the BH and
lie in I .

semi-classical microscopic?

So the inside of the BH in I (at the semi-classical level) is not really inside the BH (at the microscopic
level).



S(ρmicro
R )

ext∼
A(∂I )

4G
+ S(ρscR∪I )

1 The island/QES formula (generalized entropy) is a UV safe version of the Bekenstein-Hawking
entropy formula.

2 QFT in quantum gravity is less divergent than in a fixed geometry (cf. developments in operator
algebras of QFT in QG).



What is happening at the micro level?

|ψ〉sc =
∏

modes

∑
n

e−nω/2T |n〉|ñ〉

implies ρscR =
∏

modes

∑
n e
−nω/T |n〉〈n|, i.e. a thermal state.

• At the microscopic level the interior states |ñ〉 are not quite orthogonal (the BH is not big enough to
contain them as independent states)

〈ñ|m̃〉 = δnm + Znm Znm ∼ O(e−1/G )

hence ρmicro
R is not quite thermal.

• The "fluctuations" Znm are quasi-random.
• When R is big enough the small fluctuations can dominate and cause the island saddle.
• The semi-classical state is an average over the quasi-randomness 〈ñ|m̃〉 = δnm.



Part II: an island formula for S (n)(R)?

Question: can we understand replica wormholes (island saddles) without
taking the n→ 1 limit?

• Dong’s generalization of the RT formula in holography suggests

S̃ (n)(ρmicro
R ) ∼

A(∂I )

4G
+ S̃ (n)(ρscR∪I ) S̃ (n)(ρ) = n2∂n

(n − 1
n

S (n)(ρ)
)

involving the modular entropy and NOT the Rényi entropy.

• It is a hard problem because the QES ∂I has non-trivial back-reaction when n 6= 1.
• Work in the context of Jachiw Teitleboim gravity ... the s-wave sector of a near-extremal charged BH
in 3 + 1 (more than just a toy model!)

Even so there are many steps ... here I will focus on a few features involving Liouville Theory



BH in JT gravity

1 Near horizon geometry of near-extremal BH is AdS2 × S2

2 JT gravity has the 2d metric and a scalar field φ (dilaton)
which is the radius of the S2

3 φ is a constraint field that enforces the metric to be AdS2 the Poincaré disc (Euclidean) |w | ≤ 1

ds2 = e2ρ |dw |2 e2ρ =
1

(1− |w |2)2

4 CFT matter couples to metric and sources the dilaton e2ρ∂w
(
e−2ρ∂wφ) = 8πGTww , etc

5 JT gravity reduces to the dynamics of the boundary map w(τ) = e iθ(τ) with Schwarzian action

SJT ∼
1
G

∫
dτ {w , τ}

(Many connections with integrability, matrix models, quantum groups, etc ...)



Replica wormhole

• An n-fold branched cover of the Poincaré disc |w | ≤ 1
• Conformal factor ρ satisfies the Liouville equation with sources at branch
points

−∂w∂w̄ρ+ e2ρ = 2π
(
1− 1

n

)∑
j

δ(2)(w − aj)

• For N QES {aj} we have a genus (n − 1)(N − 1) surface
(incl mirror points w → 1/w̄)

In order to make progress we need an explicit description
of the cover



Fuchsian uniformization

Liouville stress tensor

T(w) = −(∂wρ)2 + ∂2wρ
w→aj

=
ε

(w − aj)2
+

cj
w − aj

+ · · ·

with ε = n2−1
4n2 . Finding the accessory parameters cj = cj(ak) is a

classic unsolved problem

• Next consider auxiliary Fuchsian equation
(
∂2w + T(w)

)
ψ = 0

• Coordinate in the cover W (w) = ψ1(w)/ψ2(w) and

T(w) =
1
2
{W (w),w}





Accessory parameters cj

• We need the cj to compute the gravitational action (the area term)
but this is unsolved ... ?

Polyakov’s conjecture
The accessory parameters are related to the classical limit of a particular
conformal block F of quantum Liouville theory with dimensions h = εc/6.

Classical limit f (aj) = limc→∞ − 6
c logF(aj) then

cj = −∂aj f (aj)

• So cj can be computed efficiently as a series in q = e−πK(1−x)/K(x) which is small when x → 0.

Is that sufficient? ...



Finally ...

1 We can compute the gravitational action in certain limits
(late time) corresponding to the x → 0 limit of the conformal block.

2 We can confirm the Dong-inspired guess for a modular entropy
island type formula ∂I = {aj}

S̃ (n)(ρmicro
R ) ∼

∑
j

φ(aj)

4G
+
∑
jk

ξjk + S̃ (n)(ρscR∪I )

up to "interaction" terms ξjk between pairs of QES which are suppressed in the late time limit (and
other subleading pieces)

3 This analysis was done for the eternal BH and we are now trying to extend to an evaporating BH


