Q-operators for Open Quantum Spin Chains
 Robert Weston
 Heriot-Watt University, Edinburgh

IGST, June 23

Plan

- Q-operators for closed chains
- Q-operators for open chains
- the challenge
- the resolution: universal-K

> Intro

Pause

- Sklyanin-K/Universal-K connection
- Light sketch of the rest
- Discussion

More details

Joint work with Alec Cooper and Bart Vlaar:
arXiv:2001.10760, 2301.03997

Q-operators for closed spin chains

- $Q(z)$ introduced in 72 by Baxter for $B-V$ model
(i) Diagonalizable \& polynomial
(ii) $[T(z), Q(z)]=\left[Q(z), Q\left(z^{\prime}\right)\right]=0$
(iii) $T(z) Q(z)=a(z) Q(q z)+b(z) Q\left(q^{-1} z\right)$
\Rightarrow Bethe Equs
- QiSml Quantum group picture [Sklyain, BLz96]

$Q(z)=c|c| \mid c c c \infty \in \operatorname{din} u_{q}(b+)$ repns.

$$
\bar{Q}(z)=
$$

[also need twist]
$\exists \quad u_{q}(b+)$ intertwines O
$q^{\mu_{z}}$ \& $U_{q}\left(\hat{l}_{2}\right)$ Verna module
$\begin{array}{ll}q_{z} & \rightarrow-(O \longrightarrow z\end{array} \quad$ [khoroshkin 1Tsuboillt
K $u_{q}(b+)$ filtered module

or $\quad Q\left(q^{-\mu} z\right) \bar{Q}\left(q^{\mu} z\right)=T_{\mu}(z)$
\& $T_{(m)}^{(z)}=T_{\mu}(z)-T_{-\mu}(z) ; \quad \mu=-\frac{(m+1)}{2}$
\Leftrightarrow spin $m / 2$ transfer matrix ; Generalised $\left[\begin{array}{lll}H J & 11, \\ F H & 13\end{array}\right]$

- Q-operators for open spin chains
[Frassek / Szécsényi 15, Baseilhac TTsuboi 17, Vaar (Weston 20, Tsuboi 20 J

Looks easy!

$$
T(z)=
$$

 [Sklyain 88]

$$
Q(z)=
$$

but until recently, full alg. picture of origin of TG relins missing.

The challenge for full algebraic picture

$$
u_{q}\left(s \hat{l}_{2}\right) r_{p} n
$$

$$
\infty \text {-din } U_{q}(b+) \text { rep }
$$

- but no action on or $u_{q}(b+)$ epis!

Boundary factorization

Fusion

The resolution [Cooper/Vaar/w 23]

- Exploit recent universal \mathbb{K} matrix [BaolWang 18, Balagouic/Kolb 1a,

Appellulaar 20,22 J CRM Lectores

- $A=$ coideal subaigebra

$$
\mathbb{K} \in u_{q}(b+)=\infty,[k, A]=0
$$

$$
\text { - } \quad \Delta(\mathbb{K}) \in u_{q}(b+) \otimes u_{q}(b+)=
$$

$\infty-\operatorname{dim} u_{q}(b+)$ repn

So α-dim repn of $\mathbb{K} \in u_{q}(b+)$
holds as equality of $u_{q}(b+)$ intertwinems via Schw's Lemma.

Pause

More Details
Sklyanin-K/universal-K connection
(i) Sklyanin

- $u=$ underlying q-group; $u_{q}(o f)$
$A=$ boundary q-group or $u_{q}\left(\hat{s l}_{2}\right)$
- Sklyanin [88] introduced A via FRT construction

$$
\begin{aligned}
& R(z) \in \operatorname{End}(V \otimes v) ; \rightarrow \psi \\
& \left.K^{22}(z) \in \operatorname{End}(v) \otimes A=z^{-1}\right\}
\end{aligned}
$$

Defines satifying RE
A

$$
\begin{aligned}
& \longrightarrow R\left(z_{1}\left(z_{2}\right) K_{1}^{(2)}\left(z_{1}\right) R\left(z_{1} z_{2}\right) K_{2}^{(2)}\left(z_{2}\right)\right. \\
& =K_{2}^{(2)}\left(z_{2}\right) R\left(z_{1} z_{2}\right) K_{1}^{(2)}\left(z_{1}\right) R\left(z_{1} \mid z_{2}\right)
\end{aligned}
$$

- e.f. $L(z)=\rightarrow \xi \in E_{n d}(v) \oplus u$

$$
\begin{aligned}
& R\left(z_{1}\left(z_{2}\right) L_{1}\left(z_{1}\right) L_{2}\left(z_{2}\right)\right. \\
= & L_{2}\left(z_{2}\right) L_{1}\left(z_{1}\right) R\left(z_{1}\left(z_{2}\right)\right. \\
& K(z)=(\mathbb{1} \otimes \varepsilon) K^{(2)}(z)
\end{aligned}
$$

$\tau_{\text {comit. }}$

$$
\rightarrow \in E \text { End }(V)
$$

- Coproduct (II $\otimes \Delta K^{(2)}=$
 $\operatorname{End}(v) \otimes u \otimes A(*)$
$D: A \rightarrow u \otimes A$, so coideal subalgebra.

$$
K^{(2)}=
$$

- A gen by matrix elements

$$
x_{a b}=\langle a| k^{(2)}|b\rangle=
$$

 $\in A$

Prop Given repp π_{w} of A on W we have
$K_{w} \pi_{w}\left(x_{a b}\right)=\pi_{w}(x a b) K_{w} \quad$ [Delius/Mackay 03]

Proof RE

Hence, K_{w} is A intertwines ($\left.\& K^{(2)} \in \operatorname{End}(V) \otimes A\right)$
(ii) The universal K-matrix picture
[BaolWang 18, Balagoure/Kolb la, Appel/Vlaar $20 / 22$]

- $u=$ underlying q-group;
$A=$ coideal subalgebra;
$B=$ upper Bored subalg.
- universal \mathbb{K} is constructed for wide class of coideal sab. A associated with quantum affine algebra:

$$
\mathbb{K} \in B
$$

 with

* $\mathbb{K} x=x \mathbb{K}$ with $x \in A$
* \mathbb{K} satisfies miversal (twisted) RE.
* $\Delta(\mathbb{K C})=$
$\in B \otimes B$
- If we have B reps π, then $K=\pi(\mathbb{K})=>$

If π not an A repn, no

$$
K \pi(x)=\pi(x) K \quad x \in A
$$

- Connection to Sklyanin's $K^{(2)}=\xi_{3}^{3}$ is just

$$
\begin{aligned}
& K^{2}=K^{3} \in B \otimes A \\
& K^{2}=\left(\pi_{B} \otimes \mathbb{I}\right) K^{2} \in \operatorname{End}(U) \otimes A .
\end{aligned}
$$

Summary

$$
\begin{aligned}
& \mathbb{K}^{(2)}=\sim_{\infty}^{\sim} \in B \in A \\
& K^{(2)}=\frac{5}{3} \in E_{\text {nd }}(u) \in A \\
& K=(\underline{\sim} \in \varepsilon) \in B \\
& K=>=(\pi \otimes \varepsilon) \underset{\}}{\}} \in \operatorname{End}(v)
\end{aligned}
$$

Light sketch of the rest

- We consider $U_{q}\left(\hat{s l}_{2}\right)$ case and $A=$ augmented q-Onsager algebra with $k_{\frac{1}{2}}(z)=\left(\begin{array}{ll}\xi z^{2}-1 & \\ & \xi-z^{2}\end{array}\right)$
[Stelyanin 88, Baseilhac/Belliard 13]
- $K_{B}=K_{B} \mathbb{K}$ well defined for all $u_{q}(b+)$
level - 0 repus (including the 4 -dim ones required for factorization).
- In practice find $K B$ by solving RE involury egg.

1-dim sole. space

R-matrices also well defined. as repn
.. All repns, $-\ldots$, etc have relatively simple q-ore expressions.

$$
\begin{gathered}
e \cdot g \cdot \square=e_{q^{2}}\left(q^{2} \bar{a}_{1}^{+} a_{2}\right) q^{r\left(D_{2}-D_{1}\right) / 2} \\
{[\text { Khoroshtin 1 Tsuboi } 14]}
\end{gathered}
$$

- Final step

$$
=
$$

$$
\alpha \quad T_{\mu}(z)
$$

reproduces known Bethe Equs.

Discussion

- Question: does this generalise to
(i) Non-diagonal K matrices for Sl_{2} case
(ii) Other $u_{q}($ of $)$?
- Partial answers
(i) We think so, although RE alg becomes modified by twist.
However, technically mare difficult to complexity of solving

(ii) We hope so; generallses to prefondamental repus [JimbolHemondez, Frenkel [Hermandez] and 'TQ relns' in closed case conj' by [Frenkel/Reshetikhin], proved by [FrenkellHernandez].

