Scaling behaviour of spin chains related to the inhomogeneous 6 V model

Gleb A. Kotousov
Leibniz University Hannover

Zürich, 19-23 ${ }^{\text {rd }}$ June 2023

Introduction

Integrable lattice models possess important applications to the study of critical phenomena and QFT

- They provide a laboratory for testing and developing our understanding of concepts such as renormalization group flow, universality, marginal deformations, ...
- May exhibit interesting phenomena (large degeneracies, exotic symmetries), which force us to refine our understanding of the scaling limit and QFT

Basic example: Heisenberg XXZ spin chain

$$
\mathbb{H}_{X X Z}=-\sum_{m=1}^{N} J_{x}\left(\sigma_{m}^{x} \sigma_{m+1}^{x}+\sigma_{m}^{y} \sigma_{m+1}^{y}\right)+J_{z} \sigma_{m}^{z} \sigma_{m+1}^{z}
$$

σ_{m}^{a} - Pauli matrices acting on m-th site of lattice

Lattice system critical in disordered regime:

$$
\left|J_{z} / J_{x}\right|<1: \quad J_{z} / J_{x}=\cos (\gamma) \quad \text { with } \quad \gamma \in(0, \pi]
$$

- Periodic/twisted BCs: scaling limit governed by free compact boson of radius $\sqrt{\frac{2 \gamma}{\pi}}$ [Luther, Peschel ' 75 ; Kadanoff, Brown ' 79 ; Alcaraz, Barber, Batchelor '87]
- Other BCs, e.g., anti-diagonal: (sector of) $\mathbb{S}^{1} / \mathbb{Z}_{2}$ orbifold theory [Alcaraz, Baake, Grimm, Rittenberg '87]

Integrable spin chain with continuous spectrum

$$
\begin{aligned}
\mathbb{H}= & \frac{1}{\sin (2 \gamma)} \sum_{m=1}^{N}\left(2 \sin ^{2}(\gamma) \sigma_{m}^{z} \sigma_{m+1}^{z}\right. \\
- & \left(\sigma_{m}^{x} \sigma_{m+2}^{x}+\sigma_{m}^{y} \sigma_{m+2}^{y}+\sigma_{m}^{z} \sigma_{m+2}^{z}\right) \\
+ & \left.{\underset{\Sigma}{i}}^{i^{\prime}}(-1)^{m} \sin (\gamma)\left(\sigma_{m}^{x} \sigma_{m+1}^{y}-\sigma_{m}^{y} \sigma_{m+1}^{x}\right)\left(\sigma_{m-1}^{z}-\sigma_{m+2}^{z}\right)\right) \\
& \text { Hamiltonian is not Hermitian! }
\end{aligned}
$$

Two regimes of critical behaviour

$$
\text { Regime I: } \gamma \in\left(0, \frac{\pi}{2}\right)
$$

Regime II : $\gamma \in\left(\frac{\pi}{2}, \pi\right)$
Continuous spectrum of conformal dimensions observed in Regime I [Jacobsen, Saleur '06]

Scaling limit governed by 2D black hole sigma models [Ikhlef, Jacobsen, Saleur '11; Bazhanov, GK, Koval, Lukyanov '21]

Heisenberg $X X Z$ spin $-\frac{1}{2}$ chain \longrightarrow Compact Gaussian field
Scaling limit with

$$
N \rightarrow \infty
$$

Spin chain with Hamiltonian \mathbb{H}

2D black hole sigma models

> Both spin chains obtained from special cases of transfer-matrix of inhomogeneous 6 V model

Homogeneous 6V model

Trigonometric R-matrix:

$$
R(\zeta / \eta \mid q)=\prod_{\substack{\uparrow \\ \eta}} \zeta
$$

Row-to-row transfer-matrix $(\eta=1)$:

$$
\mathbb{T}(\zeta)=
$$

Yang-Baxter equation for $R(\zeta) \Longrightarrow$

$$
\left[\mathbb{T}(\zeta), \mathbb{T}\left(\zeta^{\prime}\right)\right]=0, \quad \mathbb{T}(\zeta)=\mathbb{T}(\zeta \mid q)
$$

$X X Z$ spin chain Hamiltonian:

$$
\mathbb{H}_{X X Z}=\left.2 \mathrm{i} \partial_{\zeta} \log (\mathbb{T}(\zeta))\right|_{\zeta=1}+\text { const } \quad \text { with } \quad q=\mathrm{e}^{\mathrm{i} \gamma}
$$

Inhomogeneous 6V model [Baxter $\left.{ }^{\prime} 71\right]$

η_{J} - 'inhomogeneities'
Yang-Baxter equation for $R(\zeta) \Longrightarrow$

$$
\left[\mathbb{T}(\zeta), \mathbb{T}\left(\zeta^{\prime}\right)\right]=0, \quad \mathbb{T}(\zeta)=\mathbb{T}\left(\zeta \mid q, \eta_{1}, \eta_{2}, \ldots, \eta_{N}\right)
$$

Hamiltonian for spin chain with non-compact spectrum:

$$
\mathbb{H}=\left.2 \mathrm{i} \sum_{\ell=1,2} \partial_{\zeta} \log (\mathbb{T}(\zeta))\right|_{\zeta=\eta_{\ell}}+\text { const }
$$

with

$$
\eta_{J}=\mathrm{i}(-1)^{J-1} \quad \text { and } \quad q=\mathrm{e}^{\mathrm{i} \gamma}
$$

Inhomogeneous 6V model

Multi-parametric integrable system depending on $\{\eta J\}_{J=1}^{N}$ and q
Framework of Yang-Baxter integrability allows for:

- Changing irreps. in each factor of quantum space:

$$
\mathbb{T}(\zeta): V_{N} \mapsto V_{N} \quad \text { with } \quad V_{N}=\mathbb{C}_{1}^{2 j_{1}+1} \otimes \mathbb{C}_{2}^{2 j_{2}+1} \otimes \ldots \otimes \mathbb{C}_{N}^{2 j_{N}+1}
$$

- Imposing different families of open BCs [Sklyanin '88] (in this talk we focus on quasi-periodic BCs)

Study of critical behaviour of inhomogeneous 6 V model, including identification of critical surfaces and description of universality classes has been mainly unexplored

My research

1.) Developing methods for study of scaling limit of inhomogeneous 6V model based on:

- Bethe ansatz solution of model [Baxter '71]
- Baxter Q operator [Baxter '72] (open BCs [Frassek, Szecsenyi '15; Baseilhac, Tsuboi '17; Vlaar, Weston '20; Tsuboi '20])
- ODE/IQFT correspondence [Voros'92; Dorey-Tateo'98; BLZ'98,03]
- Integrable structures of CFT [BLZ '94,'96,'98]
2.) Applications to study of critical phenomena, e.g.,
results for density of states of Euclidean black hole CFT from analysis of spin chain with continuous spectrum [Bazhanov, GK, Lukyanov '20]

Previously studied cases

'Staggered' inhomogeneous 6V model

$$
\eta_{2 J}=\mathrm{e}^{\mathrm{i} \alpha}, \quad \eta_{2 J-1}=\mathrm{e}^{-\mathrm{i} \alpha} \quad \text { and } \quad q=\mathrm{e}^{\mathrm{i} \gamma}
$$

with $\alpha, \gamma \in[0, \pi)$

- Line AO: [(Ikhlef), Jacobsen, Saluer '05; '06,'11; Frahm, Martins'12; Candu, Ikhlef'13; Bazhanov, GK, Koval, Lukyanov '19,'20]

Whole BH region [Frahm, Seel'13]

- Line OB: [Ikhlef, Jacobsen, Saluer'09]

Whole GAGM region [GK, Lukyanov'21] (compact boson +2 Majorana fermions)

Model with r-site translational invariance

$$
\eta_{J+r}=\eta_{J} \quad(r \text { divides } N)
$$

Hamiltonian:

$$
\mathbb{H}=\left.2 \mathrm{i} \sum_{\ell=1}^{r} \partial_{\zeta} \log (\mathbb{T}(\zeta))\right|_{\zeta=\eta_{\ell}}+\text { const }
$$

Special cases:

- $r=1$ - homogeneous 6 V model ($X X Z$ spin chain)
- $r=2$ - staggered 6 V model (spin chain with non-compact spectrum)

General r : different types of universal behaviour depending on γ :

\mathcal{Z}_{r} invariant spin chain

Red region with

$$
\eta_{J} \approx(-1)^{r} \mathrm{e}^{\frac{\mathrm{i} \pi}{r}(2 J-1)} \quad \pi\left(1-\frac{1}{r}\right)<\gamma<\pi
$$

falls under conjecture for scaling limit from [GK, Lukyanov '21]
This talk: blue region

$$
0<\gamma<\frac{\pi}{r} \quad \Longleftrightarrow \quad \frac{\pi}{n+r} \quad \text { with } \quad n>0
$$

Impose

$$
\eta_{J}=(-1)^{r} \mathrm{e}^{\frac{\mathrm{i} \pi}{r}(2 J-1)}
$$

model possesses additional \mathcal{Z}_{r} symmetry:

$$
[\hat{\mathcal{D}}, \mathbb{H}]=0, \quad \hat{\mathcal{D}}^{r}=1
$$

Study of \mathcal{Z}_{r} invariant spin chain shows [GK, Lukyanov '23]

- continuous component in spectrum for even r
- infinite degeneracy of conformal primary states in scaling limit

Plan

As $N \rightarrow \infty$ low energy states of $1 D$ critical spin chain organize into conformal towers

$$
\left|\Psi_{N}\right\rangle \mapsto|\psi\rangle \otimes|\bar{\psi}\rangle \in \mathcal{V}_{\Delta} \otimes \overline{\mathcal{V}}_{\bar{\Delta}}
$$

Cardy formula for low energy spectrum [Cardy '86]:

$$
\mathcal{E} \asymp N e_{\infty}+\frac{2 \pi v_{\mathrm{F}}}{N}\left(\Delta+\bar{\Delta}+\mathrm{L}+\overline{\mathrm{L}}-\frac{c}{12}\right)+o\left(N^{-1}\right)
$$

e_{∞}, v_{F} - non-universal constants
$\Delta, \bar{\Delta}$ - conformal dimensions
$\mathrm{L}, \overline{\mathrm{L}}=0,1,2,3, \ldots$ - 'level' of states $|\boldsymbol{\psi}\rangle,|\overline{\boldsymbol{\psi}}\rangle$ in conformal tower

To be discussed:

- Low energy spectrum for \mathcal{Z}_{r} invariant spin chain with $r=1,2$
- Low energy spectrum for general r and comments on underlying CFT

The case $r=1$ ($X X Z$ spin chain $)$

$$
\mathbb{H}_{X X Z}=-\sum_{m=1}^{N}\left(\sigma_{m}^{x} \sigma_{m+1}^{x}+\sigma_{m}^{y} \sigma_{m+1}^{y}+\cos (\gamma) \sigma_{m}^{z} \sigma_{m+1}^{z}\right)
$$

with

$$
\gamma=\frac{\pi}{n+r} \in(0, \pi) \quad(r=1)
$$

$\mathrm{U}(1)$ symmetry:

$$
\left[\mathbb{H}_{X X Z}, \mathbb{S}^{z}\right]=0 \quad \text { with } \quad \mathbb{S}^{z}=\frac{1}{2} \sum_{m=1}^{N} \sigma_{m}^{z}
$$

\Longrightarrow space of states breaks up into sectors labeled by integer $S^{z}=0, \pm 1, \pm 2, \ldots$

Quasi-periodic BCs:

$$
\sigma_{N+1}^{x} \pm \mathrm{i} \sigma_{N+1}^{y}=\mathrm{e}^{ \pm 2 \pi \mathrm{ik}}\left(\sigma_{1}^{x} \pm \mathrm{i} \sigma_{1}^{y}\right), \quad \quad \sigma_{N+1}^{z}=\sigma_{1}^{z} \quad\left(\mathrm{k} \in\left(-\frac{1}{2}, \frac{1}{2}\right]\right)
$$

Bethe Ansatz solution

Integrability: eigenstates of Hamiltonian labeled by solutions of algebraic system

$$
\left(\frac{1+q^{+1} \zeta_{m}}{1+q^{-1} \zeta_{m}}\right)^{N}=-\mathrm{e}^{2 \mathrm{i} \pi \mathrm{k}} q^{2 S^{z}} \prod_{j=1}^{\frac{N}{2}-S^{z}} \frac{\zeta_{j}-q^{+2} \zeta_{m}}{\zeta_{j}-q^{-2} \zeta_{m}}
$$

with

$$
\mathcal{E}=\sum_{m=1}^{\frac{N}{2}-S^{2}} \frac{2 \mathrm{i}\left(q-q^{-1}\right)}{\zeta_{m}+\zeta_{m}^{-1}+q+q^{-1}}
$$

Spectrum at $N \gg 1$ can be studied by finding solutions of BA equations Ground state: pattern of Bethe roots distributed along positive real axis

Low energy state: pattern of Bethe roots differs from ground state pattern only at edges of distribution

Bethe Ansatz solution

Integrability: eigenstates of Hamiltonian labeled by solutions of algebraic system

$$
\left(\frac{1+q^{+1} \zeta_{m}}{1+q^{-1} \zeta_{m}}\right)^{N}=-\mathrm{e}^{2 \mathrm{i} \pi \mathrm{k}} q^{2 S^{z}} \prod_{j=1}^{\frac{N}{2}-S^{z}} \frac{\zeta_{j}-q^{+2} \zeta_{m}}{\zeta_{j}-q^{-2} \zeta_{m}}
$$

with

$$
\mathcal{E}=\sum_{m=1}^{\frac{N}{2}-S^{z}} \frac{2 \mathrm{i}\left(q-q^{-1}\right)}{\zeta_{m}+\zeta_{m}^{-1}+q+q^{-1}}
$$

Spectrum at $N \gg 1$ can be determined via study of solutions of BA equations Ground state: pattern of Bethe roots distributed along positive real axis

Low energy state: pattern of Bethe roots differs from ground state pattern only at edges of distribution

Low energy excitations

$$
\left(\frac{1+q^{+1} \zeta_{m}}{1+q^{-1} \zeta_{m}}\right)^{N}=-\mathrm{e}^{2 \mathrm{i} \pi \mathrm{k}} q^{2 S^{z}} \prod_{j=1}^{\frac{N}{2}-S^{z}} \frac{\zeta_{j}-q^{+2} \zeta_{m}}{\zeta_{j}-q^{-2} \zeta_{m}}
$$

Ground state: pattern of Bethe roots distributed along positive real axis

Low energy excitations constructed by:

- S^{z} : removing Bethe root from distribution
- (L, $\overline{\mathrm{L}})$: creating holes at left/right edges of Bethe root distribution

Low energy spectrum

$$
\begin{gathered}
\mathcal{E}=e_{\infty} N+\frac{2 \pi v_{\mathrm{F}}}{N}\left(\frac{p^{2}+\bar{p}^{2}}{n+r}-\frac{1}{12}+\mathrm{L}+\overline{\mathrm{L}}\right)+O\left(N^{-3}, N^{-4 n-1}\right) \\
p=\frac{1}{2}\left(S^{z}+\sqrt{n+r}(\mathrm{k}+\mathrm{w})\right) \\
\bar{p}=\frac{1}{2}\left(S^{z}-\sqrt{n+r}(\mathrm{k}+\mathrm{w})\right)
\end{gathered}
$$
\]

- $S^{z}=0, \pm 1, \pm 2, \ldots-U(1)$ charge
- $\mathrm{w}=0, \pm 1, \pm 2, \ldots$ 'winding number'

Scaling limit governed by free compact boson

Case $r=2$ (spin chain with continuous spectrum)

$$
\left(\frac{1+q^{+r} \zeta_{m}^{r}}{1+q^{-r} \zeta_{m}^{\prime}}\right)^{N / r}=-\mathrm{e}^{2 i \pi k} q^{25^{2}} \prod_{j=1}^{\frac{\Sigma^{2}}{}-S^{2}} \prod_{j} \frac{\zeta_{j}-q^{+2} \zeta_{m}}{\zeta_{j}-q^{-2} \zeta_{m}}
$$

Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane:

Low lying excitations

- S^{z} : total number of Bethe roots $=N / 2-S^{z}$
- $\mathrm{L}, \overline{\mathrm{L}}$: holes at edges of the Bethe roots distribution

Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane:

Low lying excitations

- S^{z} : total number of Bethe roots $=N / 2-S^{z}$
- $\mathrm{L}, \overline{\mathrm{L}}$: holes at edges of the Bethe roots distribution
- $\mathfrak{m}_{2}-\mathfrak{m}_{1}$: difference btw No. of roots with $\arg (\zeta)=\pi$ and 0 ($r=2$ only)

Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane:

$$
r=1
$$

$$
r=2
$$

Low lying excitations

- S^{z} : total number of Bethe roots $=N / 2-S^{z}$
- $\mathrm{L}, \overline{\mathrm{L}}$: holes at edges of the Bethe roots distribution
- $\mathfrak{m}_{2}-\mathfrak{m}_{1}$: difference btw No. of roots with $\arg (\zeta)=\pi$ and 0 ($r=2$ only)

Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane:

$$
r=1
$$

$r=2$

Low energy spectrum for case $r=2$

\mathcal{E}=e_{\infty} N+\frac{2 \pi v_{\mathrm{F}}}{N}\left(\frac{p^{2}+\bar{p}^{2}}{n+r}+2 n b^{2}-\frac{1}{6}+\mathrm{L}+\overline{\mathrm{L}}\right)+O\left(N^{-3}, N^{-2 n}\right)
\]

$b=b(N)$ related to eigenvalue of "quasi-shift" operators:

$$
\mathbb{K}^{(\ell)}=\mathbb{T}\left(-q^{-1} \eta_{\ell}\right): \quad \mathbb{K}^{(1)} \mathbb{K}^{(2)} \propto 2 \text { site translation operator }
$$

$\left(\ell=1,2 ; \eta_{1}=\eta_{2}^{-1}=\mathrm{i}\right)$
Asymptotics for \mathcal{E} obeyed with [Ikhlef, Jacobsen, Saleur '11]

$$
b(N)=\frac{1}{4 \pi} \log \left(\mathcal{K}^{(1)} / \mathcal{K}^{(2)}\right), \quad \quad \mathbb{K}^{(\ell)}\left|\Psi_{N}\right\rangle=\mathcal{K}^{(\ell)}\left|\Psi_{N}\right\rangle
$$

Low energy spectrum for \mathcal{Z}_{r} invariant spin chain with $r=2$

$$
\mathcal{E}=e_{\infty} N+\frac{2 \pi \nu_{\mathrm{F}}}{N}\left(\frac{p^{2}+\bar{p}^{2}}{n+r}+2 n b^{2}-\frac{1}{6}+\mathrm{L}+\overline{\mathrm{L}}\right)+O\left(N^{-3}, N^{-2 n}\right)
$$

For class of low energy states labeled by $\mathfrak{m}_{2}-\mathfrak{m}_{1}$:

$$
b(N) \asymp \frac{\pi\left(\mathfrak{m}_{2}-\mathfrak{m}_{1}\right)}{4 \log (N)}+\ldots, \quad \mathfrak{m}_{2}-\mathfrak{m}_{1}= \begin{cases}0, \pm 2, \pm 4 \ldots & N / 2-S^{z} \text { even } \\ \pm 1, \pm 3, \pm 5 \ldots & N / 2-S^{z} \text { odd }\end{cases}
$$

In taking scaling limit one should increase $\mathfrak{m}_{2}-\mathfrak{m}_{1}$ together with N such that limiting value of $b(N)$ is held fixed as $N \rightarrow \infty$

Spectrum of conformal dimensions possesses continuous component parameterized by

$$
s=\lim _{N \rightarrow \infty} b(N), \quad s \in(-\infty,+\infty)
$$

Ground state for general r

For ground state Bethe roots lie on r rays (N / r even):

$$
\arg (\zeta)=\frac{2 \pi \mathrm{i}}{r}(\ell-1) \quad \text { with } \quad \ell=1,2, \ldots r
$$

Example: ground state with $r=3$
Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane

Low energy excitations for general r

For ground state Bethe roots lie on r rays $(N / r$ even $)$:

$$
\arg (\zeta)=\frac{2 \pi \mathrm{i}}{r}(\ell-1) \quad \text { with } \quad \ell=1,2, \ldots r
$$

Low energy excitations can be built by disbalancing number of roots on each ray
Example with $r=3$:
Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane

Low energy exciations for general r

For ground state Bethe roots lie on r rays (N / r even):

$$
\arg (\zeta)=\frac{2 \pi \mathrm{i}}{r}(\ell-1) \quad \text { with } \quad \ell=1,2, \ldots r
$$

Low energy excitations can be built by disbalancing number of roots on each ray
Example with $r=3$:
Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane

Low energy exciations for general r

- S^{z} : total number of Bethe roots $=N / 2-S^{z}$
- $\mathrm{L}, \overline{\mathrm{L}}$: holes at edges of the Bethe roots distribution
- $r-1$ differences $\mathfrak{m}_{\ell}-\mathfrak{m}_{\ell^{\prime}}$ btw No. of roots with

$$
\arg (\zeta) \approx \frac{2 \pi \mathrm{i}}{r}(\ell-1) \quad \text { and } \quad \arg (\zeta) \approx \frac{2 \pi \mathrm{i}}{r}\left(\ell^{\prime}-1\right)
$$

Example with $r=3$:
Bethe roots in complex $-\frac{1}{2} \log (\zeta)$ plane

Quasi-shift operators

To take into account extra $r-1$ degrees of freedom:

$$
\begin{aligned}
& \mathbb{K}^{(\ell)}=\mathbb{T}\left(-q^{-1} \eta_{\ell}\right) \quad(\ell=1,2, \ldots, r) \\
& \mathbb{K}^{(1)} \mathbb{K}^{(2)} \ldots \mathbb{K}^{(r)} \propto \text { r site translation }, \quad \hat{\mathcal{D}}^{-1} \mathbb{K}^{(\ell)} \hat{\mathcal{D}}=\mathbb{K}^{(\ell+1)}
\end{aligned}
$$

Define $r-1$ independent quantities via Fourier transform

$$
b_{a} \equiv \frac{N^{1-\frac{2|a|}{r}}}{2 \pi \mathrm{i} r} \sum_{\ell=1}^{r} \mathrm{e}^{\frac{\mathrm{i} \pi}{r} a(r+1-2 \ell)} \log \left(\mathcal{K}^{(\ell)}\right) \quad\left(1 \leq|a| \leq\left[\frac{r}{2}\right]\right)
$$

with $b_{-\frac{r}{2}}=b_{\frac{r}{2}}$

- b_{a} has \mathcal{Z}_{r} charge a
- b_{a} generically tends to finite, non-vanishing number as $N \rightarrow \infty$

Low energy spectrum for general r

$$
\begin{aligned}
& \mathcal{E}=N e_{\infty}+\frac{2 \pi r v_{\mathrm{F}}}{N}\left[\frac{p^{2}+\bar{p}^{2}}{n+r}+2\left(b_{\left(\frac{r}{2}\right)^{2}}-\frac{r}{12}+\mathrm{L}+\overline{\mathrm{L}}\right.\right. \\
& -\sum_{a=1}^{\left[\frac{r-1}{2}\right]} 2 \pi(r-2 a) \cot \left(\frac{\pi(r-2 a)}{2 n}\right) \underbrace{\frac{b_{a} b_{-a}}{N^{2-\frac{4 a}{r}}}}_{\mathcal{Z}_{r} \text { neutral }}+O\left(N^{-2}, N^{-\frac{4 n}{r}}\right)]
\end{aligned}
$$

Decays faster than N^{-1}

Scaling limit of low energy states

States appearing in scaling limit of $\left|\Psi_{N}\right\rangle$ labeled by $p, \bar{p}, \mathrm{~L}, \overline{\mathrm{~L}}$ as well as

$$
s_{a}=C_{a} \operatorname{sim}_{N \rightarrow \infty} b_{a} \quad 1 \leq|a| \leq\left[\frac{r}{2}\right]
$$

(C_{a} inessential and chosen for convenience)
Conformal dimensions:

$$
\begin{aligned}
& \Delta-\frac{c}{24}=\frac{p^{2}}{n+r}+n\left(s_{\frac{r}{2}} / C_{\frac{r}{2}}\right)^{2}-\frac{r}{24}+\mathrm{L} \\
& \bar{\Delta}-\frac{c}{24}=\frac{\bar{p}^{2}}{n+r}+n\left(s_{\frac{r}{2}} / C_{\frac{r}{2}}\right)^{2}-\frac{r}{24}+\overline{\mathrm{L}}
\end{aligned}
$$

independent of s_{a} for $|a|=1,2, \ldots\left[\frac{r-1}{2}\right]$
\Longrightarrow large (infinite) number of conformal towers $\mathcal{V}_{\Delta} \otimes \overline{\mathcal{V}}_{\bar{\Delta}}$ with same pair of conformal dimensions

Scaling limit of low energy states

Our analysis suggests

$$
\left|\Psi_{N}\right\rangle \mapsto\left|\psi_{p, \boldsymbol{s}}^{(\mathrm{L})}\right\rangle \otimes\left|\overline{\boldsymbol{\psi}}_{\bar{p}, \bar{s}}^{(\overline{\mathrm{L}})}\right\rangle
$$

with

$$
\boldsymbol{s}=\left(s_{1}, \ldots, s_{\left[\frac{r}{2}\right]}\right), \quad \overline{\boldsymbol{s}}=\left(s_{-1}, \ldots, s_{-\left[\frac{r}{2}\right]}\right)
$$

It is expected that chiral states organize into irreps of algebra of extended conformal symmetry

Open questions:

- What is the algebra of extended conformal symmetry?
- What are conditions on $\boldsymbol{s}, \boldsymbol{s}^{\prime}$ such that $\left|\psi_{p, \boldsymbol{s}}^{(\mathrm{L})}\right\rangle,\left|\psi_{p, \boldsymbol{s}^{\prime}}^{\left(\mathrm{L}^{\prime}\right)}\right\rangle$ belong to same irrep?
- What are selection rules for admissible values of \boldsymbol{s} and $\overline{\boldsymbol{s}}$?

Scaling limit of low energy states

Our analysis suggests

$$
\left|\Psi_{N}\right\rangle \mapsto\left|\psi_{p, \boldsymbol{s}}^{(\mathrm{L})}\right\rangle \otimes\left|\overline{\boldsymbol{\psi}}_{\bar{p}, \overline{\boldsymbol{s}}}^{(\overline{\mathrm{L}})}\right\rangle
$$

with

$$
\boldsymbol{s}=\left(s_{1}, \ldots, s_{\left[\frac{r}{2}\right]}\right), \quad \overline{\boldsymbol{s}}=\left(s_{-1}, \ldots, s_{-\left[\frac{r}{2}\right]}\right)
$$

It is expected that chiral states organize into irreps of algebra of extended conformal symmetry

Open questions:

- What is the algebra of extended conformal symmetry?
- What are conditions on $\boldsymbol{s}, \boldsymbol{s}^{\prime}$ such that $\left|\psi_{p, \boldsymbol{s}}^{(\mathrm{L})}\right\rangle,\left|\psi_{p, \boldsymbol{s}^{\prime}}^{\left(\mathrm{L}^{\prime}\right)}\right\rangle$ belong to same irrep?
- What are selection rules for admissible values of s and \bar{s} ?

Quantization condition $(r=2)$

Chiral states labeled by ($p, \bar{p}, \mathrm{~L}, \overline{\mathrm{~L}}$) and $s \equiv s_{1}=\bar{s}_{1}$

$$
\left|\Psi_{N}\right\rangle \mapsto\left|\psi_{p, 5}^{(\mathrm{L})}\right\rangle \otimes\left|\bar{\psi}_{\bar{p}, \bar{s}}^{(\overline{\mathrm{L}})}\right\rangle
$$

'Quantization Condition' (QC) is satisfied

$$
\left(\frac{N}{2 \tilde{N}_{0}}\right)^{2 \mathrm{i} s} \mathrm{e}^{\frac{\mathrm{i}}{\mathrm{i}} \delta(s)}=\sigma+O\left((\log N)^{-\infty}\right)
$$

$\sigma=$ sign factor, $\tilde{N}_{0}=$ const.
Originally obtained for $\mathrm{L}=\overline{\mathrm{L}}=0$ in [Ikhlef, Jacobsen, Saleur '11] with (note that s from that work $=-\frac{s}{2}$)

$$
\mathrm{e}^{\frac{\mathrm{i}}{2} \delta}=\frac{\Gamma\left(\frac{1}{2}+p-\frac{\mathrm{i} s}{2}\right)}{\Gamma\left(\frac{1}{2}+p+\frac{\mathrm{is}}{2}\right)} \frac{\Gamma\left(\frac{1}{2}+\bar{p}-\frac{\mathrm{is}}{2}\right)}{\Gamma\left(\frac{1}{2}+\bar{p}+\frac{\mathrm{i} s}{2}\right)} \quad(\mathrm{L}=\overline{\mathrm{L}}=0)
$$

Extension to all low energy states using ODE/IQFT correspondence [Bazhanov, GK, Koval, Lukyanov'19]

Quantization condition $(r=2)$

QC allows one to determine admissible values of s.
Example for $\mathrm{L}=\overline{\mathrm{L}}=0$:
$\left(\frac{N}{2 \tilde{N}_{0}}\right)^{2 \mathrm{i} s} \mathrm{e}^{\frac{\mathrm{i}}{2} \delta}=\sigma+O\left((\log N)^{-\infty}\right), \quad \mathrm{e}^{\frac{\mathrm{i}}{2} \delta}=\frac{\Gamma\left(\frac{1}{2}+p-\frac{\mathrm{is}}{2}\right)}{\Gamma\left(\frac{1}{2}+p+\frac{\mathrm{i} s}{2}\right)} \frac{\Gamma\left(\frac{1}{2}+\bar{p}-\frac{\mathrm{i} s}{2}\right)}{\Gamma\left(\frac{1}{2}+\bar{p}+\frac{\mathrm{i}}{2}\right)}$

- Discrete spectrum: s pure imaginary and tends to a pole and zero of $\mathrm{e}^{\frac{1}{2} \delta}$ for $\Im m(s)>0$ and $\Im m(s)<0$, respectively
- Continuous spectrum:

$$
2 s \log \left(N /\left(2 \tilde{N}_{0}\right)\right)+\frac{1}{2 \pi} \partial_{s} \delta=\pi\left(\mathfrak{m}_{2}-\mathfrak{m}_{1}\right)+O\left((\log N)^{-\infty}\right)
$$

$\Longrightarrow s$ is real and densely distributed along real line with density

$$
\rho(s)=\frac{1}{\pi} \log \left(N /\left(2 \tilde{N}_{0}\right)\right)+\frac{1}{4 \pi} \partial_{s} \delta
$$

QC was key to identifying scaling limit of lattice model with 2D black hole CFTs

Quantization condition (general r) [GK, Lukyanov '23]

General form:
$\left(\frac{2^{\frac{r}{n}} N}{r N_{0}}\right)^{\frac{4 \mathrm{i}}{r}(-1)^{\ell} s} \frac{F_{p}^{(\ell+1)}(\boldsymbol{s})}{F_{p}^{(\ell)}(\boldsymbol{s})} \frac{F_{\bar{p}}^{(\ell)}(\bar{s})}{F_{\bar{p}}^{(\ell+1)}(\bar{s})}=\sigma \mathrm{e}^{-\frac{2 \pi \mathrm{i}}{r} S^{2}}+O\left((\log N)^{-\infty}\right)$
with

$$
s \equiv 0 \quad \text { for } \quad r \text { odd }, \quad s \equiv s_{\frac{r}{2}} \quad \text { for } \quad r \text { even }
$$

and

$$
\ell=1,2, \ldots, r
$$

Functions $F_{p}^{(\ell)}(\boldsymbol{s})$ explained on next slide
$(\star)=r-1$ independent relations for $r-1$ variables

- Odd r : no N dependent term (in red). Discrete set of solutions expected
- Even r : continuous spectrum parameterized by s, while s_{a} with $|a|=1,2, \frac{r}{2}-1$ belongs to discrete set

Quantization condition (general r)

For the case $\mathrm{L}=\overline{\mathrm{L}}=0$:

$$
F_{p}^{(\ell)}(\boldsymbol{s})=F_{p}\left(\boldsymbol{s}^{(\ell)}\right), \quad F_{\bar{p}}^{(\ell)}(\overline{\boldsymbol{s}})=F_{\bar{p}}\left(\overline{\boldsymbol{s}}^{(\ell)}\right)
$$

with

$$
s_{a}^{(\ell)}=(-1)^{a r} \mathrm{e}^{+\frac{\mathrm{i} \pi a}{r}(2 \ell-1)} s_{a}, \quad \bar{s}_{a}^{(\ell)}=(-1)^{a r} \mathrm{e}^{-\frac{\mathrm{i} \pi a}{r}(2 \ell-1)} s_{-a}
$$

$F_{p}(\boldsymbol{s}) \equiv F_{p}\left(s_{1}, \ldots s_{\left[\frac{t}{2}\right]}\right)$ is a certain connection coefficient for the ODE

$$
\left[-\partial_{v}^{2}+\mathrm{e}^{r v}+p^{2}+\sum_{a=1}^{\left[\frac{r}{2}\right]} s_{a} \mathrm{e}^{a v}\right] \psi=0
$$

Explicit analytic formula for $F_{p}(\boldsymbol{s})$ exists only for $r=2$
Generalization to any $\mathrm{L}, \overline{\mathrm{L}} \geq 0$ along the lines of ODE/IQFT correspondence contained in [GK, Lukyanov '23]

Conclusion

- Scaling limit of \mathcal{Z}_{r} invariant spin chain in regime $0<\gamma=\frac{\pi}{n+r}<\frac{\pi}{r}$
- Odd r : spectrum of conformal dimensions discrete with large (infinite) degeneracies
- Even r : continuous component in spectrum appears
- Important result: 'quantization condition' that is expected to determine admissible values of \boldsymbol{s} and $\overline{\boldsymbol{s}}$ labeling states. Involves connection coefficient of certain class of ODEs.
- Description of the CFT remains an open problem

