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Introduction

Integrable lattice models possess important applications
to the study of critical phenomena and QFT

They provide a laboratory for testing and developing our understanding of
concepts such as renormalization group flow, universality, marginal
deformations, . . .

May exhibit interesting phenomena (large degeneracies, exotic symmetries),
which force us to refine our understanding of the scaling limit and QFT
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Basic example: Heisenberg XXZ spin chain

HXXZ = −
N∑

m=1

Jx
(
σx
mσ

x
m+1 + σy

mσ
y
m+1

)
+ Jzσ

z
m σ

z
m+1

σa
m – Pauli matrices acting on m-th site of lattice

Lattice system critical in disordered regime:∣∣Jz/Jx ∣∣ < 1 : Jz/Jx = cos(γ) with γ ∈ (0, π]

Periodic/twisted BCs: scaling limit governed by free compact boson

of radius
√

2γ
π [Luther, Peschel ’75; Kadanoff, Brown ’79;

Alcaraz, Barber, Batchelor ’87]

Other BCs, e.g., anti-diagonal: (sector of) S1/Z2 orbifold theory

[Alcaraz, Baake, Grimm, Rittenberg ’87]
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Integrable spin chain with continuous spectrum

H =
1

sin(2γ)

N∑
m=1

(
2 sin2(γ)σz

m σ
z
m+1

− (σx
m σ

x
m+2 + σy

m σ
y
m+2 + σz

m σ
z
m+2)

+ i (−1)m sin(γ)(σx
m σ

y
m+1 − σ

y
m σ

x
m+1)(σz

m−1 − σz
m+2)

)
Hamiltonian is not Hermitian!

Two regimes of critical behaviour

Regime I : γ ∈ (0, π2 ) Regime II : γ ∈ (π2 , π)

Continuous spectrum of conformal dimensions observed in Regime I [Jacobsen,
Saleur ’06]

Scaling limit governed by 2D black hole sigma models [Ikhlef, Jacobsen,

Saleur ’11; Bazhanov, GK, Koval, Lukyanov ’21]
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Heisenberg XXZ spin - 1
2 chain

Spin chain with Hamiltonian H

Compact Gaussian field

2D black hole sigma models

Scaling limit with
N →∞

Both spin chains obtained from special cases
of transfer-matrix of inhomogeneous 6V model
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Homogeneous 6V model

Trigonometric R - matrix:

R(ζ/η | q) = ζ

η

Row-to-row transfer-matrix (η = 1):

T(ζ) =

η η η. . .

ζ

Yang-Baxter equation for R(ζ) =⇒[
T(ζ),T(ζ ′)

]
= 0 , T(ζ) = T(ζ | q )

XXZ spin chain Hamiltonian:

HXXZ = 2i∂ζ log
(
T(ζ)

)∣∣
ζ=1

+ const with q = eiγ
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Inhomogeneous 6V model [Baxter ’71]

T(ζ) =

η1 η2 ηN. . .

ζ

ηJ - ‘inhomogeneities’

Yang-Baxter equation for R(ζ) =⇒[
T(ζ),T(ζ ′)

]
= 0 , T(ζ) = T(ζ | q , η1, η2, . . . , ηN)

Hamiltonian for spin chain with non-compact spectrum:

H = 2i
∑
`=1,2

∂ζ log
(
T(ζ)

)∣∣
ζ=η`

+ const

with
ηJ = i (−1)J−1 and q = eiγ

G. A. Kotousov (LUH) 7 / 33



Inhomogeneous 6V model

T(ζ) =

η1 η2 ηN. . .

ζ

Multi-parametric integrable system depending on {ηJ}NJ=1 and q

Framework of Yang-Baxter integrability allows for:

Changing irreps. in each factor of quantum space:

T(ζ) : VN 7→ VN with VN = C2j1+1
1 ⊗ C2j2+1

2 ⊗ . . .⊗ C2jN+1
N

Imposing different families of open BCs [Sklyanin ’88] (in this talk we
focus on quasi-periodic BCs)

Study of critical behaviour of inhomogeneous 6V model, including identification of
critical surfaces and description of universality classes has been mainly unexplored
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My research

1.) Developing methods for study of scaling limit of
inhomogeneous 6V model based on:

- Bethe ansatz solution of model [Baxter ’71]

- Baxter Q operator [Baxter ’72] (open BCs [Frassek, Szecsenyi ’15;

Baseilhac, Tsuboi ’17; Vlaar, Weston ’20; Tsuboi ’20])

- ODE/IQFT correspondence [Voros’92; Dorey-Tateo’98; BLZ’98,03]

- Integrable structures of CFT [BLZ ’94,’96,’98]

2.) Applications to study of critical phenomena, e.g.,

results for density of states of Euclidean black hole CFT from analysis of spin
chain with continuous spectrum [Bazhanov, GK, Lukyanov ’20]
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Previously studied cases

‘Staggered’ inhomogeneous 6V model

η2J = eiα , η2J−1 = e−iα and q = eiγ

with α, γ ∈ [0, π)

A B
O

π

π

GAGM

Free boson

Free boson

“Black Hole”

γ

α

Homogeneous 6v model

Line AO: [(Ikhlef), Jacobsen, Saluer

’05; ’06,’11; Frahm, Martins’12;

Candu, Ikhlef’13; Bazhanov, GK,

Koval, Lukyanov ’19,’20]

Whole BH region [Frahm, Seel’13]

Line OB: [Ikhlef, Jacobsen,

Saluer’09]

Whole GAGM region [GK, Lukyanov’21]

(compact boson + 2 Majorana fermions)
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Model with r -site translational invariance

ηJ+r = ηJ (r divides N)

Hamiltonian:

H = 2i
r∑
`=1

∂ζ log
(
T(ζ)

)∣∣
ζ=η`

+ const

Special cases:

r = 1 – homogeneous 6V model (XXZ spin chain)

r = 2 – staggered 6V model (spin chain with non-compact spectrum)

General r : different types of universal behaviour depending on γ:

γ
π0
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Zr invariant spin chain

Red region with

ηJ ≈ (−1)r e
iπ
r (2J−1) π (1− 1

r ) < γ < π

falls under conjecture for scaling limit from [GK, Lukyanov ’21]

This talk: blue region

0 < γ <
π

r
⇐⇒ π

n + r
with n > 0

Impose

ηJ = (−1)r e
iπ
r (2J−1)

model possesses additional Zr symmetry:[
D̂,H

]
= 0 , D̂r = 1

Study of Zr invariant spin chain shows [GK, Lukyanov ’23]

continuous component in spectrum for even r

infinite degeneracy of conformal primary states in scaling limit

G. A. Kotousov (LUH) 12 / 33



Plan

As N →∞ low energy states of 1D critical
spin chain organize into conformal towers

|ΨN〉 7→ |ψ〉 ⊗ |ψ̄〉 ∈ V∆ ⊗ V̄∆̄

Cardy formula for low energy spectrum [Cardy ’86]:

E � N e∞ +
2πvF
N

(
∆ + ∆̄ + L + L̄− c

12

)
+ o(N−1)

e∞, vF - non-universal constants

∆, ∆̄ - conformal dimensions

L, L̄ = 0, 1, 2, 3, . . . - ‘level’ of states |ψ〉, |ψ̄〉 in conformal tower

To be discussed:

Low energy spectrum for Zr invariant spin chain with r = 1, 2

Low energy spectrum for general r and comments on underlying CFT
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The case r = 1 (XXZ spin chain)

HXXZ = −
N∑

m=1

(
σx
mσ

x
m+1 + σy

mσ
y
m+1 + cos(γ)σz

m σ
z
m+1

)
with

γ =
π

n + r
∈ (0, π) (r = 1)

U(1) symmetry:

[
HXXZ ,Sz

]
= 0 with Sz = 1

2

N∑
m=1

σz
m .

=⇒ space of states breaks up into sectors labeled by integer Sz = 0,±1,±2, . . .

Quasi-periodic BCs:

σx
N+1 ± iσy

N+1 = e±2πik
(
σx

1 ± iσy
1

)
, σz

N+1 = σz
1

(
k ∈ (− 1

2 ,
1
2 ]
)
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Bethe Ansatz solution

Integrability: eigenstates of Hamiltonian labeled
by solutions of algebraic system(

1 + q+1 ζm
1 + q−1 ζm

)N

= −e2iπk q2Sz

N
2 −S

z∏
j=1

ζj − q+2 ζm
ζj − q−2 ζm

with

E =

N
2 −S

z∑
m=1

2i
(
q − q−1

)
ζm + ζ−1

m + q + q−1

Spectrum at N � 1 can be studied by finding solutions of BA equations

Ground state: pattern of Bethe roots distributed along positive real axis

-2 -1 0 1 2

− 1
2 log(ζ)

Low energy state: pattern of Bethe roots differs from ground state pattern only at
edges of distribution
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Bethe Ansatz solution

Integrability: eigenstates of Hamiltonian labeled
by solutions of algebraic system(

1 + q+1 ζm
1 + q−1 ζm

)N

= −e2iπk q2Sz

N
2 −S

z∏
j=1

ζj − q+2 ζm
ζj − q−2 ζm

with

E =

N
2 −S

z∑
m=1

2i
(
q − q−1

)
ζm + ζ−1

m + q + q−1

Spectrum at N � 1 can be determined via study of solutions of BA equations

Ground state: pattern of Bethe roots distributed along positive real axis

-2 -1 0 1 2

− 1
2 log(ζ)

Low energy state: pattern of Bethe roots differs from ground state pattern only at
edges of distribution
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Low energy excitations

(
1 + q+1 ζm
1 + q−1 ζm

)N

= −e2iπk q2Sz

N
2 −S

z∏
j=1

ζj − q+2 ζm
ζj − q−2 ζm

Ground state: pattern of Bethe roots distributed along positive real axis

● ● ● ●●●● ● ● ●
-1.0 -0.5 0.5 1.0

− 1
2 log(ζ)

Low energy excitations constructed by:

Sz : removing Bethe root from distribution

(L, L̄): creating holes at left/right edges of Bethe root distribution
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Low energy spectrum

[Luther, Peschel ’75; Kadanoff, Brown ’79;

Alcaraz, Barber, Batchelor ’87]:

E = e∞ N +
2πvF
N

(
p2 + p̄2

n + r
− 1

12
+ L + L̄

)
+ O

(
N−3, N−4n−1

)

p =
1

2

(
Sz +

√
n + r (k + w)

)
p̄ =

1

2

(
Sz −

√
n + r (k + w)

)
Sz = 0,±1,±2, . . . – U(1) charge

w = 0,±1,±2, . . . ‘winding number’

Scaling limit governed by free compact boson
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Case r = 2 (spin chain with continuous spectrum)

(
1 + q+r ζrm
1 + q−r ζrm

)N/r

= −e2iπk q2Sz

N
2 −S

z∏
j=1

ζj − q+2 ζm
ζj − q−2 ζm

Bethe roots in complex − 1
2
log(ζ) plane:

● ● ● ● ●●● ● ● ●

● ● ● ● ●●● ● ● ●

-1.0 -0.5 0.5 1.0
● ● ● ●●●● ● ● ●

-1.0 -0.5 0.5 1.0

arg(ζ) = π

arg(ζ) = 0

staggered (N
2

= 20)homogeneous (N = 20)
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Low lying excitations

Sz : total number of Bethe roots = N/2− Sz

L, L̄ : holes at edges of the Bethe roots distribution

Bethe roots in complex − 1
2
log(ζ) plane:

● ● ● ● ●●● ● ● ●

● ● ● ● ●●● ● ● ●

-1.0 -0.5 0.5 1.0
● ● ● ●●●● ● ● ●

-1.0 -0.5 0.5 1.0

arg(ζ) = π

arg(ζ) = 0

r = 2r = 1
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Low lying excitations

Sz : total number of Bethe roots = N/2− Sz

L, L̄ : holes at edges of the Bethe roots distribution

m2 −m1: difference btw No. of roots with arg(ζ) = π and 0 (r = 2 only)
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arg(ζ) = π

arg(ζ) = 0

r = 2r = 1

G. A. Kotousov (LUH) 20 / 33



Low lying excitations

Sz : total number of Bethe roots = N/2− Sz

L, L̄ : holes at edges of the Bethe roots distribution

m2 −m1: difference btw No. of roots with arg(ζ) = π and 0 (r = 2 only)

Bethe roots in complex − 1
2
log(ζ) plane:

● ● ● ●●● ● ● ●

● ● ● ● ●●●● ● ● ●

-1.0 -0.5 0.5 1.0
● ● ● ●●●● ● ● ●

-1.0 -0.5 0.5 1.0
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Low energy spectrum for case r = 2

[(Ikhlef), Jacobsen, Saluer ’06’08;11;

Frahm, Martins ’12; Candu, Ikhlef ’13;

Frahm, Seel ’14]:

E = e∞ N +
2πvF
N

(
p2 + p̄2

n + r
+ 2n b2 − 1

6
+ L + L̄

)
+ O

(
N−3,N−2n

)

b = b(N) related to eigenvalue of “quasi-shift” operators:

K(`) = T(−q−1 η`) : K(1) K(2) ∝ 2 site translation operator(
` = 1, 2 ; η1 = η−1

2 = i
)

Asymptotics for E obeyed with [Ikhlef, Jacobsen, Saleur ’11]

b(N) =
1

4π
log
(
K(1)

/
K(2)

)
, K(`)|ΨN〉 = K(`)|ΨN〉
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Low energy spectrum for Zr invariant spin chain with r = 2

E = e∞ N +
2πvF
N

(
p2 + p̄2

n + r
+ 2n b2 − 1

6
+ L + L̄

)
+ O

(
N−3,N−2n

)
For class of low energy states labeled by m2 −m1:

b(N) � π (m2 −m1)

4 log(N)
+ . . . , m2 −m1 =

0,±2,±4 . . . N/2− Sz even

±1,±3,±5 . . . N/2− Sz odd

In taking scaling limit one should increase m2 −m1 together with N such that
limiting value of b(N) is held fixed as N →∞

Spectrum of conformal dimensions possesses continuous component parameterized
by

s = slim
N→∞

b(N) , s ∈ (−∞,+∞)
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Ground state for general r

For ground state Bethe roots lie on r rays (N/r even):

arg(ζ) =
2πi

r
(`− 1) with ` = 1, 2, . . . r

Example: ground state with r = 3

Bethe roots in complex − 1
2
log(ζ) plane

● ● ● ●●●● ● ● ●

● ● ● ●●●● ● ● ●

● ● ● ●●●● ● ● ●

-0.5 0.5
arg(ζ) = 0

arg(ζ) = 2π
3

arg(ζ) = 4π
3
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Low energy excitations for general r

For ground state Bethe roots lie on r rays (N/r even):

arg(ζ) =
2πi

r
(`− 1) with ` = 1, 2, . . . r

Low energy excitations can be built by disbalancing number of roots on each ray

Example with r = 3:

Bethe roots in complex − 1
2
log(ζ) plane

● ● ● ●●●● ● ● ●

● ● ● ●●●● ● ● ●

● ● ● ●●●● ● ● ●

-0.5 0.5
arg(ζ) = 0

arg(ζ) = 2π
3

arg(ζ) = 4π
3
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Low energy exciations for general r

For ground state Bethe roots lie on r rays (N/r even):

arg(ζ) =
2πi

r
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Low energy exciations for general r

Sz : total number of Bethe roots = N/2− Sz

L, L̄ : holes at edges of the Bethe roots distribution

r − 1 differences m` −m`′ btw No. of roots with

arg(ζ) ≈ 2πi
r (`− 1) and arg(ζ) ≈ 2πi

r (`′ − 1)

Example with r = 3:

Bethe roots in complex − 1
2
log(ζ) plane

● ● ● ●●●●●● ● ● ●

● ● ●●●●● ● ●

● ● ●●●●● ● ●

-0.5 0.5
arg(ζ) = 0

arg(ζ) = 2π
3

arg(ζ) = 4π
3
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Quasi-shift operators

To take into account extra r − 1 degrees of freedom:

K(`) = T(−q−1 η`) (` = 1, 2, . . . , r)

K(1)K(2) . . .K(r) ∝ r site translation , D̂−1 K(`) D̂ = K(`+1)

Define r − 1 independent quantities via Fourier transform

ba ≡
N1− 2|a|

r

2πir

r∑
`=1

e
iπ
r a(r+1−2`) log

(
K(`)

) (
1 ≤ |a| ≤ [ r2 ]

)
with b− r

2
= b r

2

ba has Zr charge a

ba generically tends to finite, non-vanishing number as N →∞
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Low energy spectrum for general r

≡ 0 for r odd

E = N e∞ +
2πrvF
N

[
p2 + p̄2

n + r
+ 2n (b r

2
)2 − r

12
+ L + L̄

−
[ r−1

2
]∑

a=1

2π (r − 2a) cot
(π (r−2a)

2n

) ba b−a

N2− 4a
r︸ ︷︷ ︸

Zr neutral

+ O
(
N−2,N−

4n
r

) ]

Decays faster than N−1
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Scaling limit of low energy states

States appearing in scaling limit of |ΨN〉
labeled by p, p̄, L, L̄ as well as

sa = Ca slim
N→∞

ba 1 ≤ |a| ≤ [ r2 ]

(Ca inessential and chosen for convenience)

Conformal dimensions:

∆− c

24
=

p2

n + r
+ n

(
s r

2

/
C r

2

)2 − r

24
+ L

∆̄− c

24
=

p̄2

n + r
+ n

(
s r

2

/
C r

2

)2 − r

24
+ L̄

independent of sa for |a| = 1, 2, . . . [ r−1
2 ]

=⇒ large (infinite) number of conformal towers V∆ ⊗ V̄∆̄ with same pair of
conformal dimensions
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Scaling limit of low energy states

Our analysis suggests

|ΨN〉 7→
∣∣ψ(L)

p,s
〉
⊗
∣∣ψ̄(L̄)

p̄,s̄
〉

with
s =

(
s1, . . . , s[ r2 ]

)
, s̄ =

(
s−1, . . . , s−[ r2 ]

)

It is expected that chiral states organize into irreps of algebra of extended
conformal symmetry

Open questions:

What is the algebra of extended conformal symmetry?

What are conditions on s, s ′ such that
∣∣ψ(L)

p,s
〉
,
∣∣ψ(L′)

p,s′
〉

belong to same irrep?

What are selection rules for admissible values of s and s̄?
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⊗
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Quantization condition (r = 2)

Chiral states labeled by (p, p̄, L, L̄) and s ≡ s1 = s̄1

|ΨN〉 7→
∣∣ψ(L)

p,s

〉
⊗
∣∣ψ̄(L̄)

p̄,s̄

〉
‘Quantization Condition’ (QC) is satisfied(

N

2Ñ0

)2is

e
i
2 δ(s) = σ + O

(
(logN)−∞

)
σ = sign factor, Ñ0 = const.

Originally obtained for L = L̄ = 0 in [Ikhlef, Jacobsen, Saleur ’11] with
(note that s from that work = − s

2 )

e
i
2 δ =

Γ( 1
2 + p − is

2 )

Γ( 1
2 + p + is

2 )

Γ( 1
2 + p̄ − is

2 )

Γ( 1
2 + p̄ + is

2 )
(L = L̄ = 0)

Extension to all low energy states using ODE/IQFT correspondence [Bazhanov,

GK, Koval, Lukyanov’19]
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Quantization condition (r = 2)

QC allows one to determine admissible values of s.
Example for L = L̄ = 0:

(
N

2Ñ0

)2is

e
i
2 δ = σ + O

(
(logN)−∞

)
, e

i
2 δ =

Γ( 1
2 + p − is

2 )

Γ( 1
2 + p + is

2 )

Γ( 1
2 + p̄ − is

2 )

Γ( 1
2 + p̄ + is

2 )

Discrete spectrum: s pure imaginary and tends to a pole and zero of e
i
2 δ for

=m(s) > 0 and =m(s) < 0, respectively

Continuous spectrum:

2s log
(
N/(2Ñ0)

)
+ 1

2π ∂sδ = π (m2 −m1) + O
(
(logN)−∞

)
=⇒ s is real and densely distributed along real line with density

ρ(s) = 1
π log

(
N/(2Ñ0)

)
+ 1

4π ∂s δ

QC was key to identifying scaling limit of lattice model with 2D black hole CFTs
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Quantization condition (general r) [GK, Lukyanov ’23]

General form:(
2

r
n N

rN0

) 4i
r (−1)` s

F
(`+1)
p (s)

F
(`)
p (s)

F
(`)
p̄ (s̄)

F
(`+1)
p̄ (s̄)

= σ e−
2πi
r Sz

+ O
(
(logN)−∞

)
(?)

with

s ≡ 0 for r odd , s ≡ s r
2

for r even

and
` = 1, 2, . . . , r

Functions F
(`)
p (s) explained on next slide

(?) = r − 1 independent relations for r − 1 variables

Odd r : no N dependent term (in red). Discrete set of solutions expected

Even r : continuous spectrum parameterized by s, while sa with
|a| = 1, 2, r2 − 1 belongs to discrete set
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Quantization condition (general r)

For the case L = L̄ = 0:

F (`)
p (s) = Fp(s(`)) , F

(`)
p̄ (s̄) = Fp̄(s̄(`))

with

s(`)
a = (−1)ar e+ iπa

r (2`−1) sa , s̄(`)
a = (−1)ar e−

iπa
r (2`−1) s−a

Fp(s) ≡ Fp

(
s1, . . . s[ r2 ]

)
is a certain connection coefficient for the ODE

[
− ∂2

v + erv + p2 +

[ r2 ]∑
a=1

sa eav
]
ψ = 0

Explicit analytic formula for Fp(s) exists only for r = 2

Generalization to any L, L̄ ≥ 0 along the lines of ODE/IQFT correspondence
contained in [GK, Lukyanov ’23]
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Conclusion

Scaling limit of Zr invariant spin chain in regime 0 < γ = π
n+r <

π
r

Odd r : spectrum of conformal dimensions discrete with large (infinite)
degeneracies

Even r : continuous component in spectrum appears

Important result: ‘quantization condition’ that is expected to determine
admissible values of s and s̄ labeling states. Involves connection coefficient of
certain class of ODEs.

Description of the CFT remains an open problem
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