Structure Constants in $\mathcal{N}=4$ SYM and Separation of Variables

Based on 2210.04923 with C. Bercini, P. Vieira

Alexandre Homrich
IGST 2023

• How to compute observables in QFT from integrability?

• How to compute observables in QFT from integrability?

Reduce computation to generalized 2d scattering problem and bootstrap it.

• How to compute observables in QFT from integrability?

Reduce computation to generalized 2d scattering problem and bootstrap it.

• Classical example in $\mathcal{N} = 4$ SYM: 2-pt functions (spectrum)

[Minaham, Zarembo], [Beisert], ..., [Gromov et. al - Arutyunov et. al. - Bombardelli et. al.], ...

- How to compute observables in QFT from integrability?

 Reduce computation to generalized 2d scattering problem and bootstrap it.
- Classical example in $\mathcal{N} = 4$ SYM: 2-pt functions (spectrum)
- Since then: → n-point functions

[Basso, Komatsu, Vieira][Komatsu, Fleury]

- How to compute observables in QFT from integrability?

 Reduce computation to generalized 2d scattering problem and bootstrap it.
- Classical example in $\mathcal{N} = 4$ SYM: 2-pt functions (spectrum)
- Since then: →n-point functions→amplitudes

- How to compute observables in QFT from integrability?
 - Reduce computation to generalized 2d scattering problem and bootstrap it.
- Classical example in $\mathcal{N} = 4$ SYM: 2-pt functions (spectrum)
- Since then: → n-point functions
 - → amplitudes
 - →form factors

[Sever, Tumanov, Wilhelm]

- How to compute observables in QFT from integrability?
 ─ Reduce computation to generalized 2d scattering problem and bootstrap it.
- Classical example in $\mathcal{N} = 4$ SYM: 2-pt functions (spectrum)
- Since then: → n-point functions
 - → amplitudes
 - →form factors
 - → determinants

. . .

• Overall strategy:

• Overall strategy:

Start with stringy picture of observable

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap
- Very physical framework.

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap
- Very physical framework.
 - Connects large N gauge theory to the worldsheet cartoon

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap
- Very physical framework.
 - Connects large N gauge theory to the worldsheet cartoon

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap
- Very physical framework.
 - Connects large N gauge theory to the worldsheet cartoon
- Evaluating and resuming large geometry expansion is too hard in practice

- Overall strategy:
 - Start with stringy picture of observable
 - Cut worldsheet open \Leftrightarrow Large geometry/low temperature expansion
 - Each open patch is a 2D scattering problem solved by bootstrap
- Very physical framework.
 - Connects large N gauge theory to the worldsheet cartoon
- Evaluating and resuming large geometry expansion is too hard in practice
 - Need truncating limits: weak coupling, large charge, collinear kinematics...

• The Quantum Spectral Curve resolves this issue in the case of 2-pt functions. [Gromov, Kazakov, Leurent, Volin]

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions. [Gromov, Kazakov, Leurent, Volin]
 - ☐ Elegant and efficient framework.

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Legant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Legant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Legant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Elegant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently
 - [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...
 - Number of technical developments serve as a backbone to these explorations

 [Cavaglià, Gromov, Levkovich-Maslyuk]²[Gromov, Levkovich-Maslyuk, Ryan][Gromov, Levkovich-Maslyuk, Ryan, Volin]

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Elegant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - → Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently
 - [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...
 - Number of technical developments serve as a backbone to these explorations

 [Cavaglià, Gromov, Levkovich-Maslyuk]²[Gromov, Levkovich-Maslyuk, Ryan][Gromov, Levkovich-Maslyuk, Ryan, Volin]
- In this talk I will present:

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Elegant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - → Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently
 - [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...
 - Number of technical developments serve as a backbone to these explorations

 [Cavaglià, Gromov, Levkovich-Maslyuk]²[Gromov, Levkovich-Maslyuk, Ryan][Gromov, Levkovich-Maslyuk, Ryan, Volin]
- In this talk I will present:
 - \longrightarrow Structure constants formulas at weak coupling (up to N^2LO) based on Q-functions and the "SoV" formalism.

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Elegant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently
 - [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...
 - Number of technical developments serve as a backbone to these explorations

 [Cavaglià Gromov Levkovich-Maslyuk]²[Gromov Levkovich-Maslyuk Ryan][Gromov Levkovich-Maslyuk]
 - [Cavaglià, Gromov, Levkovich-Maslyuk]²[Gromov, Levkovich-Maslyuk, Ryan][Gromov, Levkovich-Maslyuk, Ryan, Volin]
- In this talk I will present:
 - \rightarrow Structure constants formulas at weak coupling (up to N^2LO) based on Q-functions and the "SoV" formalism.
 - → Consider only rank-1 NBPS BPS BPS correlators

- The Quantum Spectral Curve resolves this issue in the case of 2-pt functions.
 - Elegant and efficient framework. [Gromov, Kazakov, Leurent, Volin]
 - Makes manifest hidden simplicity of the intricate low energy expansion.
- Only natural to look for a Q-function ("SoV") approach to other observables
 - Evidence that this is promising has been piling up recently
 - [Cavaglià, Gromov, Levkovich-Maslyuk][Caetano, Komatsu][Giombi, Komatsu][Giombi, Komatsu, Offertaler]...
 - Number of technical developments serve as a backbone to these explorations

 [Cavaglià, Gromov, Levkovich-Maslyuk]²[Gromov, Levkovich-Maslyuk, Ryan][Gromov, Levkovich-Maslyuk, Ryan, Volin]
- In this talk I will present:
 - \rightarrow Structure constants formulas at weak coupling (up to N^2LO) based on Q-functions and the "SoV" formalism.
 - Consider only rank-1 NBPS BPS BPS correlators
 - Match known CFT data which include finite size effects both in the adjacent and bottom channels.

 \mathcal{O}_1 :

 ${\cal O}_1$: $SL(2): {
m Tr}(D_+^JZ^L) + {
m permutations}$

 \mathcal{O}_1 : SL(2): $\mathrm{Tr}(D_+^JZ^L)$ + permutations SU(2): $\mathrm{Tr}(X^JZ^{L-J})$ + permutations

 \mathcal{O}_1 non-BPS

.

 \mathcal{O}_1 : SL(2) : $\mathrm{Tr}(D_+^JZ^L)$ + permutations SU(2) : $\mathrm{Tr}(X^JZ^{L-J})$ + permutations

 \mathcal{O}_2 : $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

$$\mathcal{O}_1$$
 : $SL(2)$: $\mathrm{Tr}(D_+^JZ^L)$ + permutations $SU(2)$: $\mathrm{Tr}(X^JZ^{L-J})$ + permutations

$$\mathcal{O}_2$$
: $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

$$\mathcal{O}_3$$
: $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

$$\mathcal{O}_1$$
 : $SL(2): \operatorname{Tr}(D_+^J Z^L) + \operatorname{permutations}$: $SU(2): \operatorname{Tr}(X^J Z^{L-J}) + \operatorname{permutations}$

$$\mathcal{O}_2$$
: $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

$$\mathcal{O}_3$$
: $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

.

$${\cal O}_1 \ \vdots \ {SL(2)} : \ {\rm Tr}(D_+^J Z^L) + {\rm permutations} \\ SU(2) : \ {\rm Tr}(X^J Z^{L-J}) + {\rm permutations}$$

non-BPS

$$\mathcal{O}_2$$
: $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

 \mathcal{O}_3 : $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

 $\ell = (L + L_2 - L_3)/2$ $L - \ell$ BPS \mathcal{O}_2 $\ell_{23} = (L_2 + L_3 - L)/2$

• Step 0: Leading Order (LO)

$${\cal O}_1$$
 : $SL(2)$: ${
m Tr}(D_+^JZ^L)$ + permutations $SU(2)$: ${
m Tr}(X^JZ^{L-J})$ + permutations

non-BPS

$$\mathcal{O}_2$$
: $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

 \mathcal{O}_3 : $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

• Step 0: Leading Order (LO)

NBPS wave-function diagonalize 1-loop H

$${\cal O}_1$$
 : $SL(2)$: ${
m Tr}(D_+^JZ^L)$ + permutations $SU(2)$: ${
m Tr}(X^JZ^{L-J})$ + permutations

non-BPS

$$\mathcal{O}_2$$
: $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

 \mathcal{O}_3 : $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

• Step 0: Leading Order (LO)

NBPS wave-function diagonalize 1-loop H

Structure constant by Wick contractions

 ${\cal O}_1$: SL(2) : ${
m Tr}(D_+^JZ^L)$ + permutations SU(2) : ${
m Tr}(X^JZ^{L-J})$ + permutations

 \mathcal{O}_1 non-BPS

 \mathcal{O}_2 : $\operatorname{Tr}(y_2 \cdot \phi)^{L_2}$

 \mathcal{O}_3 : $\operatorname{Tr}(y_3 \cdot \phi)^{L_3}$

- Step 0: Leading Order (LO)
 - → NBPS wave-function diagonalize 1-loop H
 - Structure constant by Wick contractions
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

• Step 0: Leading Order (LO)

• Step 0: Leading Order (LO)

$$(C^{\bullet \circ \circ})^2 = \frac{J!}{2J!} \underbrace{\frac{\langle \Omega | u_1, \dots, u_J \rangle_{\ell}^2}{\langle u_1, \dots, u_J | u_1, \dots, u_J \rangle_L}}_{\mathcal{B}}$$

• Step 0: Leading Order (LO)

$$(C^{\bullet \circ \circ})^2 = \frac{J!}{2J!} \underbrace{\frac{\langle \Omega | u_1, \dots, u_J \rangle_{\ell}^2}{\langle u_1, \dots, u_J | u_1, \dots, u_J \rangle_L}}_{\mathcal{B}}$$
 off-shell overlap in spin-chain of length ℓ

• Step 0: Leading Order (LO)

$$(C^{\bullet \circ \circ})^2 = \frac{J!}{2J!} \underbrace{\frac{\langle \Omega | u_1, \dots, u_J \rangle_{\ell}^2}{\langle u_1, \dots, u_J | u_1, \dots, u_J \rangle_L}}_{\mathcal{B} \longrightarrow \text{on-shell norm in spin-chain of length } L$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}}$$
$$\langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}} \\ \langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i) \\ d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j) \end{vmatrix}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

• Rational scalar products admit known integral representations from SoV! [Derkachov, Korchemsky, Manashov][Kazama, Komatsu, Nishimura]

$$\begin{vmatrix} Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}} \\ \langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i) \\ d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j) \end{vmatrix}$$

SL(2):

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

• Rational scalar products admit known integral representations from SoV! [Derkachov, Korchemsky, Manashov][Kazama, Komatsu, Nishimura]

$$\begin{vmatrix} Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}} \\ \langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i) \\ d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j) \end{vmatrix}$$

SL(2):

$$\mu_1(u) = \frac{\pi}{2\cosh(\pi u)^2}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix}$$

$$\begin{vmatrix} \text{SL}(2): \\ \mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}} \\ \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)} \end{vmatrix}$$

$$SL(2)$$
:

$$\mu_1(u) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$\mu_2(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \sum_{i=1}^{K} \sum_{u_{i} \in A} \frac{\operatorname{SL}(2):}{\operatorname{Cosh}(\pi u)^{2}}$$

$$= \sum_{i=1}^{K} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i})$$

$$= \sum_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j})$$

$$= \sum_{i=1}^{K} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i})$$

$$= \sum_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j})$$

SL(2):

$$\mu_1(u) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$\mu_2(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)}$$

$$\Gamma = \mathbb{R}^{\ell - 1}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \sum_{i=1}^{K} \sum_{u_{i} \in A} \frac{\sum_{u_{i} \in A} \frac{u - u_{i}}{2 \cosh(\pi u)^{2}}}{\sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)^{2}}$$

$$= \sum_{u_{i} \in A} \frac{u_{i} - u_{i}}{2 \cosh(\pi u)$$

SL(2):

$$\mu_1(u) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$\mu_2(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)}$$

$$\Gamma = \mathbb{R}^{\ell - 1} \quad \mathcal{N} = \begin{pmatrix} J_A + J_B + \ell - 1 \\ \ell - 1 \end{pmatrix}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \sum_{i=1}^{K} \left\{ \begin{array}{c} \operatorname{SL}(2) : \\ \mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}} \\ \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)} \\ \Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} J_{A} + J_{B} + \ell - 1 \\ \ell - 1 \end{pmatrix} \end{array} \right\}$$

$$\begin{vmatrix} \operatorname{SL}(2) : \\ \mu_1(u) = \frac{\pi}{2 \cosh(\pi u)^2} \\ \mu_2(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)} \\ \Gamma = \mathbb{R}^{\ell - 1} \quad \mathcal{N} = \begin{pmatrix} J_A + J_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \end{vmatrix}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix}$$

$$\begin{vmatrix} SL(2): \\ \mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}} \\ \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi u) \cosh(\pi v)} \\ \Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} J_{A} + J_{B} + \ell - 1 \\ \ell - 1 \end{pmatrix} \end{vmatrix}$$

$$\begin{vmatrix}
SL(2): \\
\mu_1(u) = \frac{\pi}{2\cosh(\pi u)^2} \\
\mu_2(u,v) = \frac{\pi(u-v)\sinh(\pi(u-v))}{\cosh(\pi u)\cosh(\pi v)} \\
\Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} J_A + J_B + \ell - 1 \\ \ell - 1 \end{pmatrix}$$

$$\sinh(2\pi i)$$

$$\mu_1(u) = \frac{\sinh(2\pi u)}{(u^2 + 1/4)^2}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \begin{bmatrix} \operatorname{SL}(2): \\ \mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}} \\ \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)} \\ \Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} J_{A} + J_{B} + \ell - 1 \\ \ell - 1 \end{pmatrix} \end{vmatrix} = \frac{\sinh(2\pi u)}{(u^{2} + 1/4)^{2}}$$

SL(2):

$$\mu_1(u) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$\mu_2(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)}$$

$$\Gamma = \mathbb{R}^{\ell - 1} \quad \mathcal{N} = \begin{pmatrix} J_A + J_B + \ell - 1 \\ \ell - 1 \end{pmatrix}$$

SU(2):

$$\mu_1(u) = \frac{\sinh(2\pi u)}{(u^2 + 1/4)^2}$$

$$\mu_2(u, v) = \frac{\sinh(2\pi (u - v))(u - v)}{2(u^2 + 1/4)(v^2 + 1/4)}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}}$$

$$\langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \sum_{i=1}^{K} \left(\begin{array}{c} \operatorname{SL}(2) : \\ \mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}} \\ \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)} \\ \mu_{2}(u, v) = \frac{\sinh(2\pi u)}{2(u^{2} + 1/4)(v^{2} + 1/4)} \\ \Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} J_{A} + J_{B} + \ell - 1 \\ \ell - 1 \end{pmatrix} \\ \Gamma = S^{1\ell-1} \end{vmatrix} \right)$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}}$$

$$\langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i})$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j})$$

$$\begin{vmatrix} Q_{A}(u) = \prod_{u_{i} \in A} \frac{u - u_{i}}{\sqrt{u_{i}^{2} + 1/4}} \\ \langle Q_{A}, Q_{B} \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_{A}(x_{i}) Q_{B}(x_{i}) \\ d\mu = \prod_{i=1}^{\ell-1} dx_{i} \mu_{1}(x_{i}) \prod_{j=1}^{\ell-1} \mu_{2}(x_{i}, x_{j}) \end{vmatrix} = \sum_{i=1}^{K} \left(\frac{SL(2):}{\mu_{1}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}}} \right)$$

$$| D_{A}(u) = \frac{\pi}{2 \cosh(\pi u)^{2}}$$

$$| \mu_{1}(u) = \frac{\sinh(2\pi u)}{(u^{2} + 1/4)^{2}}$$

$$| \mu_{2}(u, v) = \frac{\pi(u - v) \sinh(\pi(u - v))}{\cosh(\pi u) \cosh(\pi v)}$$

$$| \Gamma = \mathbb{R}^{\ell-1} \quad \mathcal{N} = \begin{pmatrix} I \\ I \end{pmatrix}$$

$$| \Gamma = S^{1\ell-1} \quad \mathcal{N} = \begin{pmatrix} I \\ I \end{pmatrix}$$

$$| \Gamma = S^{1\ell-1} \quad \mathcal{N} = \begin{pmatrix} I \\ I \end{pmatrix}$$

- Step 0: Leading Order (LO)
 - Combinatorics of contractions: rational spin-chain scalar products [Escobedo, Gromov, Sever, Vieira]

$$\mathcal{A} = \langle Q_J, 1 \rangle_{\ell} / \langle 1, 1 \rangle_{\ell}$$
 $\mathcal{B} = \langle Q_J, Q_J \rangle_L / \langle 1, 1 \rangle_L$

$$Q_A(u) = \prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}}$$

$$\langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

• Rational scalar products admit known integral representations from SoV! [Derkachov, Korchemsky, Manashov] [Kazama, Komatsu, Nishimul Q_A(u)] =
$$\prod_{u_i \in A} \frac{u - u_i}{\sqrt{u_i^2 + 1/4}}$$

$$\langle Q_A, Q_B \rangle_{\ell} = \mathcal{N} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$| P(x_i) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$| P(x_i) = \frac{\pi}{2 \cosh(\pi u)^2}$$

$$| P(x_i) = \frac{\sinh(2\pi u)}{(u^2 + 1/4)^2}$$

$$| P(x_i) = \frac{\sinh(2\pi$$

SU(2):

$$\mu_{1}(u) = \frac{\sinh(2\pi u)}{(u^{2} + 1/4)^{2}}$$

$$\mu_{2}(u, v) = \frac{\sinh(2\pi (u - v))(u - v)}{2(u^{2} + 1/4)(v^{2} + 1/4)}$$

$$\Gamma = S^{1\ell - 1} \quad \mathcal{N} = \begin{pmatrix} \ell \\ J_{A} + J_{B} \end{pmatrix}$$

• Revisit LO results from perspective of functional SoV

• Revisit LO results from perspective of functional SoV

• Generalize and lift SL(2) results to the quantum level (NLO)

- Revisit LO results from perspective of functional SoV
- Generalize and lift SL(2) results to the quantum level (NLO)
- Alternative derivation up to N^2LO for SU(2), including adjacent finite volume effects.

- Revisit LO results from perspective of functional SoV
- Generalize and lift SL(2) results to the quantum level (NLO)
- Alternative derivation up to N^2LO for SU(2), including adjacent finite volume effects.
- Conclusion: features, issues, puzzles and prospects

- Revisit LO results from perspective of functional SoV
- Generalize and lift SL(2) results to the quantum level (NLO)
- Alternative derivation up to N^2LO for SU(2), including adjacent finite volume effects.
- Conclusion: features, issues, puzzles and prospects
- Extra: some SL(2) N²LO results, matching of bottom finite volume effects.

- Revisit LO results from perspective of functional SoV
- Generalize and lift SL(2) results to the quantum level (NLO)
- Alternative derivation up to N^2LO for SU(2), including adjacent finite volume effects.
- Conclusion: features, issues, puzzles and prospects
- Extra: some SL(2) N²LO results, matching of bottom finite volume effects.

Questions about context, setup and plan?

Functional SoV

Functional SoV

[Cavaglià, Gromov, Levkovich-Maslyuk]

Functional SoV

[Cavaglià, Gromov, Levkovich-Maslyuk]

• Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) .

[Cavaglià, Gromov, Levkovich-Maslyuk]

• Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.

Consider Baxter operator
$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right)$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A ((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial}) Q_B$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$u \to u - i$$

$$\mu(u)Q_A \left((u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial} \right) Q_B$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u - i$$

$$u \to u + i$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{\Gamma} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u - i$$

$$u \to u + i$$

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

Cavaglià, Gromov, Levkovich-Maslyuk

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{-}^{} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.

Consider Baxter operator
$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u+i$$

$$\mu$$
 is i-periodic

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{-}^{} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.

Consider Baxter operator
$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

• Suppose (μ, Γ) make \mathbb{B} self-adjoint.

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u - i$$

$$u \to u + i$$

$$\mu$$
 is i-periodic

No poles when deforming contour

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{-}^{} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

• Suppose (μ, Γ) make \mathbb{B} self-adjoint.

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u + i$$

$$\mu$$
 is i-periodic

No poles when deforming contour

 $\rightarrow \mathbb{B}$ is self-adjoint

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{-}^{} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.

Consider Baxter operator
$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

• Suppose (μ, Γ) make \mathbb{B} self-adjoint.

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u - i$$

$$u \to u + i$$

$$\mu$$
 is i-periodic

No poles when deforming contour

$$\rightarrow \mathbb{B}$$
 is self-adjoint

$$\mu(u) = \frac{\pi}{2\cosh(\pi u)^2} \qquad \Gamma = \mathbb{R}$$

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

[Cavaglià, Gromov, Levkovich-Maslyuk]

- Consider simplest case of L=2 SL(2). Want to determine (μ,Γ) . $\int_{-}^{} du \mu Q_A Q_B$
- Look for hermitian scalar product: distinct Bethe states/Baxter functions must be orthogonal.
 - Consider Baxter operator $\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u i/2)^2 e^{-i\partial}$

$$\mathbb{B} = (u + i/2)^2 e^{i\partial} + (u - i/2)^2 e^{-i\partial}$$

$$\mathbb{B}Q_A = \underbrace{(2u^2 + c_A)}Q_A$$

$$\tau_A$$

• Suppose (μ, Γ) make \mathbb{B} self-adjoint.

$$0 = \int_{\Gamma} du \mu \left(Q_A(\mathbb{B}Q_B) - Q_B(\mathbb{B}Q_A) \right) = (c_A - c_B) \langle Q_A, Q_B \rangle$$

$$\mu(u)Q_A \left((u+i/2)^2 e^{i\partial} + (u-i/2)^2 e^{-i\partial} \right) Q_B$$

$$u \to u - i$$

$$u \to u + i$$

$$= Q_B \left(\mu(u-i)(u-i/2)^2 e^{-i\partial} + \mu(u+i)(u+i/2)^2 e^{+i\partial} \right) Q_A$$

$$\mu$$
 is i-periodic

No poles when deforming contour

$$\rightarrow \mathbb{B}$$
 is self-adjoint

$$\mu(u) = \frac{\pi}{2\cosh(\pi u)^2} \qquad \Gamma = \mathbb{R}$$

Poles of μ cancel with zeroes of \mathbb{B}

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-}\right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+}\right) e^{-i\partial}$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

• Inconvenient: Baxter is state dependent

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\widetilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial}$$

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

$$Q_1^+ \equiv \sum_{i} \frac{1}{u_i^2 + 1/4}$$

• Inconvenient: Baxter is state dependent

Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\tilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial} \qquad \tilde{\mathbb{B}} \mathcal{Q}_A = \tau_A \mathcal{Q}_A$$

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

$$Q_1^+ \equiv \sum_{i} \frac{1}{u_i^2 + 1/4}$$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\widetilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial} \qquad \widetilde{\mathbb{B}} \mathcal{Q}_A = \tau_A \mathcal{Q}_A$$

Repeat strategy to fix μ

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

$$Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\widetilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial} \qquad \widetilde{\mathbb{B}} \mathcal{Q}_A = \tau_A \mathcal{Q}_A$$

Repeat strategy to fix μ

All poles cancel provided

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

 $H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\widetilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial} \qquad \widetilde{\mathbb{B}} \mathcal{Q}_A = \tau_A \mathcal{Q}_A$$

Repeat strategy to fix μ

All poles cancel provided
$$\mu(u) = \frac{\pi}{2\cosh(\pi u)^2} (1 + g^2 \pi (3\tanh(\pi u)^2 - 1))$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - → Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$$

$$\tilde{\mathbb{B}} = (x^+)^2 e^{i\partial} + (x^-)^2 e^{-i\partial} \qquad \tilde{\mathbb{B}}\mathcal{Q}_A = \tau_A \mathcal{Q}_A$$

Repeat strategy to fix μ

All poles cancel provided
$$\mu(u) = \frac{\pi}{2\cosh(\pi u)^2} (1 + g^2 \pi (3\tanh(\pi u)^2 - 1)) = \oint \frac{dv}{2\pi i} \frac{\pi}{2\cosh^2(\pi (u - v))} \frac{1}{x(v)}$$

•
$$\mathbb{B} = (x^+)^2 \left(1 - \frac{g^2 Q_1^+}{x^-} \right) e^{i\partial} + (x^-)^2 \left(1 - \frac{g^2 Q_1^+}{x^+} \right) e^{-i\partial}$$
 $Q_1^+ \equiv \sum_i \frac{1}{u_i^2 + 1/4}$

- Inconvenient: Baxter is state dependent
 - Define "dressed Q-function"

•
$$Q(u) = \left(\prod_{i} \frac{u - u_i}{\sqrt{x_i^+ x_i^-}}\right) e^{g^2 Q_1^+ H_1^+(u)/2}$$

$$\tilde{\mathbb{B}} = (x^{+})^{2} e^{i\partial} + (x^{-})^{2} e^{-i\partial} \qquad \tilde{\mathbb{B}} \mathcal{Q}_{A} = \tau_{A} \mathcal{Q}_{A}$$

Repeat strategy to fix μ

"Zhukowsky-fy tree level"

 $H_1^+ \equiv H_1(-1/2 + iu) + H_1(-1/2 - iu)$

All poles cancel provided
$$\mu(u) = \frac{\pi}{2\cosh(\pi u)^2} (1 + g^2 \pi (3\tanh(\pi u)^2 - 1)) = \oint \frac{dv}{2\pi i} \frac{\pi}{2\cosh^2(\pi (u - v))} \frac{1}{x(v)}$$

• This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1+g^2\pi^2)\left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3\right)$$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1+g^2\pi^2)\left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3\right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2 \pi^2 \left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3 \right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2 \pi^2 \left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3 \right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

Lessons:

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2\pi^2)\left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3\right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

Lessons:

Q gets dressed (no longer polynomial)

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2 \pi^2 \left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3 \right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

Lessons:

Q gets dressed (no longer polynomial)

Measure and norm gets corrected

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2\pi^2)((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

Lessons:

Q gets dressed (no longer polynomial)

Measure and norm gets corrected

Otherwise classical structure survives

- This provides an orthogonal measure for twist 2. $\langle Q_A Q_B \rangle_2 \propto \delta_{AB}$
- From there it is easy to generalize to arbitrary state in the SL(2) sector:

$$\langle Q_A, Q_B \rangle_{\ell} = \begin{pmatrix} \mathbb{J}_A + \mathbb{J}_B + \ell - 1 \\ \ell - 1 \end{pmatrix} \int_{\Gamma} d\mu \prod_{i=1}^{\ell-1} Q_A(x_i) Q_B(x_i)$$

$$d\mu = \prod_{i=1}^{\ell-1} dx_i \mu_1(x_i) \prod_{j=1}^{\ell-1} \mu_2(x_i, x_j)$$

$$\mu_2(u,v)/\mu_2^{\text{tree}} = (1 + g^2 \pi^2 \left((\tanh(\pi u) + \tanh(\pi v))^2 - 4/3 \right)$$

$$\mathbb{J} = J + g^2 Q_1^+$$

$$(C^{\bullet \circ \circ})^2 = \frac{\mathbb{J}!^2}{(2\mathbb{J})!} \frac{\langle \mathbf{1}, \mathcal{Q}_J \rangle_{\ell}^2}{\langle \mathcal{Q}_J, \mathcal{Q}_J \rangle_L}$$

Lessons:

Q gets dressed (no longer polynomial)

Measure and norm gets corrected

Otherwise classical structure survives

Orthogonality remains key

 \bullet Let us consider an alternative approach in the SU(2) sector.

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^2 = \left| \frac{(\mathcal{M} \circ \mathcal{A}_{\theta})^2}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \mathcal{B}_{\theta}} \right|_{\theta=0}$$

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right| \Big|_{\theta=0}^{\text{ABA}} + O(g^{4})$$
ABA

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right| \Big|_{\substack{\theta = 0 \\ \text{ABA}}}^{\text{ABA}} ABA$$

$$\mathcal{M} = \exp\left[g^2 \left(\sum_{i=1}^L (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2\right) - ig^2 Q_1^+ (\partial_{\theta_1} - \partial_{\theta_L})\right]$$

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right|_{\theta=0}^{\text{SOV}} + O(g^{4})$$

$$\mathcal{M} = \exp\left[g^2 \left(\sum_{i=1}^L (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2\right) - ig^2 Q_1^+ (\partial_{\theta_1} - \partial_{\theta_L})\right]$$

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right|_{\theta=0}^{\text{SOV}} + O(g^{4})$$

$$\mathcal{M} = \exp\left[g^2 \left(\sum_{i=1}^L (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 - \frac{1}{4}g^2 (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 (\partial_{\theta_{i+1}} - \partial_{\theta_{i+2}})^2\right) - ig^2 Q_1^+ (\partial_{\theta_1} - \partial_{\theta_L}) + g^4 \delta \mathcal{M}_{\text{NNLO-b}}\right]$$

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right| \Big|_{\theta=0}^{\text{SOV}}$$
SOV

$$\mathcal{M} = \exp\left[g^2 \left(\sum_{i=1}^L (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 - \frac{1}{4}g^2 (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 (\partial_{\theta_{i+1}} - \partial_{\theta_{i+2}})^2\right) - ig^2 Q_1^+ (\partial_{\theta_1} - \partial_{\theta_L}) + g^4 \delta \mathcal{M}_{\text{NNLO-b}}\right]$$

- \bullet Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \mathcal{A}_{\theta})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \mathcal{B}_{\theta}} \right| \Big|_{\theta=0} \text{SOV}$$

$$+ O(g^{6})$$

$$+$$

- Let us consider an alternative approach in the SU(2) sector.
- SU(2) S-matrix does not receive quantum corrections up to N^2LO .
 - Quantum effects only affect propagation.
 - "Simulate" quantum "friction" through background of impurities θ_i
 - This was the strategy of [Gromov, Vieira] in "Tailoring IV: Θ -morphism" paper.

$$(C^{\bullet \circ \circ})^{2} = \left| \frac{(\mathcal{M} \circ \widehat{\mathcal{A}_{\theta}})^{2}}{\Lambda_{\mathcal{B}} \mathcal{M} \circ \widehat{\mathcal{B}_{\theta}}} \right| \Big|_{\theta = 0}^{\text{SOV}}$$
SOV

• \mathcal{A}_{θ} depend only on $\theta_1, \ldots, \theta_{\ell}$.

$$\mathcal{M} = \exp\left[g^2 \left(\sum_{i=1}^L (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 - \frac{1}{4}g^2 (\partial_{\theta_i} - \partial_{\theta_{i+1}})^2 (\partial_{\theta_{i+1}} - \partial_{\theta_{i+2}})^2\right) - ig^2 Q_1^+ (\partial_{\theta_1} - \partial_{\theta_L}) + g^4 \delta \mathcal{M}_{\text{NNLO-b}}\right]$$

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L}$$

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L} \qquad \langle \mathcal{Q}_1,\mathcal{Q}_2\rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1+J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i)\mathcal{Q}_2(u_i).$$

$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell,L}^1(u_i) \prod_{i=1}^{\ell-1} \mu_{\ell,L}^2(u_i,u_j)$$

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L} \qquad \langle \mathcal{Q}_1,\mathcal{Q}_2\rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1+J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i)\mathcal{Q}_2(u_i).$$

$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell,L}^1(u_i) \prod_{i\neq i} \mu_{\ell,L}^2(u_i,u_j)$$

$$\begin{split} \mu_{\ell,L}^{1}(u) &= \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)} \\ \mu_{\ell,L}^{2}(u,v) &= \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)} \\ \mathcal{Q}(u) &\equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)} \end{split}$$

 $\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle \langle f, g \rangle \rangle_{\ell,L} \equiv \langle f, g \rangle_{\ell,L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell,L} \qquad \langle e^{-1} du_{\ell} \mu_{\ell,L}^{1}(u_{i}) \prod_{j \neq i}^{\ell-1} \mu_{\ell,L}^{2}(u_{i}, u_{j})$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u, v) = \frac{\sinh(2\pi (u - v))(u - v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u, v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u - v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle\langle f, g \rangle\rangle_{\ell, L} \equiv \langle f, g \rangle_{\ell, L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell, L}$$
$$d\mu_{\ell, L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell, L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell, L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{u}^{+}x_{u}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle \langle f, g \rangle \rangle_{\ell,L} \equiv \langle f, g \rangle_{\ell,L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell,L}$$

$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \, \mu_{\ell,L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell,L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L}$$
$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell,L}^1(u_i) \prod_{j\neq i}^{\ell-1} \mu_{\ell,L}^2(u_i,u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 ${\cal B}$ is given by an L-1 dimensional integral with factorized measure.

• In the end the result is

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle \langle f, g \rangle \rangle_{\ell, L} \equiv \langle f, g \rangle_{\ell, L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell, L}$$

$$d\mu_{\ell, L} = \prod_{i=1}^{\ell-1} du_i \, \mu_{\ell, L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell, L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 ${\cal B}$ is given by an L-1 dimensional integral with factorized measure.

 \mathcal{Q} is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-} \subset B(u)$

• In the end the result is

$$\mathcal{C}^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle \langle f, g \rangle \rangle_{\ell, L} \equiv \langle f, g \rangle_{\ell, L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell, L}$$

$$d\mu_{\ell, L} = \prod_{i=1}^{\ell-1} du_i \, \mu_{\ell, L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell, L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 ${\cal B}$ is given by an L-1 dimensional integral with factorized measure.

 $\mathcal Q$ is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-}\subset B(u)$

New relative to SL(2):

• In the end the result is

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\langle\langle f, g \rangle\rangle_{\ell, L} \equiv \langle f, g \rangle_{\ell, L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell, L}$$
$$d\mu_{\ell, L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell, L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell, L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 ${\cal B}$ is given by an L-1 dimensional integral with factorized measure.

 \mathcal{Q} is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-} \subset B(u)$

New relative to SL(2):

Measure in \mathcal{A} is NOT the orthogonal measure for on-shell \mathcal{Q} .

SU(2)

• In the end the result is

$$C^{2}_{\bullet \circ \circ} = \Lambda_{\ell} \frac{J!^{2}}{(2J)!} \frac{\langle \langle 1, Q \rangle \rangle_{\ell, L}}{\langle \langle Q, Q \rangle \rangle_{L, L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L}$$
$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell,L}^1(u_i) \prod_{j\neq i}^{\ell-1} \mu_{\ell,L}^2(u_i,u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 \mathcal{B} is given by an L-1 dimensional integral with factorized measure.

 \mathcal{Q} is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-} \subset B(u)$

New relative to SL(2):

Measure in \mathcal{A} is NOT the orthogonal measure for on-shell \mathcal{Q} . (It is for \mathcal{B} .)

SU(2)

• In the end the result is

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\langle\langle f,g\rangle\rangle_{\ell,L} \equiv \langle f,g\rangle_{\ell,L}/\langle \mathbf{1},\mathbf{1}\rangle_{\ell,L}$$
$$d\mu_{\ell,L} = \prod_{i=1}^{\ell-1} du_i \,\mu_{\ell,L}^1(u_i) \prod_{j\neq i}^{\ell-1} \mu_{\ell,L}^2(u_i,u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 \mathcal{B} is given by an L-1 dimensional integral with factorized measure.

 \mathcal{Q} is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-} \subset B(u)$

New relative to SL(2):

Measure in \mathcal{A} is NOT the orthogonal measure for on-shell \mathcal{Q} . (It is for \mathcal{B} .)

At N²LO the dressing of the state depends on ℓ .

SU(2)

• In the end the result is

$$\mathcal{C}^2_{\bullet\circ\circ} = \Lambda_\ell \frac{J!^2}{(2J)!} \frac{\langle\langle 1,Q \rangle\rangle_{\ell,L}}{\langle\langle Q,Q \rangle\rangle_{L,L}}$$

$$\langle \langle f, g \rangle \rangle_{\ell, L} \equiv \langle f, g \rangle_{\ell, L} / \langle \mathbf{1}, \mathbf{1} \rangle_{\ell, L}$$

$$d\mu_{\ell, L} = \prod_{i=1}^{\ell-1} du_i \, \mu_{\ell, L}^1(u_i) \prod_{j \neq i}^{\ell-1} \mu_{\ell, L}^2(u_i, u_j)$$

$$\mu_{\ell,L}^{1}(u) = \frac{\sinh(2\pi u)}{(x_{u}^{+}x_{u}^{-})^{2}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u)}$$

$$\mu_{\ell,L}^{2}(u,v) = \frac{\sinh(2\pi (u-v))(u-v)}{2x_{u}^{+}x_{u}^{-}x_{v}^{+}x_{v}^{-}} e^{\delta_{\ell \neq L} \mathbf{A}_{\ell,L}(u,v)}$$

$$\mathcal{Q}(u) \equiv \prod_{k=1}^{J} \frac{u-v_{k}}{\sqrt{x_{k}^{+}x_{k}^{-}}} e^{\delta_{\ell \neq L} \mathbf{B}(u)}$$

$$\langle \mathcal{Q}_1, \mathcal{Q}_2 \rangle_{\ell,L} \equiv \begin{pmatrix} \ell \\ J_1 + J_2 \end{pmatrix} \oint_{\gamma} d\mu_{\ell,L} \prod_{i=1}^{\ell-1} \mathcal{Q}_1(u_i) \mathcal{Q}_2(u_i).$$

As in NLO SL(2):

 \mathcal{A} is given by an $\ell-1$ dimensional integral with factorized measure.

 \mathcal{B} is given by an L-1 dimensional integral with factorized measure.

 \mathcal{Q} is dressed by a function of higher integrable charges. $\frac{g^4(Q_1^+)^2}{x^+x^-} \subset B(u)$

New relative to SL(2):

Measure in \mathcal{A} is NOT the orthogonal measure for on-shell \mathcal{Q} . (It is for \mathcal{B} .)

At N²LO the dressing of the state depends on ℓ .

$$\delta_{\ell,L-1} \frac{g^4(Q_1^+)^2}{x^{+2}} \subset B(u)$$

• Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.

• Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.

 \vdash C_J vanishes if $\ell < M$ or $L - \ell < M$

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators. C_J vanishes if $\ell < M$ or $L - \ell < M$
- Very easy to understand classically:

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

$$_{\scriptscriptstyle{ ext{non-BPS}}}^{\mathcal{O}_1} \operatorname{Tr}(X^J Z^{L-J}) + \operatorname{permutations}$$

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

$$_{ ext{non-BPS}}^{\mathcal{O}_1} \operatorname{Tr}(X^J Z^{L-J}) + \operatorname{permutations}$$

• Choice of super-conformal frame forces all contractions along the same bridge.

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

$$_{ ext{non-BPS}}^{\mathcal{O}_1} \operatorname{Tr}(X^J Z^{L-J}) + \operatorname{permutations}$$

• Choice of super-conformal frame forces all contractions along the same bridge.

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

• Choice of super-conformal frame forces all contractions along the same bridge.

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

- Choice of super-conformal frame forces all contractions along the same bridge.
 - But with ℓ contractions O_2 can only absorb ℓ of the J excitations.

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

- Choice of super-conformal frame forces all contractions along the same bridge.
 - But with ℓ contractions O_2 can only absorb ℓ of the J excitations.
 - $\downarrow \ell \leftrightarrow L \ell$ symmetry by exchanging the role of O_2 and O_3 .

- Selection rule for 3-pt functions of SU(2) primaries and two $\frac{1}{2}$ BPS operators.
 - \vdash C_J vanishes if $\ell < M$ or $L \ell < M$
- Very easy to understand classically:

- Choice of super-conformal frame forces all contractions along the same bridge.
 - But with ℓ contractions O_2 can only absorb ℓ of the J excitations.
 - $\downarrow \ell \leftrightarrow L \ell$ symmetry by exchanging the role of O_2 and O_3 .
- At the quantum level, one can argue group theoretically.

$$\rightarrow$$
 At N²LO

$$\rightarrow$$
 At N²LO

$$\rightarrow$$
 At N²LO

• Selection rules are NOT realized term by term in low energy expansion.

• Only with finite size correction are selection rules satisfied.

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.
 - Present even if all operators are very big. True "three point geometry" effect.

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.

 Present even if all operators are very big. True "three point geometry" effect.
- SOV expression satisfy selection rule!

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.

 Present even if all operators are very big. True "three point geometry" effect.
- SOV expression satisfy selection rule! For $\ell = L - 1$ new terms in the dressing of \mathcal{Q} .

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.

 Present even if all operators are very big. True "three point geometry" effect.
- SOV expression satisfy selection rule! For $\ell = L - 1$ new terms in the dressing of \mathcal{Q} . Extra terms are one-to-one with mirror correction.

- Only with finite size correction are selection rules satisfied.
- Note this effect is not about wrapping corrections of the NBPS operator.

 Present even if all operators are very big. True "three point geometry" effect.
- SOV expression satisfy selection rule! \vdash For $\ell = L 1$ new terms in the dressing of \mathcal{Q} . Extra terms are one-to-one with mirror correction. \vdash "Finite geometry dress \mathcal{Q} function".

• We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - Is there a set of axioms governing all formulas presented?

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N^2LO ?

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - └ Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N^2LO ?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?

- We presented N^2LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism?

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N^2LO ?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism? [Jiang, Komatsu, Kostov, Serban]

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism? [Jiang, Komatsu, Kostov, Serban]
- Can we access a new class of observables in $\mathcal{N} = 4$ SYM through SOV?

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism? [Jiang, Komatsu, Kostov, Serban]
- Can we access a new class of observables in $\mathcal{N}=4$ SYM through SOV?
 - Baxter/SoV is better suited to continuation in the charges than ABA

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism? [Jiang, Komatsu, Kostov, Serban]
- Can we access a new class of observables in $\mathcal{N}=4$ SYM through SOV?
 - → Baxter/SoV is better suited to continuation in the charges than ABA
 - Correlation functions of light-ray operators from integrability?

- We presented N²LO formulas for C_J in terms of Baxter's Q-functions.
- We match CFT data including adjacent and bottom finite size corrections.
- We fail to identify overarching principle.
 - ☐ Is there a set of axioms governing all formulas presented?
 - Can we bootstrap them?
 - Is there a systematic approach to construct these formulas beyond N²LO?
- Can we obtain a covariant formulation of the result?
 - → Need to generalize SoV to the higher-rank supersymmetric spin chains?
- \bullet What is the connection between our dressed Q's and the QSC variables?
- Can we derive the perturbative SoV formulas from the hexagon formalism? [Jiang, Komatsu, Kostov, Serban]
- Can we access a new class of observables in $\mathcal{N}=4$ SYM through SOV?
 - Baxter/SoV is better suited to continuation in the charges than ABA
 - Correlation functions of light-ray operators from integrability? [WIP with Simmons-Duffin, Vieira]

• Before concluding, a brief result:

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $A_{\ell=1} = 1 +$

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L=2, $\mathcal{A}_{\ell=1}=1+\ g^4\int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)}+ \mathtt{contact-terms}(Q_n)$

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

Finite d.o.f. spin-chain $\longrightarrow \infty$ d.o.f gauge-theory/strings increase coupling

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

Finite d.o.f. spin-chain
$$\longrightarrow \infty$$
 d.o.f gauge-theory/strings increase coupling

• So far no dependence on ℓ_{23} anywhere in the talk.

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

Finite d.o.f. spin-chain
$$\longrightarrow \infty$$
 d.o.f gauge-theory/strings increase coupling

- So far no dependence on ℓ_{23} anywhere in the talk.
 - At N²LO there are finite size effects for $\ell_{23} = 1$. \mathcal{A} must depend on ℓ_{23} .

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + 2g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

Finite d.o.f. spin-chain
$$\longrightarrow \infty$$
 d.o.f gauge-theory/strings increase coupling

- So far no dependence on ℓ_{23} anywhere in the talk.
 - At N²LO there are finite size effects for $\ell_{23} = 1$. \mathcal{A} must depend on ℓ_{23} .

- Before concluding, a brief result:
- Recall: up to NLO, \mathcal{A} is an $\ell-1$ dimensional integral. No integral for $\ell=1$!

 Actually $\mathcal{A}_{\ell=1}=1$ in our normalization.
- For L = 2, $\mathcal{A}_{\ell=1} = 1 + 2g^4 \int \nu(u) \frac{\mathbb{Q}(u)}{\mathbb{Q}(i/2)} + \text{contact-terms}(Q_n)$ $\nu(u) = \frac{i\pi i(u + i/2)\pi^2 \tanh(\pi u)}{2(u + i/2)^3 \cosh^2(\pi u)}$
- Lesson: in general should expect more integrals at higher loops.

Finite d.o.f. spin-chain
$$\longrightarrow \infty$$
 d.o.f gauge-theory/strings increase coupling

- So far no dependence on ℓ_{23} anywhere in the talk.
 - At N²LO there are finite size effects for $\ell_{23} = 1$. \mathcal{A} must depend on ℓ_{23} .

Formulas

$$Q(\mathbf{u}) \equiv \left(\prod_{k=1}^{J} \frac{\mathbf{u} - v_k}{\sqrt{x_k^+ x_k^-}}\right) e^{\frac{g^2}{2}Q_1^+ H_1^+(\mathbf{u}) + \frac{g^2}{2}Q_1^- H_1^-(\mathbf{u}) + O(g^4)}$$

$$\mathcal{Q}(\mathbf{u}) \equiv \prod_{k=1}^{J} rac{\mathbf{u} - v_k}{\sqrt{x_k^+ x_k^-}} imes e^{rac{1}{2}g^2 Q_1^+ H_1^+ + rac{1}{8}g^4 Q_1^+ Q_2^+ H_1^+ - rac{1}{2}g^4 Q_1^+ H_3^+}$$

and

$$\mu_1(u) = \frac{\pi}{2c_u^2} \left(1 + \pi^2 g^2 \left(3t_u^2 - 1 \right) + \pi^4 g^4 \left(\frac{5}{6} - 7t_u^2 + \frac{11}{2}t_u^4 \right) \right)$$

$$- \frac{g^4}{8} H_1^+ \left(Q_1^+(\mathbf{v}_1) Q_2^+(\mathbf{v}_2) + Q_1^+(\mathbf{v}_2) Q_2^+(\mathbf{v}_1) \right), \quad (14)$$

$$\begin{split} & \mathbf{A}_{\ell,L}(u) = g^2(q_1^-)^2 + g^4 \left(\frac{1}{2} (q_2^+)^2 + 4\alpha (q_1^-)^2 - 6\pi^2 q_2^+ \pmb{\delta}_{\ell=2} \right) \;, \\ & \mathbf{A}_{\ell,L}(u,v) = g^2 q_1^- \tilde{q}_1^- + g^4 \left(\frac{1}{2} q_2^+ \tilde{q}_2^+ + 2\alpha q_2^+ + 4\alpha q_1^- \tilde{q}_1^- \right) \;, \\ & \mathbf{B}(u) = g^2 q_1^- Q_1^- & (25) \\ & + g^4 \left(\frac{1}{2} q_2^+ Q_2^+ + \alpha Q_2^+ + 4\alpha q_1^- Q_1^- - \pi^2 q_1^- Q_1^- \pmb{\delta}_{\ell=2} + \right. \\ & + \left(\left(\frac{1}{8} (Q_1^+)^2 - \frac{1}{4} Q_2^+ - Q_1^+ + \frac{3}{8} (Q_1^-)^2 \right) q_2^+ - \frac{1}{2} q_3^- Q_1^- \right) \pmb{\delta}_{\ell,L-1} \right) , \end{split}$$

$$q_k^+(u) = i^{k+0}(x^+(u))^{-k} + (-i)^{k+0}(x^-(u))^{-k},$$

$$q_k^-(u) = i^{k-1}(x^+(u))^{-k} + (-i)^{k-1}(x^-(u))^{-k},$$

$$Q_1^+ = \oint \frac{u \, du}{4\pi g^2 \sqrt{u^2 - 4g^2}} \log \frac{\mathbb{Q}(u + i/2)}{\mathbb{Q}(u - i/2)}$$

$$H_n^+(u) \equiv H_n(-1/2 + iu) + H_n(-1/2 - iu),$$

 $iH_n^-(u) \equiv H_n(-1/2 + iu) - H_n(-1/2 - iu).$

iormansm counter parts. For SL(2) it is simply

$$\mathcal{A}_{\ell} = \langle \mathcal{Q}, \mathbf{1} \rangle_{\ell}, \qquad \mathcal{B} = \frac{(2\mathbb{J})!}{(\mathbb{J}!)^2} \langle \mathcal{Q}, \mathcal{Q} \rangle_{L}, \qquad (A13)$$

and for SU(2) it reads

$$\mathcal{A}_{\ell} = \Lambda_{\mathcal{A}} \langle \langle \mathcal{Q}, \mathbf{1} \rangle \rangle_{\ell, L}, \quad \mathcal{B} = \Lambda_{\mathcal{B}} \frac{(2J)!}{(J!)^2} \langle \langle \mathcal{Q}, \mathcal{Q} \rangle \rangle_{L, L}. \quad (A14)$$

where

$$\Lambda_{\mathcal{A}} = e^{g^4 \left(\alpha - \delta_{\ell=2} \pi^2\right) \left((Q_1^-)^2 + Q_2^+\right)} \tag{A15}$$

$$\Lambda_{\mathcal{B}} = \prod_{i,j}^{J} \left(1 - \frac{g^2}{x^+(v_i)x^+(v_j)} \right) \prod_{i,j}^{J} \left(1 - \frac{g^2}{x^-(v_i)x^-(v_j)} \right)$$

$$\mathcal{M}_{\text{NNLO-b}} = \frac{1}{2} \left(2(Q_1^+)^2 - iQ_2^- - Q_1^- Q_1^+ \right) \partial_1^2 + iQ_1^+ \partial_1^3 + \frac{1}{2} \left(Q_1^- Q_1^+ - (Q_1^+)^2 \right) \partial_2^2 - \frac{1}{2} iQ_1^+ \partial_2^3 - \frac{i}{2} Q_1^+ \partial_1 \partial_2^2 + \frac{1}{2} (iQ_2^- - (Q_1^+)^2) \partial_1 \partial_2 - (\partial_1 \leftrightarrow \partial_L, \partial_2 \leftrightarrow \partial_{L-1}) .$$
 (C3)

$$\left(\sum_{\ell} C_{\ell}^{\bullet \bullet \circ}\right)^{2} = \frac{(\mathbb{J}_{1} + \mathbb{J}_{2})!^{2}}{(2\mathbb{J}_{1})!(2\mathbb{J}_{2})!} \frac{\langle \mathcal{Q}_{1}, \mathcal{Q}_{2} \rangle_{\ell}^{2}}{\langle \mathcal{Q}_{1}, \mathcal{Q}_{1} \rangle_{L_{1}} \langle \mathcal{Q}_{2}, \mathcal{Q}_{2} \rangle_{L_{2}}}. \quad (26)$$

$$\mathcal{A}_{\theta} = \sum_{\mathbf{u} = \alpha \cup \bar{\alpha}} (-1)^{|\bar{\alpha}|} \prod_{n=1}^{\ell} \prod_{i \in \bar{\alpha}} \frac{u_i - \theta_n + i/2}{u_i - \theta_n - i/2} \prod_{j \in \alpha} \frac{u_j - u_i + i}{u_j - u_i},$$

$$\mathcal{B}_{\theta} = \det \left[\partial_{u_i} \log \left(\prod_{n=1}^{L} \frac{u_j - \theta_n + i/2}{u_j - \theta_n - i/2} \prod_{k \neq j} \frac{u_j - u_k - i}{u_j - u_k + i} \right) \right]$$

$$\times \prod_{i \leq j} \frac{(u_i - u_j)^2}{1 + (u_i - u_j)^2}, \tag{16}$$

$$\mu_1(u) = \frac{\pi}{2c_u^2} \left(1 + g^2 \pi^2 (3t_u^2 - 1) + \dots \right)$$

$$\mu_2(u, v) = \frac{\pi(u - v)s_{u - v}}{c_u c_v} \left(1 + g^2 \pi^2 ((t_u + t_v)^2 - \frac{4}{3}) + \dots \right)$$