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® Overall strategy:
L Start with stringy picture of observable

— Cut worldsheet open < Large geometry/low temperature expansion

— Each open patch is a 2D scattering problem solved by bootstrap

® Very physical framework.

» Connects large N gauge theory to the worldsheet cartoon

® [valuating and resuming large geometry expansion is too hard in practice

L. Need truncating limits: weak coupling, large charge, collinear kinematics. . .
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L. Number of technical developments serve as a backbone to these explorations
[Cavaglia, Gromov, Levkovich-Maslyuk]?[Gromov, Levkovich-Maslyuk, Ryan||Gromov, Levkovich-Maslyuk, Ryan, Volin]

® In this talk I will present:

— Structure constants formulas at weak coupling (up to N“LO) based on Q-functions and the “SoV” formalism.
— Comnsider only rank-1 NBPS - BPS - BPS correlators

L Match known CFT data which include finite size effects both in the adjacent and bottom channels.
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@ Selection rule for 3-pt functions of SU(2) primaries and two % BPS operators.

I—»C’Jvanishesif€<MorL—€<M o I .
e Very easy to understand classically: wnpps 11X Z777) + permutations

Tr(ZX...)+...

® Choice of super-conformal frame forces all contractions along the same bridge.
.But with ¢ contractions ()5 can only absorb £ of the J excitations.
L.t L—7 symmetry by exchanging the role of Oy and Os.

® At the quantum level, one can argue group theoretically.
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® Selection rules are NOT realized term by term in low energy expansion.

L. At N2LO
£0 @ N2LO £ 0@ N2LO

+ N3LO = ()

e Only with finite size correction are selection rules satisfied.

® Note this effect is not about wrapping corrections of the NBPS operator.
L. Present even if all operators are very big. True “three point geometry” effect.

® SOV expression satisty selection rule!
L» For / = L. — 1 new terms in the dressing of . Extra terms are one-to-one with mirror correction.
— “Finite geometry dress © function”.
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Agr(u) = g%(a7)* + 9" (5( ;)2+4a<q1) — 6 q;ég 2) |
Ao r(u,v) =g%¢ q; + 9 (
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Formulas
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