Determinants in self-dual SYM and twistor space

Frank Coronado

McGill University
[with Simon Caron-Huot and Beatrix Mülhmann]
arxiv : 2106.03892

IGST 2023 ETH-Zürich

Motivation: hidden symmetries in planar N=4 SYM

- Correlator-Amplitude duality relating correlation functions of Stress tensor multiplet and scattering amplitudes of massless gluons. Hidden dual conformal symmetry of amplitudes.

Correlator of stress tensor
(Square of) Massless amplitude
[Eden, Korchemsky, Sokatchev; 2010]

$$
\begin{gathered}
\qquad\left(x_{i}-x_{i+1}\right)^{2} \rightarrow 0 \\
\text { 4D null limit } \equiv \\
\text { Massless on-shell condition } \\
x_{i}-x_{i+1} \equiv p_{i}
\end{gathered}
$$

- Ten-dimensional symmetry in SUGRA, a hidden 10D (conformal) symmetry emerges in the four-point correlator of the single-trace generating function of 1/2 BPS operators:
$\mathrm{O}(x, y)=\operatorname{Tr}(y . \Phi(x))+\frac{1}{2} \underbrace{\operatorname{Tr}(y . \Phi(x))^{2}}_{\mathrm{O}_{20^{\prime}}}+\frac{1}{3} \operatorname{Tr}(y . \Phi(x))^{3}+\cdots \quad$ all KK modes
The 10D symmetry combines spacetime and R -charge space kinematics. The four-point correlator is a functions of 10D distances $X_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}$

10D symmetry of loop-integrands

$$
S_{\mathcal{N}=4}=S_{\text {self-dual }}+g^{2} \int \frac{\mathrm{~d}^{4} x}{\pi^{2}} L_{\text {int }}(x)
$$

- The loop-integrand is computed in the self-dual sector by including extra Lagrangian

$$
\left\langle\prod_{i=1}^{n} \mathrm{O}\left(x_{i}, y_{i}\right)\right\rangle_{\mathrm{SYM}}=\sum_{\ell=0}^{\infty} \frac{\left(-g^{2}\right)^{\ell}}{\ell!} \int \frac{\mathrm{d}^{4} x_{n+1}}{\pi^{2}} \cdots \frac{\mathrm{~d}^{4} x_{n+\ell}}{\pi^{2}}\left\langle\prod_{i=1}^{n} \mathrm{O}\left(x_{i}, y_{i}\right) \prod_{k=1}^{\ell} L_{\mathrm{int}}\left(x_{n+k}\right)\right\rangle_{\mathrm{SDYM}}
$$

- At weak coupling we observe the same 10D symmetry on the loop-integrands of four-point correlators of the half-BPS generating function:

$$
\left\langle\mathrm{O}\left(x_{1}, y_{1}\right) \mathrm{O}\left(x_{2}, y_{2}\right) \mathrm{O}\left(x_{3}, y_{3}\right) \mathrm{O}\left(x_{4}, y_{4}\right) \mathcal{L}\left(x_{5}\right) \cdots \mathcal{L}\left(x_{l}\right)\right\rangle_{S D Y M}
$$

$$
=R_{1234}\left(2 x_{12}^{2} x_{13}^{2} x_{14}^{2} x_{23}^{2} x_{24}^{2} x_{34}^{2}\right) \times \mathcal{H}^{(l)}
$$

[Chicherin, Drummond, Heslop, Sokatchev, 2015]
[Chicherin, Georgoudis, Goncalves, Pereira, 2018]

- The first three-loop integrands (we consider $y_{i}=0$ for $i \geq 5$):

$$
\begin{aligned}
\mathcal{H}^{(1)} & =\frac{1}{\prod_{1 \leq i<j \leq 5} X_{i j}^{2}}, \quad \text { [Caron-Huot, FG; 2021] } \\
\mathcal{H}^{(2)} & =\frac{1}{48} \frac{X_{12}^{2} X_{34}^{2} X_{56}^{2}+S_{6} \text { permutations }}{\prod_{1 \leq i<j \leq 6} X_{i j}^{2}} \\
\mathcal{H}^{(3)} & =\frac{1}{20} \frac{\left(X_{12}^{2}\right)^{2}\left(X_{34}^{2} X_{45}^{2} X_{56}^{2} X_{67}^{2} X_{73}^{2}\right)+S_{7} \text { permutations }}{\prod_{1 \leq i<j \leq 7} X_{i j}^{2}}
\end{aligned}
$$

Generalization of correlator/massive amplitude duality

- The 10D null limit of the "master" correlator is equal to a scattering amplitude of massive W-bosons in the Coulomb branch(CB).

Generating function of all
four-point correlators
$\mathrm{O}\left(x_{1}, y_{1}\right)$
$\mathrm{O}\left(x_{4}, y_{4}\right)$

[Caron-Huot, FC; 2021]

- $\mathrm{O}\left(x_{3}, y_{3}\right)$

10D vector $X_{i}=\left(x_{i}, y_{i}\right)$
(Square of) four-point massive amplitude

- The vev of the scalar in CB and the masses of the W-bosons are set by Y. The 10D null limit $x_{12}^{2}+y_{12}^{2}=0$ is equivalent to the mass on-shell condition $p_{1}^{2}+m_{1}^{2}=0$.
- Thanks to the masses the amplitude is finite and the duality carries over to the integrated form of the correlator and amplitude.
- A special four-point amplitude is known from this duality: the octagon.
- Checked only for four-points. There are not many results for higher-point integrands.

Outline

- Half-BPS determinants as generating functions
- Determinant operators from twistor space
- Correlation functions of determinants
- Graph and Matrix duality
- Some results in planar limit with 10D distances
- Outlook

Half-BPS operators and chiral superspace

- Scalar operators:

$$
\operatorname{Tr}\left(y^{A B} \phi_{A B}(x)\right)^{K} \quad \phi_{A B} \text { is vector of six scalars }
$$

- 6D null polarization vector: $y^{A B} y_{A B}=0 \quad \longrightarrow \quad y^{A B}=\epsilon^{a^{\prime} b^{\prime}} Y_{a^{\prime}}^{A} Y_{b^{\prime}}^{B}$
- The vector $Y_{a^{\prime}}^{A}$ determines which chiral half is absent in the BPS operator.

$$
\begin{array}{r}
\theta_{\alpha}^{A}=W_{a}^{A}\left(\theta^{+}\right)_{\alpha}^{a}+Y_{a^{\prime}}^{A}\left(\theta^{-}\right)_{\alpha}^{a^{\prime}}, \\
Y_{a^{\prime}}^{A} \frac{\partial \mathbb{O}(x, y, \theta)}{\partial \theta_{\alpha}^{A}}=\frac{\partial \mathbb{O}(x, y, \theta)}{\partial\left(\theta^{-}\right)_{\alpha}^{a^{\prime}}}=0 \quad \text { with } \quad \alpha=1,2, a^{\prime}=1,2
\end{array}
$$

- Example: the chiral part of the stress tensor multiplet

$$
\mathscr{T}\left(x, y, \theta^{+}\right)=\operatorname{Tr}\left(y^{A B} \Phi_{A B}(x)\right)^{2}+\theta_{a}^{+\alpha} O_{a}^{+++, \alpha}(x)+\cdots+\left(\theta^{+}\right)^{4} L_{i n t}
$$

- Extensively studied correlator:
[Chicherin, Doobary, Eden, Heslop, Korchmesky Mason, Sokatchev, 2015]

$$
\left\langle\mathscr{T}_{1} \mathscr{T}_{2} \cdots \mathscr{T}_{n+l}\right\rangle_{S D Y M} \rightarrow\left\langle\mathscr{T}_{1} \mathscr{T}_{2} \cdots L_{\text {int }} L_{\text {int }}\right\rangle_{S D Y M} \rightarrow \quad \begin{gathered}
\text { Massless } \\
\text { amplitude }
\end{gathered}
$$

- In this talk we turn on SUSY for all higher BPS operators in a single generating function.

Determinant as generating function

- The bosonic generating function is the logarithm of a determinant operator:

$$
\begin{aligned}
\mathrm{O}(x, y) & =-\log \operatorname{Det}(1-y \cdot \Phi(x))=-\operatorname{Tr} \log (1-y \cdot \Phi(x)) \\
& =\operatorname{Tr}(y \cdot \Phi(x))+\frac{1}{2} \operatorname{Tr}(y \cdot \Phi(x))^{2}+\frac{1}{3} \operatorname{Tr}(y \cdot \Phi(x))^{3}+\cdots \quad \text { all KK modes }
\end{aligned}
$$

- We consider the supersymmetric extensions:

$$
\mathbb{O}(x, y, \theta)=\mathrm{O}(x, y)+\text { all susy descendants } \quad \mathbb{D}(x, y, \theta)=\exp [-\mathbb{O}(x, y, \theta)]
$$

- We turn on all θ and y dependence and get all operators in the same footing:

$$
\left\langle\prod_{i=1}^{n} \mathbb{O}\left(x_{i}, y_{i}, \theta_{i}\right) \prod_{i=n+1}^{n+\ell} L_{\mathrm{int}}\left(x_{i}\right)\right\rangle_{\mathrm{SDYM}} \stackrel{\mathrm{SUSY}}{\longrightarrow}\left\langle\prod_{i=1}^{n+\ell} \mathbb{O}\left(x_{i}, y_{i}, \theta_{i}\right)\right\rangle_{\mathrm{SDYM}}
$$

- We have a novel construction of the determinant operator $\mathbb{D}(x, y, \theta)$ in twistor space.
- We use matrix duality to make the 10D structure more manifest.

Twistor space

- Homogenous coordinates $\mathcal{Z}=\left(Z^{I}, \eta^{A}\right)$ with $\quad I, A=1,2,3,4$.
- Non-local relation: a spacetime point maps to a $C P^{1}$ line in supertwistor space $C P^{3 \mid 4}$
- Incidence relation

$$
Z^{I}=\left(\lambda_{\alpha}, \mu^{\dot{\alpha}}\right) . \quad \mu^{\dot{\alpha}}=x^{\dot{\alpha} \beta} \lambda_{\beta} \quad \text { and } \quad \eta^{A}=\theta^{A \alpha} \lambda_{\alpha}
$$

- Recovering spacetime point:

$$
Z_{1}^{I} Z_{2}^{J}-Z_{2}^{I} Z_{1}^{J} \propto\left(\begin{array}{cc}
\epsilon_{\alpha \beta} & -i x_{\alpha}^{\dot{\beta}} \\
i x_{\beta}^{\dot{\alpha}} & -\frac{1}{2} x^{2} \epsilon^{\dot{\alpha} \beta}
\end{array}\right)
$$

$\mathcal{N}=4$ SYM in twistor space

- Gauge field in twistor space: $\mathrm{A}=a(Z)+\eta \Lambda(Z)+\eta^{2} \phi(Z)+\eta^{3} \Psi(Z)+\eta^{4} g(Z)$

$$
\text { with } Z=\left(\lambda_{\alpha}, i x^{\dot{\alpha} \beta} \lambda_{\beta}\right) \quad \eta^{A}=\theta^{A \alpha} \lambda_{\alpha}
$$

- In super-twistor space $C P^{3 \mid 4}$: local CS term plus a non-local part defined over a CP1 line

$$
\begin{gathered}
S_{\mathcal{N}=4}^{\text {twistor }}=\int d \Omega^{3 \mid 4} \mathrm{~A} \bar{\partial} \mathrm{~A}+\mathrm{A}^{3}+\left.g^{2} \int d^{4} x d^{8} \theta \log \operatorname{det}(\bar{\partial}+\mathrm{A})\right|_{C P^{1}} \\
\quad \underset{=}{\text { gauge }} \quad S_{\text {self-dual }}+g^{2} \int d^{4} x L_{\text {int }}(x)
\end{gathered}
$$

- In spacetime gauge: $\mathcal{N}=4$ SYM as a perturbation around its self-dual sector.
- Other gauge (CSW) simplifies the propagator at the cost of introducing a reference twistor:

$$
\left\langle\mathrm{A}\left(\mathcal{Z}_{1}\right) \mathrm{A}\left(\mathcal{Z}_{2}\right)\right\rangle \sim \delta^{2 \mid 4}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}, \mathcal{Z}_{*}\right) \equiv \frac{1}{2 \pi i} \int_{\mathbb{C}^{2}} \frac{d s}{s} \frac{d t}{t} \delta^{4 \mid 4}\left(s \mathcal{Z}_{1}+t \mathcal{Z}_{2}+Z_{*}\right)
$$

- Construction of higher BPS operators in twistor space

Half-BPS Determinant operator

- We add susy $\psi^{b}=\lambda_{\alpha}\left(\theta^{-}\right)^{\alpha b}$ to the twistor line $C P^{1} \rightarrow C P^{1 \mid 2}$ and a mass term:

$$
\begin{aligned}
\mathbb{D}\left(x, y, \theta^{+}\right) & =\int D \alpha D \beta e^{\int_{C P^{1 \mid 2}} d^{2} \psi \alpha(\lambda, \psi)\left(\bar{\partial}+\mathrm{A}+\delta_{\mu, \lambda}^{1 \mid 2}\right) \beta(\lambda, \psi)} \\
& =\operatorname{det}(1-y . \Phi(x))+\text { all susy descendants }
\end{aligned}
$$

- We can integrate-out α, β using their $C P^{1 \mid 2}$ propagator:

$$
\left\langle\beta_{1} \alpha_{2}\right\rangle \equiv \underbrace{\Delta_{12 \mu}=1+R_{12 \mu} \quad R_{123}=\frac{\delta^{0 \mid 2}\left(\psi_{1}\left\langle\lambda_{2} \lambda_{3}\right\rangle+\psi_{2}\left\langle\lambda_{1} \lambda_{2}\right\rangle+\psi_{3}\left\langle\lambda_{1} \lambda_{2}\right\rangle\right)}{\left\langle\lambda_{1} \lambda_{2}\right\rangle\left\langle\lambda_{1} \lambda_{3}\right\rangle\left\langle\lambda_{2} \lambda_{1}\right\rangle}}
$$

- A series of infinite single-trace vertices

$$
\mathbb{O}\left(x, y, \theta^{+}\right)=\sum_{n=1}^{\infty} \int \prod_{i=1}^{n}\left\langle\lambda_{i} d \lambda_{i}\right\rangle d^{2} \psi_{i} \Delta_{12 \mu} \Delta_{23 \mu} \cdots \Delta_{n 1 \mu} \times\left.\operatorname{Tr}\left(\mathrm{A}_{1} \mathrm{~A}_{2} \cdots \mathrm{~A}_{n}\right)\right|_{C P^{1 \mid 2}}
$$

Correlation functions of determinants

- The operators with support on $C P^{1 \mid 2}$ superlines interact through the bulk propagator of the gauge field on $C P^{3 \mid 4}$.

- Integrals over insertions on the $C P^{1 \mid 2}$ are easily carried out thanks to the delta function form of the $C P^{3 \mid 4}$ propagators
- At large N_{c}, the combinatorics of graphs grows with the number of operators and genus.
- Spurious poles depending on reference twistor only disappeared and after summing all graphs
- In the genus expansion, for each graph topology and for each pair of operators we obtain a geometric series of 4D scalar propagators

$$
d_{i j}=\frac{y_{i j}^{2}}{x_{i j}^{2}} \quad d_{i j}+d_{i j}^{2}+d_{i j}^{3}+\cdots=\frac{d_{i j}}{1-d_{i j}}=\frac{y_{i j}^{2}}{x_{i j}^{2}+y_{i j}^{2}} \equiv D_{i j}
$$

The resummation gives an effective propagator with ten-dimensional denominator

Graph duality and matrix duality

- Model with multi-local vertices representing the faces of the original SDYM graphs.

$$
F_{1234}=\Delta_{42 \mu_{1}}^{1} \Delta_{13 \mu_{2}}^{2} \Delta_{24 \mu_{3}}^{3} \Delta_{31 \mu_{4}}^{4} \rho_{12} \rho_{23} \rho_{34} \rho_{41}
$$

- For matrix duality we integrate in and out auxiliary fields

Here we integrate-out A first!

$\left\langle\mathbb{D}\left(x_{1}, y_{1}, \theta_{1}^{+}\right) \cdots \mathbb{D}\left(x_{n}, y_{n}, \theta_{n}^{+}\right)\right\rangle=\int D \rho e^{-N_{c} \sum_{i<j}^{n} \frac{\rho_{i j} \rho_{j i}}{2 d_{i j}}} \operatorname{det}(1-\Delta \rho)^{N_{c}}$

- This duality exchanges the roles of the numbers of colors N_{c} and determinants n .

Advantages of new matrix model

- At large N_{c}, the gaussian term is modified and the new effective propagator has a

$$
\begin{aligned}
& \text { ten-dimensional denominator: } \\
& \begin{aligned}
\left\langle\mathbb{D}\left(x_{1}, y_{1}, \theta_{1}^{+}\right) \cdots \mathbb{D}\left(x_{K}, y_{K}, \theta_{K}^{+}\right)\right\rangle & =\int D \rho e^{-N_{c} \sum_{i<j}^{K} \frac{\rho_{i j} \rho_{i j}}{2 d_{i j}}} \operatorname{det}(1-\Delta \rho)^{N_{c}} \\
D_{i j}=\frac{y_{i j}^{2}}{x_{i j}^{2}+y_{i j}^{2}} & =\int D \rho e^{-N_{c} \sum_{i<j}^{K} \frac{\rho_{i j} \rho_{j i}}{2 D_{i j}}+N_{c}\left(\frac{1}{3} \operatorname{Tr}(\Delta \rho)^{3}+\frac{1}{4} \operatorname{Tr}(\Delta \rho)^{4}+\cdots\right)}
\end{aligned} .
\end{aligned}
$$

- SUSY can be pull out from the determinant and added as corrections to the Gaussian:
$\left\langle\mathbb{D}_{1} \ldots \mathbb{D}_{n}\right\rangle_{\mathrm{SDYM}}=\frac{1}{\mathcal{M}} \int[\mathcal{D} \rho] e^{N_{c}\left(\sum_{i<j} \frac{\rho_{i j} \rho_{j i}}{d_{i j}}+S_{\mathrm{eff}}^{(1)}(\rho, R)+S_{\mathrm{eff}}^{(2)}(\rho, R)+\ldots\right)} \operatorname{det}\left(\mathbb{I}_{n}-\rho\right)^{N_{c}}$

$$
\begin{aligned}
& S_{\text {eff }}^{(1)}=\sum_{i<j<k}\left(f_{i j k}-f_{i k j}\right)\left(\frac{R_{j k \mu}^{i}}{d_{j k}}+\frac{R_{k i \mu}^{j}}{d_{k i}}+\frac{R_{i j \mu}^{k}}{d_{i j}}\right), \quad \text { Free from spurious poles } \\
& S_{\text {eff }}^{(2)}=\sum_{i \neq j \neq k}\left(f_{i j k}+f_{i j} f_{i k}\right) \frac{R_{j k \mu}^{i} R_{i k \mu}^{j}}{d_{i k}}+\sum_{i \neq j \neq k \neq l} f_{i j k l}\left[\frac{R_{j l \mu}^{i} R_{k l \mu}^{j}-R_{j k l}^{i} R_{i k \mu}^{j}}{d_{k l}}-\frac{R_{j l \mu}^{i} R_{j l \mu}^{k}}{2 d_{j l}}\right]
\end{aligned}
$$

Some new results:

$$
\left\langle\mathbb{D}\left(x_{1}, y_{1}, \theta_{1}^{+}\right) \cdots \mathbb{D}\left(x_{K}, y_{K}, \theta_{K}^{+}\right)\right\rangle=\left(\text {poly in } D_{i j}\right) *(\text { superconformal invariants })
$$

- Six-point NMHV correlator of determinants: \quad with $\quad D_{i j}=\frac{y_{i j}^{2}}{x_{i j}^{2}+y_{i j}^{2}}$

$$
\begin{aligned}
& \frac{\left\langle\mathbb{O}_{1} \cdots \mathbb{O}_{6}\right\rangle_{\text {SDPM }}^{\mathrm{NMHV}}}{\prod_{i<j}^{6}\left(1+D_{i j}\right)}=\prod_{i<j}^{6} D_{i j} \times\left(C^{(6 a)} \mathcal{I}^{(6 a)}+C^{(6 b)} \mathcal{I}^{(6 b)}\right)+\left[\prod_{i<j}^{5} D_{i j} \times C^{(5)} \tilde{\mathcal{I}}^{(5)}+5 \text { perm }\right] \\
& N_{c}^{4} C^{(6 a)}=2+ \\
& \left.N_{c}^{4} C^{(5)}=4 D_{16} D_{26}^{-1}\right)=-N_{c}^{4} D_{36}^{(6 b)} D_{46} D_{56}+2 \sum_{5} D_{16} D_{26} D_{36} D_{46}-2 \sum_{10} D_{16} D_{26}\left(1+D_{12}\right)+\mathcal{O}\left(N_{c}^{-1}\right) \\
& \mathcal{I}_{123456}^{(6 b)}= \\
& \\
& \quad \sum_{90} \frac{R_{234}^{1} R_{561}^{4}}{d_{23} d_{56}} \frac{\operatorname{det}\left[d_{i j}\right]_{j=, 4,5,6}^{i=1,3}}{\prod_{j=1,2,3} d_{i j}} \\
& \quad+\sum_{360} \frac{R_{234}^{1} R_{135}^{2}}{d_{34} d_{35} d_{36} d_{12} d_{24} d_{45} d_{51}}\left[\frac{d_{12}}{d_{16} d_{26}}-\frac{d_{15}}{d_{16} d_{56}}-\frac{d_{24}}{d_{26} d_{46}}+\frac{d_{45}}{d_{46} d_{56}}\right] \\
& \quad+\sum_{90} \frac{R_{234}^{1} R_{134}^{2}}{d_{12} d_{34} d_{35} d_{36} d_{45} d_{46}}\left[\frac{1}{d_{15} d_{26}}+\frac{1}{d_{16} d_{25}}\right]-\sum_{180} \frac{R_{234}^{1} R_{235}^{1}}{d_{16} d_{23} d_{24} d_{25} d_{34} d_{35} d_{46} d_{56}}
\end{aligned}
$$

- In the limit $y_{i j}^{2} \rightarrow 0$ the invariant reduces to the stress tensor case.

Outlook

- Explore 10D null limit and connection to massive amplitudes
- Relax BPS condition $y_{i}^{2}=0$

- String theory perspective on matrix duality
- Relationship between Giant Graviton (our Determinant) and D-instanton that appears in the T-duality explanation of correlator- Wilson loop- amplitude triality.

