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Motivation: hidden symmetries in planar N=4 SYM

• Ten-dimensional symmetry in SUGRA, a hidden 10D (conformal) symmetry emerges in 
the four-point correlator of the single-trace generating function of 1/2 BPS operators:

• Correlator-Amplitude duality relating correlation functions of Stress tensor multiplet and 
scattering amplitudes of massless gluons. Hidden dual conformal symmetry of amplitudes.  
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The 10D symmetry combines spacetime and R-charge space kinematics. The 
four-point correlator is a functions of 10D distances  X2

ij = (xi − xj)2+(yi − yj)2

[Eden, Korchemsky, Sokatchev; 2010]

[Caron-Huot, Trinh, 2018; 
Aprile, Drummond, Heslop, Paul]



• At weak coupling we observe the same 10D symmetry on the loop-integrands of four-point 
correlators of the half-BPS generating function: 

•  The loop-integrand is computed in the self-dual sector by including extra Lagrangian 

• The first three-loop integrands (we consider  for ):yi = 0 i ≥ 5

10D symmetry of loop-integrands

[Eden, Petkou, Schubert, Sokatchev]

[Eden, Heslop,  Korchemsky, Sokatchev, 2011]

[Caron-Huot, FC; 2021]

[Chicherin, Drummond, Heslop, Sokatchev, 2015]

[Chicherin, Georgoudis, Goncalves, Pereira, 2018]



Generalization of correlator/massive amplitude duality
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• The 10D null limit of the “master” correlator is equal to a scattering amplitude of 
massive W-bosons in the Coulomb branch(CB). 
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• The vev of the scalar in CB and the masses of the W-bosons are set by . The 10D 
null limit  is equivalent to the mass on-shell condition  .
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• Thanks to the masses the amplitude is finite and the duality carries over to the 
integrated form of the correlator and amplitude.

• Checked only for four-points. There are not many results for higher-point integrands. 

• A special four-point amplitude is known from this duality: the octagon.

[Caron-Huot, FC; 2021]

[Bargheer, Fleury, Gonçalves; 2022]



Outline
• Half-BPS determinants as generating functions

• Determinant operators from twistor space

• Correlation functions of determinants 

• Some results in planar limit with 10D distances

• Outlook 

• Graph and Matrix duality



Half-BPS operators and chiral superspace
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• Example: the chiral part of the stress tensor multiplet

• Scalar operators:

• 6D null polarization vector: 

Tr (yABϕAB(x))K

𝒯(x, y, θ+) = Tr (yAB ΦAB(x))2 + θ+ α
a O+++, α

a (x) + ⋯ + (θ+)4 Lint

• Extensively studied correlator:

• In this talk we turn on SUSY for all higher BPS operators in a single generating function. 

⟨𝒯1𝒯2⋯𝒯n+l⟩SDYM → ⟨𝒯1𝒯2 ⋯ Lint Lint⟩SDYM → Massless 
amplitude

→
 is vector of six scalarsϕAB

[Chicherin, Doobary, Eden, Heslop, Korchmesky Mason, Sokatchev, 2015]



• The bosonic generating function is the logarithm of a determinant operator:

𝖮(x, y) = − log Det(1−y . Φ(x)) = − Tr log(1−y . Φ(x))

= Tr(y . Φ(x)) +
1
2

Tr(y . Φ(x))2 +
1
3

Tr(y . Φ(x))3 + ⋯ all KK modes

Determinant as generating function

𝕆(x, y, θ) = 𝖮(x, y)+all susy descendants

• We turn on all  and  dependence and get all operators in the same footing: θ y

• We have a novel construction of the determinant operator  in twistor space. 𝔻(x, y, θ)

• We use matrix duality to make the 10D structure more manifest. 

• We consider the supersymmetric extensions: 

𝔻(x, y, θ) = exp [−𝕆(x, y, θ)]



Twistor space 

• Non-local relation: a spacetime point maps to a  line in supertwistor space CP1

CP3|4

• Homogenous coordinates 

• Incidence relation

• Recovering spacetime point:



Stwistor
𝒩=4 = ∫ dΩ3|4 𝖠∂̄𝖠 + 𝖠3 + g2 ∫ d4xd8θ log det(∂̄ + 𝖠)

CP1

• In super-twistor space : local CS term plus a non-local part defined over a CP1 
line 

CP3|4

𝖠 = a(Z) + η Λ(Z) + η2 ϕ(Z) + η3 Ψ(Z) + η4 g(Z)

 with  Z = (λα, i x ·αβλβ) ηA = θAαλα

 SYM in twistor space 𝒩 = 4
• Gauge field in twistor space:

• In spacetime gauge:  SYM as a perturbation around its self-dual sector.𝒩 = 4

• Other gauge (CSW) simplifies the propagator at the cost of introducing  a reference 
twistor:

Sself−dual g2 ∫ d4x Lint(x)+gauge=

[Witten, 2004; Boels, Mason, Skinner 2006]

[Mason, Skinner, 2010]

• Construction of higher BPS operators in twistor space [Staudacher et al. , Sokatchev et al. 2016 ]



𝔻(x, y, θ+) = ∫ Dα Dβ e ∫CP1|2 d2ψ α(λ,ψ) (∂̄+𝖠+δ1|2
μ,λ ) β(λ,ψ)

= det(1−y . Φ(x))+ all susy descendants

𝕆(x, y, θ+) =
∞

∑
n=1

∫
n

∏
i=1

⟨λidλi⟩ d2ψi Δ12μΔ23μ⋯Δn1μ × Tr(𝖠1𝖠2 ⋯ 𝖠n)
CP1|2

⟨β1α2⟩ ≡ Δ12μ = 1 + R12μ⏞
(λ1, ψ1) (λ2, ψ2) (λ3, ψ3) μ

CP1|2

• We add susy   to the twistor line  and a mass term:ψb = λα (θ−)α b CP1 → CP1|2

• We can integrate-out  using their  propagator:α, β CP1|2

Half-BPS Determinant operator

R123 =
δ0|2(ψ1 ⟨λ2λ3⟩+ψ2 ⟨λ1λ2⟩+ψ3 ⟨λ1λ2⟩)

⟨λ1λ2⟩⟨λ1λ3⟩⟨λ2λ1⟩

• A series of infinite single-trace vertices 



Correlation functions of determinants 
• The operators with support on  superlines interact through the bulk 

propagator of the gauge field on .
CP1|2

CP3|4

• Integrals over insertions on the  are easily 
carried out thanks to the delta function form of 
the  propagators 

CP1|2

CP3|4

• At large , the combinatorics of graphs grows 
with the number of operators and genus.  

Nc

• In the genus expansion, for each graph topology and for each pair of operators we 
obtain a geometric series of 4D scalar propagators 

The resummation gives an effective propagator with ten-dimensional denominator  
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ij + ⋯ =
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=
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• Spurious poles depending on reference twistor 
only disappeared and after summing all graphs

dij =
y2
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x2
ij



⟨𝔻(x1, y1, θ+
1 ) ⋯ 𝔻(xn, yn, θ+

n )⟩ = ∫ Dρ e
−Nc

n
∑
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• For matrix duality we integrate in and out auxiliary fields  
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Here we integrate-out  first!𝖠

Graph duality and matrix duality

• Model with multi-local vertices representing the 
faces of the original SDYM graphs. 

• This duality exchanges the roles of the numbers of colors  and determinants n. Nc
[Gopakumar 2010, 
Jiang, Komatsu, Vescovi, 2019]



Advantages of new matrix model 

• At large , the gaussian term is modified and the new effective propagator has a 
ten-dimensional denominator: 

Nc

• SUSY can be pull out from the determinant and added as corrections to the Gaussian:

⟨𝔻(x1, y1, θ+
1 ) ⋯ 𝔻(xK, yK, θ+

K )⟩ = ∫ Dρ e
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K
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Free from spurious poles
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⟨𝔻(x1, y1, θ+
1 ) ⋯ 𝔻(xK, yK, θ+

K )⟩ = (poly in Dij) * (superconformal invariants)

Some new results:

• Six-point NMHV correlator of determinants:                       with Dij =
y2

ij

x2
ij + y2

ij

[Chicherin, Doobary, Eden, Heslop ,Korchemsky , Sokatcheva, 2015]
• In the limit  the invariant reduces to the stress tensor case.y2

ij → 0



Outlook

• Relationship between Giant Graviton (our Determinant) and D-instanton that 
appears in the T-duality explanation of correlator- Wilson loop- amplitude triality. 

• String theory perspective on matrix duality

• Explore 10D null limit and connection to massive amplitudes

• Relax BPS condition y2
i = 0

Half-BPS
correlators

y2i = 0

Coulomb-branch
amplitudes

X2
i,i+1 = 0

Octagons O

?

[Alday, Maldacena  2007]
[Berkovits, Maldacena  2008]


