Spin chains and quantum symmetries in $\mathcal{N}=2$ SCFT

Konstantinos Zoubos

University of Pretoria

Integrability in Gauge and String Theory
ETH, Zurich
20/6/23
Based on arXiv: 2106.08449 (with E. Pomoni and R. Rabe) and ongoing work

Motivation

- Integrable spin chains are a useful tool in studying the spectrum of planar gauge theory
- The primary examples are maximally supersymmetric:
- 4d $\mathcal{N}=4$ SYM: One loop \leftrightarrow XXX Heisenberg chain [Minahan, Zarembo '02]
- 3d $\mathcal{N}=6$ ABJM theory: Two loops \leftrightarrow Alternating chain [Minahan, Zarembo '09]
- Some marginal deformations are integrable e.g. β-deformation of $\mathcal{N}=4$ SYM
- How about more general planar QFT's in four dimensions? What types of spin chains do we expect?
- We need the dilatation operator to be part of the symmetry algebra \Rightarrow Conformal Field Theory
- A very large class of CFT's can be obtained by orbifolding the $\mathcal{N}=4$ theory and then marginally deforming
- In this talk I will focus mainly on $\mathcal{N}=2$ SCFT's

Outline

- Review of the \mathbb{Z}_{2} orbifold SCFT \leftrightarrow dynamical spin chains
- Coordinate Bethe ansatz for dynamical chains
- Quantum symmetries for orbifold theories
- Interpretation as RSOS models

\mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ SYM

- Start with $\mathcal{N}=4$ SYM with $\operatorname{SU}(2 N)$ gauge group
- Project $(V, X, Y, Z) \rightarrow(V,-X,-Y, Z)$ in R-symmetry space
- Project by $[\cdots] \rightarrow \gamma[\cdots] \gamma$ in colour space, where

$$
\gamma=\left(\begin{array}{cc}
I_{N \times N} & 0 \\
0 & -I_{N \times N}
\end{array}\right)
$$

- End up with $\mathcal{N}=2 \mathrm{SYM}$ with $\operatorname{SU}(N)_{1} \times \operatorname{SU}(N)_{2}$ gauge group

$$
Z=\left(\begin{array}{cc}
Z_{11} & 0 \\
0 & Z_{22}
\end{array}\right), X=\left(\begin{array}{cc}
0 & X_{12} \\
X_{21} & 0
\end{array}\right), Y=\left(\begin{array}{cc}
0 & Y_{12} \\
Y_{21} & 0
\end{array}\right)
$$

- Z's adjoints, X, Y bifundamentals

\mathbb{Z}_{2} orbifold of $\mathcal{N}=4$ SYM

- Represent using a quiver diagram:

- Superpotential: $\mathcal{W}_{N=4}=\operatorname{ig} \operatorname{Tr}(X[Y, Z]) \rightarrow$

$$
\mathcal{W}_{N=2}=i g\left(\operatorname{Tr}_{2}\left(Y_{21} Z_{11} X_{12}-X_{21} Z_{11} Y_{12}\right)-\operatorname{Tr}_{1}\left(X_{12} Z_{22} Y_{21}-Y_{12} Z_{22} X_{21}\right)\right)
$$

- The \mathbb{Z}_{k} orbifold theory is integrable [Beisert,Roiban '05]
- More general ADE orbifolds [Solovyov '07]

Marginally deformed orbifold

- Move away from the orbifold point: $g_{1} \neq g_{2}$

$$
\mathcal{W}=i g_{1} \operatorname{Tr}_{2}\left(Y_{21} Z_{11} X_{12}-X_{21} Z_{11} Y_{12}\right)-i g_{2} \operatorname{Tr}_{1}\left(X_{12} Z_{22} Y_{21}-Y_{12} Z_{22} X_{21}\right)
$$

- Preserves $\mathcal{N}=2$ supersymmetry
- Studied in detail in [Gadde,Pomoni,Rastelli '10].
- E.g. X magnons in Z-vacuum:

$$
\cdots Z_{11} Z_{11} \stackrel{p_{1}}{\overrightarrow{X_{12}}} Z_{22} Z_{22} \cdots Z_{22} \stackrel{\rho_{2}}{X_{21}} Z_{11} Z_{11} \cdots Z_{11} \stackrel{p_{3}}{X_{12}} Z_{22} Z_{22} \cdots
$$

- The S-matrix for $X_{12} X_{21}$ scattering is XXZ-like

$$
S_{\kappa}\left(p_{1}, p_{2}\right)=-\frac{1-2 \kappa e^{i p_{1}}+e^{i\left(p_{1}+p_{2}\right)}}{1-2 \kappa e^{i p_{2}}+e^{i\left(p_{1}+p_{2}\right)}} \quad \text { where } \quad \kappa=\frac{g_{2}}{g_{1}}
$$

Marginally deformed orbifold

- For $X_{21} X_{12}$ scattering we have $S_{\kappa} \rightarrow S_{1 / \kappa}$
- The YBE is not satisfied!

$$
S_{\kappa} S_{1 / \kappa} S_{\kappa} \neq S_{1 / \kappa} S_{\kappa} S_{1 / \kappa}
$$

- Conclusion was that the deformed theory is not integrable
- We want to revisit this by better understanding the spin chain and its algebraic structure
- Will look separately at the unbroken $\operatorname{SU}(2)$ sector made up of X, Y fields and the " $\mathrm{SU}(2)$-like" sector made up of X, Z fields

XY sector: Diagrams

- F-term contributions to the Hamiltonian

- Will rescale by $g_{1} g_{2}$ and define $\kappa=g_{2} / g_{1}$.

XY sector: Hamiltonian

- $\mathcal{N}=2$ picture

$$
\mathcal{H}_{\ell, \ell+1}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \kappa^{-1} & -\kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & -\kappa^{-1} & \kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \kappa & -\kappa & 0 \\
0 & 0 & 0 & 0 & 0 & -\kappa & \kappa & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \quad \text { on: }\left(\begin{array}{c}
X_{12} X_{21} \\
X_{12} Y_{21} \\
Y_{12} X_{21} \\
Y_{12} Y_{21} \\
X_{21} X_{12} \\
X_{21} Y_{12} \\
Y_{21} X_{12} \\
Y_{21} Y_{12}
\end{array}\right)
$$

- "Dynamical $\mathcal{N}=4$ " picture

$$
\mathcal{H}_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa^{-1} & -\kappa^{-1} & 0 \\
0 & -\kappa^{-1} & \kappa^{-1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \mathcal{H}_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa & -\kappa & 0 \\
0 & -\kappa & \kappa & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { on: }\left(\begin{array}{c}
X X \\
X Y \\
Y X \\
Y Y
\end{array}\right)_{i}
$$

XZ sector: Diagrams

- F-term contributions to the Hamiltonian

- Will again rescale by $g_{1} g_{2}$ and define $\kappa=g_{2} / g_{1}$.

XZ sector: Hamiltonian

- $\mathcal{N}=2$ picture

$$
\mathcal{H}_{i, i+1}=\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & \kappa & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & \kappa^{-1} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \kappa^{-1} & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & \kappa & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \text { on: }\left(\begin{array}{c}
X_{12} X_{21} \\
X_{12} Z_{22} \\
Z_{11} X_{12} \\
Z_{11} Z_{11} \\
X_{21} X_{12} \\
X_{21} Z_{11} \\
Z_{22} X_{21} \\
Z_{22} Z_{22}
\end{array}\right)
$$

- "Dynamical $\mathcal{N}=4 "$ picture

$$
\mathcal{H}_{1}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa & -1 & 0 \\
0 & -1 & \kappa^{-1} & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \mathcal{H}_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & \kappa^{-1} & -1 & 0 \\
0 & -1 & \kappa & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { on: }\left(\begin{array}{c}
X X \\
X Z \\
Z X \\
Z Z
\end{array}\right)_{i}
$$

Dynamical spin chains

- The $X Y$ chain is strictly alternating:

- The $X Z$ chain is "dynamical": The Hamiltonian depends on the number of X 's crossed.

- Introduced a "dynamical" parameter taking two values $\lambda, \lambda^{\prime}$ (more later)
- $\lambda \leftrightarrow \lambda^{\prime}$ when crossing X, Y, unchanged when crossing Z

Alternating chains

- There is extensive condensed-matter literature on alternating chains, though mostly for the antiferromagnetic case
- A ferromagnetic alternating bond example is in [Sirker et al. '08]
- Alternating spin chains are mathematically very similar
- E.g. the bimetallic chain $\mathrm{MnNi}\left(\mathrm{NO}_{2}\right)_{4}(\mathrm{en})_{2}(\mathrm{en}=$ ethylenediamide $)$

[Feyerherm, Mathonière, Kahn, J. Phys. Condens. Matter 13, 2639 (2001)]
- Have been studied with various techniques such as the recursion method [Viswanath,Müller '94], also long-wavelength approximations [Huang et al. '91]

Outline

- Review of the \mathbb{Z}_{2} orbifold SCFT \leftrightarrow dynamical spin chains
- Coordinate Bethe ansatz for dynamical chains
- Quantum symmetries for orbifold theories
- Interpretation as RSOS models

XY sector: Spectrum

- Explicitly diagonalise the Hamiltonian for short chains

- Red: 3 magnons, Blue: 2 magnons, Green: 1 magnon
- Can we reproduce this from a Bethe ansatz?

XY sector: One magnon

- XXX case $(\kappa=1)$: Eigenstate $\mathcal{H}|p\rangle=E(p)|p\rangle$ if

$$
|p\rangle=\sum_{\ell} e^{i p \ell}|\ell\rangle \text { with } E(p)=2-2 \cos (p)
$$

- Alternating XXX case $(\kappa \neq 1)$:

$$
|p\rangle=\sum_{\ell \in 2 \mathbb{Z}} A_{e} e^{i p \ell}|\ell\rangle+\sum_{\ell \in 2 \mathbb{Z}+1} A_{o} e^{i p \ell}|\ell\rangle
$$

with

$$
r(p ; \kappa)=\frac{A_{o}(p)}{A_{e}(p)}=\frac{e^{i p} \sqrt{1+\kappa^{2} e^{-2 i p}}}{\sqrt{1+\kappa^{2} e^{2 i p}}}
$$

- Dispersion relation:

$$
E(p)=\frac{1}{\kappa}+\kappa \pm \frac{1}{\kappa} \sqrt{\left(1+\kappa^{2}\right)^{2}-4 \kappa^{2} \sin ^{2} p}
$$

- Naturally uniformised by elliptic functions

XY sector: Two magnons

- Split equations into non-interacting and interacting
- First solve the non-interacting equations
- Normally, the interacting equations require us to add a second term with swapped momenta

$$
\left|p_{1}, p_{2}\right\rangle=A\left(p_{1}, p_{2}\right) e^{i\left(\ell_{1} p_{1}+\ell_{2} p_{2}\right)}+A\left(p_{2}, p_{1}\right) e^{i\left(\ell_{1} p_{2}+\ell_{2} p_{1}\right)}
$$

- The ratio gives the S-matrix

$$
S=\frac{A\left(p_{2}, p_{1}\right)}{A\left(p_{1}, p_{2}\right)}
$$

- Our case is more complicated!
- Similar to chains studied in [Medved, Southern, Lavis '91]
- I will focus on the XY sector, but the XZ sector is similar

XY sector: Additional momenta

- Given $\left(p_{1}, p_{2}\right)$ need to add all other solutions allowed by momentum and energy conservation
- For XXX that is only $\left(p_{2}, p_{1}\right)$
- Here we also have $\left(k_{1}, k_{2}\right),\left(k_{2}, k_{1}\right)$

$$
p_{1}+p_{2}=k_{1}+k_{2}=K, E\left(p_{1}\right)+E\left(p_{2}\right)=E\left(k_{1}\right)+E\left(k_{2}\right)=E_{2}
$$

where

$$
k_{1,2}=\frac{K}{2} \pm \frac{\pi}{2} \mp \frac{1}{2} \arccos \left(\cos \left(p_{1}-p_{2}\right)+\frac{\left(E_{2}-2(\kappa+1 / \kappa)\right)^{2} \cos K}{2 \sin ^{2} K}\right)
$$

- k 's are not just permutations of the p's
- Violates Sutherland's criterion for quantum integrability
- Can be thought of as "discrete diffractive scattering" [Bibikov '16] \Rightarrow Can still have solvability

XY sector: Closed chains

- Can write a Bethe ansatz equation for two magnons
- E.g. Untwisted sector:

$$
e^{i L p_{1}}=-\frac{a\left(p_{1}, p_{2}\right)+\bar{x}\left(k_{1}, k_{2}\right) b\left(p_{1}, p_{2}\right)}{a\left(p_{2}, p_{1}\right)+\bar{x}\left(k_{1}, k_{2}\right) b\left(p_{2}, p_{1}\right)} .
$$

with

$$
\bar{x}\left(k_{1}, k_{2}\right)=-\frac{a\left(k_{1}, k_{2}\right)+a\left(k_{2}, k_{1}\right) e^{i L k_{1}}}{b\left(k_{1}, k_{2}\right)+b\left(k_{2}, k_{1}\right) e^{i L k_{1}}},
$$

where

$$
\begin{aligned}
& a\left(p_{1}, p_{2}, \kappa\right)=e^{i\left(p_{1}+p_{2}\right)}-2 e^{i p_{1}} r\left(p_{2}, \kappa\right)+r\left(p_{1}, \kappa\right) r\left(p_{2}, \kappa\right), \\
& b\left(p_{1}, p_{2}, \kappa\right)=1-2 e^{i p_{1}} r\left(p_{1}, \kappa\right)+r\left(p_{1}, \kappa\right) r\left(p_{2}, \kappa\right) e^{i\left(p_{1}+p_{2}\right)}
\end{aligned}
$$

- This is an algebraic equation in the p's
- Energies agree with explicit diagonalisation
- Extending to three or more magnons is challenging

3 magnons in the Z-vacuum

- Apply the above insights to the Z-vacuum
- Here the dispersion relation is much simpler: $E=\kappa+\kappa^{-1}-2 \cos p$
- 1, 2 magnons solved in [Gadde,Pomoni,Rastelli '10], 3-magnon was not known
- Can make progress in special kinematic limits, e.g: $p_{1}, p_{2}+p_{3}=\pi$
- Introduce additional momenta $k_{1}=p_{1}, k_{2}+k_{3}=\pi$
- $\left\{p_{1}, p_{2}, k_{3}\right\}$ 3-magnon problem can be solved [D. Bozkurt, E. Pomoni, ongoing]
- Interesting quasi-Hopf-like structure (Φ_{123} is a coassociator)

$$
S_{12} \Phi_{312} S_{13} \Phi_{132}^{-1} S_{23} \Phi_{123}=\Phi_{321} S_{23} \Phi_{231}^{-1} S_{13} \Phi_{213} S_{12}
$$

- Can be worthwhile to study non-associative scattering more generally

Quasi-Hopf YBE

Non-abelian orbifolds

- Simplest case: Binary dihedral group \hat{D}_{4}

- \hat{D}_{4} orbifold of $\operatorname{SU}(8 N)$

$$
\begin{aligned}
\mathcal{W}=2 g_{1} & \operatorname{Tr}_{1}\left(Z_{11} X_{15} Y_{51}\right)-2 g_{2} \operatorname{Tr}_{2}\left(Z_{22} Y_{25} X_{52}\right)+2 g_{3} \operatorname{Tr}_{3}\left(Z_{33} X_{35} Y_{53}\right)-2 g_{4} \operatorname{Tr}_{4}\left(Z_{44} Y_{45} X_{54}\right) \\
& +g_{5} \operatorname{Tr}_{5}\left(Z_{55}\left(X_{52} Y_{25}+X_{54} Y_{45}-Y_{51} X_{15}-Y_{53} X_{35}\right)\right)
\end{aligned}
$$

- 13 fields, 4 ratios of coupling constants $\kappa_{i}=g_{i} / g_{5}$

The \hat{D}_{4} spin chain

- Dynamical spin chain of quite peculiar type
- No X or Y vacua, only Z vacua. No nontrivial $\operatorname{SU}(2)$ sectors.
- Fields meeting at node 5 are purely reflected:

$$
H\left(X_{15} Y_{51}\right)=4 \kappa_{1}^{2} X_{15} Y_{51}
$$

- Fields meeting at the outer nodes scatter nontrivially:

$$
H\left(Y_{51} X_{15}\right)=\frac{1}{2}\left(Y_{51} X_{15}+Y_{53} X_{35}-X_{52} Y_{25}-X_{54} Y_{45}\right)
$$

- So far: coordinate Bethe ansatz for 2-magnon excitations around the Z vacuum [with J. Bath, ongoing].

Outline

- Review of the \mathbb{Z}_{2} orbifold SCFT \leftrightarrow dynamical spin chains
- Coordinate Bethe ansatz for dynamical chains
- Quantum symmetries for orbifold theories
- Interpretation as RSOS models

Quantum Symmetry

[work with E. Andriolo, H. Bertle, E. Pomoni and X. Zhang]

- Let us go back to the \mathbb{Z}_{2} case

- Naively, $\mathrm{SU}(4)_{R} \rightarrow \mathrm{SU}(2)_{L}^{i=1,2} \times \mathrm{SU}(2)_{R}^{i=3,4} \times \mathrm{U}(1)$
- Eight broken generators: $R_{3}^{1}, R_{4}^{1}, R_{3}^{2}, R_{4}^{2}+$ conjugates
- Relate fields which now belong to different $\operatorname{SU}(N) \times \operatorname{SU}(N)$ representations
- Claim: Can upgrade them to true generators in a quantum version of $\operatorname{SU}(4)_{R}$
- E.g. want to write: $R_{2}^{3} X_{\hat{a}}^{a}=Z_{a}^{a}, R_{3}^{2} Z_{a}^{a}=X_{\hat{a}}^{a}$

Quantum Symmetry

- Gauge indices of all fields to the right need to be flipped

$$
\cdots z_{11} X_{12} z_{22} Y_{21} X_{12} \cdots \xrightarrow{\Delta(\sigma Z Z)} \cdots z_{11} z_{11} z_{11} Y_{12} X_{21} \cdots
$$

- Can achieve this with a suitable coproduct \Rightarrow Quantum algebra
- Structure is that of a quantum groupoid [Lu '96, Xu '99]
- Path groupoid: Like a group, but not all compositions of elements are allowed. The allowed paths are those given by the quiver.
- Unbroken generators have the usual algebraic coproduct $\Delta_{0}(a)=I \otimes a+a \otimes I$
- However, for the broken generators we define:

$$
\Delta_{o}(a)=I \otimes a+a \otimes \gamma, \text { where } \gamma\left(X_{i}\right)=X_{i+1}
$$

- To complete the algebra we also need $\Delta(\gamma)=\gamma \otimes \gamma$

Twist

- Can move away from the orbifold point by a Drinfeld twist

$$
\Delta(a)=F \Delta_{o}(a) F^{-1}
$$

- We require that Δ preserves the F-term relations:

$$
\Delta\left(\sigma_{ \pm}^{X Z}\right) \triangleright\left(X_{12} Z_{22}-\frac{1}{\kappa} Z_{11} X_{12}\right)=0
$$

- A suitable twist is:

$$
F=I \otimes \kappa^{-\frac{s}{2}} \text { where } s=\left\{\begin{array}{cl}
1 & \text { if the gauge index is } 1 \\
-1 & \text { if the gauge index is } 2
\end{array}\right.
$$

- Recall that γ flips the gauge index $\Rightarrow \boldsymbol{s} \circ \gamma=-\gamma \circ s$

Twisted coproduct

- Twisting the unbroken generators has no effect:

$$
\Delta\left(\sigma_{3}\right)=\left(I \otimes \kappa^{-\frac{s}{2}}\right)\left(I \otimes \sigma_{3}+\sigma_{3} \otimes I\right)\left(I \otimes \kappa^{\frac{s}{2}}\right)=\left(I \otimes \sigma_{3}+\sigma_{3} \otimes I\right)
$$

- But on the broken generators we find:

$$
\Delta\left(\sigma_{ \pm}\right)=\left(I \otimes \kappa^{-\frac{s}{2}}\right)\left(I \otimes \sigma_{ \pm}+\sigma_{ \pm} \otimes \gamma\right)\left(I \otimes \kappa^{\frac{s}{2}}\right)=\left(I \otimes \sigma_{ \pm}+\sigma_{ \pm} \otimes \gamma \kappa^{s}\right)
$$

- Defining $K=\gamma \kappa^{s}$, and also $\Delta_{o}(s)=s \otimes I$, our final coproducts are:

$$
\Delta\left(\sigma_{ \pm}\right)=I \otimes \sigma_{ \pm}+\sigma_{ \pm} \otimes K, \Delta(K)=K \otimes K
$$

- $K^{2}=1 \Rightarrow$ Compatibility of the coproduct with the algebra product

$$
\Delta\left(\left[\sigma_{+}, \sigma_{-}\right]\right)=\left[\Delta\left(\sigma_{+}\right), \Delta\left(\sigma_{-}\right)\right]
$$

- The $\mathrm{SU}(2)$ commutation relations are not deformed, unlike in $U_{q}(\mathrm{sl}(2))$

Iterated coproduct

- The twist satisfies the cocycle condition

$$
F_{12} \circ\left(\Delta_{0} \otimes \mathrm{id}\right)(F)=F_{23} \circ\left(\mathrm{id} \otimes \Delta_{0}\right)(F)=: F_{(3)}
$$

giving

$$
\Delta^{(3)}(a)=F_{(3)} \Delta_{o}^{(3)}(a) F_{(3)}^{-1}=I \otimes I \otimes a+I \otimes a \otimes K+a \otimes K \otimes K
$$

- Similarly we find the L-site coproduct for the broken/revived generators:

$$
\Delta^{(L)}(a)=\sum_{i} \cdots I \otimes I \otimes a_{i} \otimes K \otimes K \cdots
$$

- By construction, the coproduct preserves the quantum plane relations
- The superpotential is now invariant under all $\operatorname{SU}(3)$ generators

$$
\Delta^{(3)}\left(\sigma_{ \pm, 3}^{X Y}\right) \triangleright \mathcal{W}=\Delta^{(3)}\left(\sigma_{ \pm, 3}^{X Z}\right) \triangleright \mathcal{W}=\Delta^{(3)}\left(\sigma_{ \pm, 3}^{Y Z}\right) \triangleright \mathcal{W}=0
$$

Is this useful?

- The Hamiltonian does not commute with $\Delta(a)$ (for the broken a's).
- So we do not expect κ-deformed multiplets to map 1-1 to eigenstates of the Hamiltonian
- Let us make an analogy to the Algebraic Bethe Ansatz and assume there exists an R-matrix $R(u)$, depending on a spectral parameter u
- Our twist is in the quantum plane limit ($u \rightarrow \infty$ for rational integrable models)
- The full twist will also be u-dependent, such that

$$
R(u, \kappa)=F(u)_{21} R(u, \kappa=1) F(u)_{12}^{-1}
$$

- So we expect a different twist/coproduct for each u (i.e. each eigenvalue of \mathcal{H})
- For BPS states, it turns out that $\Delta^{B P S}(a, \kappa)=\Delta(a, 1 / \kappa)$.
- Agrees with the direct diagonalisation in [Gadde,Pomoni,Rastelli '10]

Example: BPS spectrum

$$
\downarrow
$$

- To get a closed eigenstate, add the state with $\left\{1 \leftrightarrow 2, \kappa \leftrightarrow \kappa^{-1}\right\}$ and impose cyclicity. We find the following BPS state:

$$
\kappa \operatorname{Tr}_{1}\left(X_{12} X_{21} Z_{11} Z_{11}\right)+\operatorname{Tr}_{1}\left(X_{12} Z_{22} X_{21} Z_{11}\right)+\frac{1}{\kappa} \operatorname{Tr}_{1}\left(X_{12} Z_{22} Z_{22} X_{21}\right)
$$

- This state is not protected by $\mathcal{N}=2$ supersymmetry. The fact that it still has $E=0$ is a consequence of the quantum symmetry

$$
\begin{aligned}
& x_{12} x_{21} x_{12} x_{21} \\
& \Delta^{B P S}\left(\sigma_{-}^{X Z}\right) \\
& X_{12} X_{21} X_{12} Z_{22}+{ }_{\kappa} X_{12} X_{21} Z_{11} X_{12}+X_{12} Z_{22} X_{21} X_{12}+\kappa Z_{11} X_{12} X_{21} X_{12} \\
& \Delta^{B P S}\left(\sigma_{-}^{x Z}\right) \\
& { }_{\kappa} X_{12} X_{21} z_{11} z_{11}+X_{12} z_{22} X_{21} z_{11}+\frac{1}{\kappa} X_{12} z_{22} z_{22} X_{21}+\kappa Z_{11} X_{12} X_{21} z_{11}+Z_{11} X_{12} z_{22} X_{21}+\kappa Z_{11} z_{11} X_{12} X_{21}
\end{aligned}
$$

Twisted SU(4) groupoid

- We have extended this to multiplets in the full deformed $\mathrm{SU}(4)$ sector [Andriolo, Bertle, Pomoni, Zhang, KZ, to appear]
- Mainly focused on $L=2\left(\mathbf{2 0}^{\prime}, \mathbf{1 5}\right)$ and $L=3(50,10)$ etc.
- The non-BPS multiplets of the closed Hamiltonian at $\kappa=1$ break up into several multiplets as $\kappa \neq 1$
- Main idea: Can partially untwist the Hamiltonian to make the open multiplets agree with those at the orbifold point, while leaving the closed spectrum unchanged. Schematically:

$$
R^{\prime}(u, \kappa)=G(u)_{21} R(u, \kappa) G(u)_{12}^{-1} \Rightarrow H_{\text {open }}^{\prime}=H_{\text {open }}+\delta H_{\text {open }} \quad\left(\text { but } H_{c}^{\prime}=H_{c}\right)
$$

- In this basis the splitting is only due to the closed boundary conditions
- First step towards constructing $R(u)$

Outline

- Review of the \mathbb{Z}_{2} orbifold SCFT \leftrightarrow dynamical spin chains
- Coordinate Bethe ansatz for dynamical chains
- Quantum symmetries for orbifold theories
- Interpretation as RSOS models

RSOS models

$$
a \square_{b}^{d}=W\left(\left.\begin{array}{ll}
d & c \\
a & b
\end{array} \right\rvert\, u\right)
$$

- Lattice models where the Boltzmann weights depend on labels around each face (called heights)
- Introduced in [Andrews, Baxter, Forrester '84]
- Original model related to elliptic XYZ spin chain

$$
\begin{aligned}
& W\left(\begin{array}{cc|c}
a & a+1 & a \\
a+1 & a+2 & \mid u
\end{array}\right)=w\left(\left.\begin{array}{cc|}
a & a-1 \\
a-1 & a-2
\end{array} \right\rvert\, u\right)=\frac{\theta_{1}(2 \eta-u)}{\theta_{1}(2 \eta)} \\
& w\left(\left.\begin{array}{cc}
a & a+1 \\
a-1 & a
\end{array} \right\rvert\, u\right)=w\left(\left.\begin{array}{cc}
a & a-1 \\
a+1 & a
\end{array} \right\rvert\, u\right)=\frac{\sqrt{\theta_{1}\left(2 \eta(a-1)+w_{0}\right) \theta_{1}\left(2 \eta(a+1)+w_{0}\right)}}{\theta_{1}\left(2 \eta a+w_{0}\right)} \frac{\theta_{1}(u)}{\theta_{1}(2 \eta)} \\
& W\left(\left.\begin{array}{cc}
a & a+1 \\
a+1 & a
\end{array} \right\rvert\, u\right)=\frac{\theta_{1}\left(2 \eta a+w_{0}+u\right)}{\theta_{1}\left(2 \eta a+w_{0}\right)}, w\left(\begin{array}{cc}
a & a-1 \\
a-1 & a
\end{array} u\right)=\frac{\theta_{1}\left(2 \eta a+w_{0}-u\right)}{\theta_{1}\left(2 \eta a+w_{0}\right)}
\end{aligned}
$$

- Neighbouring heights related by $|a-b|=1$.

RSOS models

- The ABF weights satisfy the Star-Triangle relation

$$
\begin{aligned}
& \sum_{g} w\left(\begin{array}{ll|l}
f & g & \mid z-w \\
a & b &
\end{array}\right) w\left(\left.\begin{array}{ll|}
g & d \\
b & c
\end{array} \right\rvert\, z\right) w\left(\begin{array}{lll}
f & e & \\
g & d & w
\end{array}\right) \\
& =\sum_{g} w\left(\left.\begin{array}{ll}
a & g \\
b & c
\end{array} \right\rvert\, w\right) w\left(\left.\begin{array}{ll}
f & e \\
a & g
\end{array} \right\rvert\, z\right) w\left(\begin{array}{ll|l}
e & d & \\
g & c & \mid z-w
\end{array}\right),
\end{aligned}
$$

or pictorially:

- Guarantees $\left[T(u), T\left(u^{\prime}\right)\right]=0 \Rightarrow$ integrability of the model

Adjacency diagrams

- SOS: Range of heights is unrestricted
- RSOS: The heights take values in an interval, $a=1, \ldots, N$
- More generally can draw an adjacency/incidence diagram
- Any ADE Dynkin diagram can be the incidence diagram for a critical RSOS model [Pasquier '86]
- Generalisations [Di Francesco, Zuber '90, Roche '90, Fendley,Ginparg '89]
- Cyclic SOS models [Pearce, Seaton '88, '89, Kuniba, Yajima '88]: $a_{m a x}+1=a_{1}$
- Examples: A_{3} (Ising model), $A_{2}^{(1)}$

Dilute RSOS models

- Can relax the $|a-b|=1$ condition to $|a-b| \leq 1$
- Additional Boltzmann weights

$$
\begin{aligned}
& W\left(\left.\begin{array}{cc}
d & d \pm 1 \\
d \pm 1 & d \pm 1
\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}
d & d \\
d & d \pm 1
\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}
d & d \pm 1 \\
d & d
\end{array} \right\rvert\, u\right), w\left(\left.\begin{array}{cc}
d & d \\
d \pm 1 & d
\end{array} \right\rvert\, u\right), \\
& w\left(\left.\begin{array}{cc}
d & d \\
d \pm 1 & d \pm 1
\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{ll}
d & d \pm 1 \\
d & d \pm 1
\end{array} \right\rvert\, u\right), W\left(\left.\begin{array}{cc}
d & d \\
d & d
\end{array} \right\rvert\, u\right)
\end{aligned}
$$

- Such models are called "dilute" [Nienhuis '90,Kostov '91, Warnaar, Nienhuis, Seaton '92, Roche '92, Warnaar '93, Warnaar, Pearce, Seaton, Nienhuis '94, Behrend, Pearce '97]
- Notation comes through the link to loop models
- "Domain walls" separating different values of d

Face-vertex map

- RSOS and vertex models can be mapped to each other
- Graphically:

- For $\operatorname{SU}(2)$ ABF case introduced by [Felder '94]
- The R-matrix depends on dynamical parameter $\lambda=-2 \eta d$
- Satisfies a dynamical Yang-Baxter equation

$$
\begin{aligned}
& R_{23}\left(u_{2}-u_{3} ; \lambda\right) R_{13}\left(u_{1}-u_{3} ; \lambda+2 \eta h^{(2)}\right) R_{12}\left(u_{1}-u_{2} ; \lambda\right) \\
& \quad=R_{12}\left(u_{1}-u_{2} ; \lambda+2 \eta h^{(3)}\right) R_{13}\left(u_{1}-u_{3} ; \lambda\right) R_{23}\left(u_{2}-u_{3} ; \lambda+2 \eta h^{(1)}\right) .
\end{aligned}
$$

The dynamical YBE

- λ is shifted every time a line is crossed

- Dynamical Yang-Baxter equation:

- See also [Yagi '15,17] for other applications to quiver theories

Relation to the Z_{2} quiver theory

- Our claim: The $\mathrm{SU}(3)$ sector of the interpolating theory is the vertex model corresponding to a dilute CSOS model
- The dynamical parameter/left height tracks the gauge coupling
- Crossing $X, Y: \lambda \rightarrow \lambda \pm 2 \eta$
- Crossing Z : λ unchanged (dilute)
- $\lambda \sim \lambda \pm 4 \eta$ (cyclic)
- In the RSOS model the cyclicity means that the weights are invariant under $d \rightarrow d \pm 2$

Dynamical 15-vertex model

XXX spin chain as a dilute CSOS model

- Need 3 heights $d=1,2,3$, identify $0 \sim 3,4 \sim 1$
- Use standard SU(3) Heisenberg R-matrix

$$
R(u)=\frac{1}{u+i}(u l+i P)
$$

- Non-dynamical: $R(u)$ doesn't depend on d.
- Star-triangle relation is satisfied
- We have a 3-1 map from the XXX spin chain to a face model

Extension to a 27-vertex model

- The construction naturally allows 12 more vertices

- These interactions are not allowed by $\mathcal{N}=2,4$ SUSY
- Present in $\mathcal{N}=1$ SCFT's (e.g. Leigh-Strassler)

$$
\mathcal{W}_{L S}=\kappa \operatorname{Tr}\left(X[Y, Z]_{q}+\frac{h}{3}\left((X)^{3}+(Y)^{3}+(Z)^{3}\right)\right)
$$

- Quasi-Hopf symmetry [Dlamini-KZ '19]: Expect a quasi-Hopf version of star-triangle relation

Quasi-Hopf star-triangle relation

(Last Φ on left and first Φ on right not shown)

\mathbb{Z}_{2} orbifold as a dilute CSOS model

- We define an RSOS/dynamical 15-vertex model as above
- Now the allowed heights are $d=1, \ldots, 6$
- Dynamical: $R(u, \kappa)$ for d odd, $R(u, 1 / \kappa)$ for d even
- Expect elliptic dependence on u
- Can the star-triangle relation be satisfied with this input?

Generalisations

- For Z_{k} orbifolds, we just need $3 k$ heights
- Every k heights have equal Boltzmann weights
- For $\mathcal{N}=1$ theories, we can extend to a 19-vertex model

- Vertices such as $X Z \rightarrow Y Y$ are not possible for $k>1$
- Conjecture: Spin chains for a large class of $\mathcal{N}=1$ quiver theories are described by dynamical 19-vertex models, while those for $\mathcal{N}=2$ quiver theories are described by dynamical 15-vertex models

Summary

- Spin chains for $\mathcal{N}=2$ orbifold theories are dynamical
- Magnon scattering can get complicated and intricate
- Showed the 2-magnon CBA for the X and Z vacuum
- The 3-magnon CBA for the Z vacuum is tractable
- The \hat{D}_{4} orbifold theory brings in even more unusual features
- The naively broken $\operatorname{SU}(4)_{R}$ generators are not lost but can be upgraded to generators of a quantum groupoid
- We have been studying short chains with the goal of better understanding the implications of this quantum symmetry
- There is a link between supersymmetric gauge theories and dilute RSOS models which we are starting to uncover

Outlook

- Unrestricted three-magnon problem, also for X vacuum
- Integrability? Solvability?
- Fully understand the quantum group symmetries, extend to full $\operatorname{PSU}(2,2 \mid 4)$
- Clarify links to elliptic quantum groups (Felder)
- Find Boltzmann weights realising the required adjacency graphs
- Generalise to Z_{k} and more general ADE quivers (expect higher-genus theta functions to appear)
- Higher loops? Supergravity side?
- Lessons from link to RSOS models? How general is the mapping of gauge theories to statistical models?

Thanks for your attention!

