Root-TT Deformations

(Based on 2206.10515, 2209.14274, 2304.08723)

Christian Ferko

Center for Quantum Mathematics and Physics (QMAP) Department of Physics \& Astronomy, UC Davis

Integrability in Gauge and String Theory (IGST) ETH Zürich
June 22, 2023

Motivation: nice deformations.

We like integrability because it allows us to compute things exactly.
Better yet, integrability-preserving deformations give us infinite families of integrable theories when we deform appropriate seed theories.

We will be interested in an even nicer subclass of deformations which are:
(1) universal, in the sense that they can be applied to any member of a large class of theories;
(2) symmetry-preserving, so that they leave desirable properties of the seed theory (like integrability or supersymmetry) intact; and
(3) solvable, which means that we can compute quantities in the deformed theory in terms of those in the undeformed theory.

Integrable vs. solvable.
Theory Space

- integrable def.
- solvable def.

Non-integrable So

$$
O_{0}=E_{n}, \hat{S}, Z_{, \ldots}
$$

$$
O_{\lambda}=f\left(O_{0}\right)
$$

Stress tensor deformations.

We can achieve property (1), universality, by deforming a QFT using an integrated local operator constructed from the stress-energy tensor:

$$
S_{0} \longrightarrow S_{0}+\lambda \int d^{d} x \mathcal{O}(x), \quad \mathcal{O}=f\left(T_{\mu \nu}\right)
$$

Every translation-invariant field theory admits a stress tensor $T_{\mu \nu}$.
Thus we can always consider a deformation of this form, for any scalar function $f\left(T_{\mu \nu}\right)$ and any seed action S_{0}, at least classically.

Example. If $f\left(T_{\mu \nu}\right)=T_{\mu}^{\mu}$ is the trace of the stress tensor, then this deformation is a scale transformation, which is always well-defined.

Quantum deformations.

So far we have only discussed classical deformations of the action. Not all such deformations exist in the quantum theory.

A famous solvable deformation which does exist quantum mechanically is $T \bar{T}$. This was nicely introduced in Horatiu's talk.

In any translation-invariant $2 d$ QFT there is an operator

$$
\mathcal{O}_{T \bar{T}}(x)=\lim _{y \rightarrow x}\left(T^{\mu \nu}(x) T_{\mu \nu}(y)-T_{\mu}^{\mu}(x) T_{\nu}^{\nu}(y)\right) .
$$

Despite involving a coincident-point limit of local operators, this point-splitting procedure gives a well-defined result [Zamolodchikov 2004].

One can therefore deform any translation-invariant $2 d$ QFT by this operator $\mathcal{O}_{T \bar{T}}$, even at the quantum level.

Solvability of $T \bar{T}$.

The $T \bar{T}$ deformation is solvable in the sense described before.

Observables like the spectrum, torus partition function, and S-matrix of a $T \bar{T}$-deformed theory can be expressed in terms of undeformed quantities.

As an example, consider the spectrum of energies $E_{n}(R)$ for a $2 d$ QFT on a cylinder of radius R :

Flow equation for energies.

Suppose that we deform the theory by

$$
\frac{\partial S}{\partial \lambda}=\frac{1}{2} \int d^{2} x\left(T_{\mu \nu}^{(\lambda)} T^{(\lambda) \mu \nu}-\left(T_{\mu}^{(\lambda) \mu}\right)^{2}\right)
$$

Using the expressions

$$
T_{y y}=-\frac{1}{R} E_{n}(R), \quad T_{x x}=-\frac{\partial E_{n}(R)}{\partial R}, \quad T_{x y}=\frac{i}{R} P_{n}(R)
$$

for stress tensor components, one finds that the spectrum flows according to the inviscid Burgers' equation,

$$
\frac{\partial E_{n}}{\partial \lambda}=E_{n} \frac{\partial E_{n}}{\partial R}+\frac{P_{n}^{2}}{R}
$$

as explained in [Cavaglià, Negro, Szécsényi, Tateo '16].

Connections to string theory.

One way to see that $T \bar{T}$ is related to string theory is to solve the flow equation for the Lagrangian beginning from a seed theory

$$
\mathcal{L}_{0}=\frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi
$$

which gives

$$
\mathcal{L}_{\lambda}=\frac{1}{2 \lambda}\left(1-\sqrt{1-2 \lambda \partial^{\mu} \phi \partial_{\mu} \phi}\right) .
$$

This is the Lagrangian for a static gauge Nambu-Goto string with a three-dimensional target space [Cavaglià, Negro, Szécsényi, Tateo '16].

The ability to find a closed-form expression for the deformed Lagrangian is another incarnation of solvability.

Are there other such deformations?

We want other universal, symmetry-preserving, solvable deformations.
We would especially like a multi-parameter family ${ }^{*}$ extending $T \bar{T}$:

$$
\partial_{\lambda} S(\lambda, \gamma)=\int d^{2} \times \mathcal{O}_{T \bar{T}}, \quad \partial_{\gamma} S(\lambda, \gamma)=\int d^{2} \times \mathcal{O}_{\text {new }}
$$

If S is a smooth function of λ and γ, then $\partial_{\lambda} \partial_{\gamma} S=\partial_{\gamma} \partial_{\lambda} S$.

*As Jules said in his talk on Monday: "if you can deform in two ways simultaneously, you learn even more."

Roadmap.

We will be led to propose and study a marginal stress tensor deformation,

$$
\mathcal{R} \sim \sqrt{T^{\mu \nu} T_{\mu \nu}-\frac{1}{2}\left(T_{\mu}^{\mu}\right)^{2}} .
$$

of $2 d$ field theories. We call this the root- $\boldsymbol{T} \bar{T}$ deformation.
The plan is as follows:
\checkmark Part 1: Introduction and context.
\square Part 2: Stress tensor flows for PCM-like models.
\square Part 3: A root- $T \bar{T}$ deformed spectrum from holography.
\square Part 4: Summary and future directions.
This concludes the comprehensible portion of the talk. Please ask questions.

Part 2: Stress tensor flows for PCM-like models.

Sigma models.

Let us think about stress tensor deformations in the playground of integrable $2 d$ sigma models like the principal chiral model (PCM).

Let $g(x, t) \in G$ be a group-valued field and define the left-invariant current

$$
j_{\mu}=g^{-1} \partial_{\mu} g \in \mathfrak{g} .
$$

We will sometimes use light-cone coordinates

$$
x^{ \pm}=\frac{1}{2}(t \pm x)
$$

as in Riccardo's talk, and write the components of j_{μ} as $j_{ \pm}$.
The usual PCM has

$$
\mathcal{L} \sim \operatorname{tr}\left[j_{+} j_{-}\right], \quad T_{ \pm \pm} \sim \operatorname{tr}\left[j_{ \pm} j_{ \pm}\right] .
$$

PCM-like theories.

We focus on stress tensor deformations of the PCM and related models; these have Lagrangians that can be written in terms of quantities like

$$
\operatorname{tr}\left[j_{\mu} j_{\nu}\right],
$$

but not traces with more fields, such as $\operatorname{tr}\left[j_{\mu} j_{\nu} j_{\rho}\right]$.
Any Lorentz invariant constructed from traces of products of two j_{μ} can be written as a function of the basis elements

$$
x_{1}=-\operatorname{tr}\left[j_{+} j_{-}\right], \quad x_{2}=\frac{1}{2}\left(\operatorname{tr}\left[j_{+} j_{+}\right] \operatorname{tr}\left[j_{-} j_{-}\right]+\left(\operatorname{tr}\left[j_{+} j_{-}\right]\right)^{2}\right) .
$$

Let us refer to any Lagrangian

$$
\mathcal{L}\left(x_{1}, x_{2}\right)
$$

as a PCM-like model. If $\mathcal{L} \sim x_{1}$, this is the usual principal chiral model.

Modified equations of motion.

For the PCM, the current j_{μ} is flat (by the Maurer-Cartan identity) and conserved (by the equation of motion). It is easy to write down a Lax

$$
\mathfrak{L}_{ \pm}=\frac{j_{ \pm}}{1 \mp z}
$$

Flatness of this Lax for any z is equivalent to the equations of motion.
For a general PCM-like model $\mathcal{L}\left(x_{1}, x_{2}\right)$, the equation of motion is

$$
\partial^{\mu} \mathfrak{J}_{\mu}=0, \quad \mathfrak{J}_{\mu}=2 \frac{\partial \mathcal{L}}{\partial x_{1}} j_{\mu}+4 \frac{\partial \mathcal{L}}{\partial x_{2}} \operatorname{tr}\left[j_{\mu} j^{\rho}\right] j_{\rho}
$$

Thus j_{μ} is flat but not conserved, and \mathfrak{J}_{μ} is conserved but not flat.

Classical integrability.

Claim 1. Given any PCM-like model with Lagrangian $\mathcal{L}\left(x_{1}, x_{2}\right)$ which, up to overall scaling, satisfies the differential equation

$$
\left(\frac{\partial \mathcal{L}}{\partial x_{1}}+x_{1} \frac{\partial \mathcal{L}}{\partial x_{2}}\right)^{2}-\left(\frac{\partial \mathcal{L}}{\partial x_{2}}\right)^{2}\left(2 x_{2}-x_{1}^{2}\right)=1
$$

the equations of motion are equivalent to flatness of the Lax connection

$$
\mathfrak{L}_{ \pm}=\frac{j_{ \pm} \pm z \mathfrak{J}_{ \pm}}{1-z^{2}}
$$

for any value of the spectral parameter z, where \mathfrak{J}_{μ} is the current whose conservation expresses the equation of motion.

Commutator magic.

Why is claim 1 true? Equation (\star) implies nice relations for commutators:

$$
\begin{aligned}
{\left[\mathfrak{J}_{+}, \mathfrak{J}_{-}\right] } & \sim\left(\left(\frac{\partial \mathcal{L}}{\partial x_{1}}+x_{1} \frac{\partial \mathcal{L}}{\partial x_{2}}\right)^{2}-\left(\frac{\partial \mathcal{L}}{\partial x_{2}}\right)^{2}\left(2 x_{2}-x_{1}^{2}\right)\right)\left[j_{+}, j_{-}\right] \\
& \sim\left[j_{+}, j_{-}\right]
\end{aligned}
$$

and

$$
\left[\mathfrak{J}_{+}, j_{-}\right]=\left[j_{+}, \mathfrak{J}_{-}\right] .
$$

Using these relations, it is straightforward to check that the Lax works.

Deforming PCM-like models.

Now suppose that we deform a PCM-like model by a function of the stress tensor. That is, consider a one-parameter family of theories \mathcal{L}_{λ} obeying

$$
\frac{\partial \mathcal{L}_{\lambda}}{\partial \lambda}=f\left(T_{\mu \nu}^{(\lambda)}\right)
$$

where f is any scalar constructed from the stress tensor $T_{\mu \nu}^{(\lambda)}$ of \mathcal{L}_{λ}.
Claim 2. If the initial theory \mathcal{L}_{0} at $\lambda=0$ satisfies the partial differential equation (\star) then so does \mathcal{L}_{λ} for any λ and function f.

Therefore any stress tensor deformation preserves classical integrability for these models, and we can write down the Lax explicitly in terms of \mathcal{L}.

Is any deformation special?

This result makes it sound like all stress tensor deformations are "equally good" for the purposes of classical integrability of PCM-like models.

However, let us return to the motivation of multi-parameter families:

We know that $T \bar{T}$ is special because it exists quantum-mechanically.
Question. Is there a marginal $\mathcal{O}_{\text {new }}=f\left(T_{\mu \nu}\right)$ which commutes with $T \bar{T}$ for PCM-like models, giving a two-parameter family of Lax connections?

Root- $T \bar{T}$ appears.

Answer. There is a unique marginal $f\left(T_{\mu \nu}\right)$ which commutes with $T \bar{T}$,

$$
\mathcal{R} \sim \sqrt{T^{\mu \nu} T_{\mu \nu}-\frac{1}{2}\left(T^{\mu}{ }_{\mu}\right)^{2}} .
$$

This is the root- $T \bar{T}$ operator studied in [CF, Sfondrini, Smith, Tartaglino Mazzucchelli '22]. It preserves classical conformal invariance when applied to a CFT seed, unlike $T \bar{T}$.

An example Lagrangian flow.

To build intuition, let us solve the flow equation

$$
\frac{\partial S}{\partial \gamma}=\frac{1}{\sqrt{2}} \int d^{2} \times \mathcal{R}=\int d^{2} x \sqrt{\frac{1}{2} T(\gamma) \mu \nu} T_{\mu \nu}^{(\gamma)}-\frac{1}{4}\left(T_{\mu}^{(\gamma) \mu}\right)^{2}
$$

with initial condition

$$
\mathcal{L}_{0}=-\operatorname{tr}\left[j_{+} j_{-}\right] .
$$

The result is

$$
S_{\gamma}=\int d^{2} x\left(-\cosh (\gamma) \operatorname{tr}\left[j_{+} j_{-}\right]+\sinh (\gamma) \sqrt{\operatorname{tr}\left[j_{+} j_{+}\right] \operatorname{tr}\left[j_{-} j_{-}\right]}\right)
$$

The argument of the square root is, in complex coordinates, exactly $T \bar{T}$.

Beyond PCM.

This talk focused on the simplest case of the PCM.
In [Borsato, CF, Sfondrini '22] we show that integrable two-parameter $T \bar{T}$ and root- $T \bar{T}$ flows exist for
(1) PCM with WZ term;
(2) symmetric space sigma model (with WZ term);
(3) semi-symmetric space sigma model (with WZ term).

This result singles out root- $T \bar{T}$ as the unique marginal deformation which gives rise to integrable two-parameter families along with $T \bar{T}$ for this (fairly large) class of examples.

Part 3: A root- $\bar{T} \bar{T}$ deformed spectrum from holography.

Energy flow for root- $T \bar{T}$?

We have seen that root- $T \bar{T}$ has some nice properties, such as universality, preserving integrability, and commuting with $T \bar{T}$.

What about solvability?
For instance, is there any analogue of the energy flow equation

$$
\frac{\partial E_{n}}{\partial \lambda}=E_{n} \frac{\partial E_{n}}{\partial R}+\frac{P_{n}^{2}}{R}
$$

associated with the $T \bar{T}$ deformation, for the root- $T \bar{T}$ flow?

A naïve approach.

To set expectations, let us look for a candidate flow equation for a root- $T \bar{T}$ deformed field theory on a cylinder of radius R as follows.

Question. Does there exist any differential equation of the form

$$
\frac{\partial E_{n}(R)}{\partial \gamma}=f\left(E_{n}, \partial_{R} E_{n}, P_{n}\right)
$$

with the following properties?
(1) The flow is generated by a marginal stress tensor deformation, so γ is dimensionless and f is a Lorentz scalar constructed from $T_{\mu \nu}$;
(2) the momentum P_{n} is undeformed, so $P_{n}(\gamma)=P_{n}(0)$; and
(3) the flow gives a two-parameter family of commuting deformations with the inviscid Burgers' equation of $T \bar{T}$.

Candidate root- $T \bar{T}$ energy flow.

Answer. There exists a unique differential equation with these properties,

$$
\frac{\partial E_{n}}{\partial \gamma}=\sqrt{\frac{1}{4}\left(E_{n}-R \frac{\partial E_{n}}{\partial R}\right)^{2}-P_{n}^{2}}
$$

The right side is exactly the root- $T \bar{T}$ operator \mathcal{R} when components of $T_{\mu \nu}$ are expressed in terms of energies and momenta:

$$
T_{y y}=-\frac{1}{R} E_{n}(R), \quad T_{x x}=-\frac{\partial E_{n}(R)}{\partial R}, \quad T_{x y}=\frac{i}{R} P_{n}(R)
$$

Deformed spectrum for CFT seed.

Suppose that we root- $T \bar{T}$ deform the spectrum of a CFT on a cylinder of radius R. All energies and momenta scale like

$$
E_{n}=\frac{a_{n}}{R}, \quad P_{n}=\frac{b_{n}}{R},
$$

for dimensionless constants a_{n}, b_{n}. One can solve the flow and find

$$
E_{n}(\gamma)=\cosh (\gamma) E_{n}+\sinh (\gamma) \sqrt{E_{n}^{2}-P_{n}^{2}}
$$

However, just because we can write down a differential equation for the spectrum does not mean that a quantum deformation exists.

Can we find evidence for this flow?

Studying the spectrum using holography.

AdS_{3} boundary conditions.

Conventional deformations of CFT_{d} are often equivalent to mixed boundary conditions in the $\mathrm{AdS}_{\boldsymbol{d}+1}$ bulk dual [Witten 2001].

A general asymptotically AdS_{3} metric admits the expansion

$$
\begin{aligned}
d s^{2} & =g_{\alpha \beta}\left(\rho, x^{\alpha}\right) d x^{\alpha} d x^{\beta}+\ell^{2} \frac{d \rho^{2}}{4 \rho^{2}} \\
g_{\alpha \beta}\left(\rho, x^{\alpha}\right) & =\frac{g_{\alpha \beta}^{(0)}\left(x^{\alpha}\right)}{\rho}+g_{\alpha \beta}^{(2)}\left(x^{\alpha}\right)+\rho g_{\alpha \beta}^{(4)}\left(x^{\alpha}\right),
\end{aligned}
$$

in terms of a Fefferman-Graham coordinate ρ with the boundary at $\rho=0$.
The expansion coefficient $g_{\alpha \beta}^{(0)}$ is identified with $h_{\alpha \beta}$, the boundary metric, and the subleading term $g_{\alpha \beta}^{(2)}$ is related to the boundary stress tensor $T_{\alpha \beta}$.

Variational principle.

If we vary the bulk Einstein-Hilbert action, with appropriate boundary term, it reduces to an on-shell boundary integral:

$$
\left.\delta S\right|_{\text {on-shell }}=\frac{1}{2} \int_{\partial \mathcal{M}} d^{2} x \sqrt{h} T_{\alpha \beta} \delta h^{\alpha \beta}
$$

To have a good variational principle, we demand $\delta h^{\alpha \beta}=0$. The boundary metric is held fixed.

In a deformed theory, we expect that there will be some other variational principle where a different object $h_{\alpha \beta}(\gamma)$ is held fixed.

Is there such a modified variational principle which corresponds to a boundary root- $T \bar{T}$ deformation?

Holding fixed a new metric.

Let

$$
\widetilde{T}_{\alpha \beta}=T_{\alpha \beta}-\frac{1}{2} h_{\alpha \beta} T_{\rho}^{\rho} .
$$

be the traceless part of the stress tensor. Then define

$$
\begin{aligned}
h_{\alpha \beta}(\gamma) & =\cosh (\gamma) h_{\alpha \beta}(0)+\frac{\sinh (\gamma)}{\mathcal{R}(0)} \widetilde{T}_{\alpha \beta}(0) \\
\widetilde{T}_{\alpha \beta}(\gamma) & =\cosh (\gamma) \widetilde{T}_{\alpha \beta}(0)+\sinh (\gamma) \mathcal{R}(0) h_{\alpha \beta}(0) \\
\mathcal{R}(0) & =\sqrt{\frac{1}{2} T_{\alpha \beta}(0) T^{\alpha \beta}(0)-\frac{1}{4}\left(T_{\alpha}^{\alpha}(0)\right)^{2}} .
\end{aligned}
$$

We find that the boundary root- $T \bar{T}$ deformation corresponds to a new variational principle in which the metric $h_{\alpha \beta}(\gamma)$ is held fixed and acts as a source for the new stress tensor $\widetilde{T}_{\alpha \beta}(\gamma)$.

Computing masses.

Using standard gravity techniques, we can compute the mass of a bulk AdS_{3} spacetime subject to these deformed boundary conditions.

For instance, we can begin with an undeformed spacetime
BTZ black hole with mass M, spin J

CFT state with energy $E \sim M$ and momentum $P \sim J$
How does the spacetime mass change when we turn on root- $T \bar{T}$ deformed boundary conditions?

Root- $T \bar{T}$ energies from gravity.

One finds that the spacetime mass satisfies

$$
M(\gamma)=\cosh (\gamma) M(0)+\sinh (\gamma) \sqrt{M^{2}-J^{2}}
$$

which matches the solution to our root- $T \bar{T}$ flow equation with CFT seed,

$$
E_{n}(\gamma)=\cosh (\gamma) E_{n}+\sinh (\gamma) \sqrt{E_{n}^{2}-P_{n}^{2}}
$$

This provides evidence that, at least for large-c holographic CFTs, the candidate flow equation for the root- $T \bar{T}$ deformed spectrum is correct.

Part 4: Summary and future directions.

Summary.

We proposed and studied a new stress tensor deformation of 2D QFTs:

$$
\frac{\partial S_{\gamma}}{\partial \gamma} \sim \int d^{2} x \sqrt{T^{\mu \nu} T_{\mu \nu}-\frac{1}{2}\left(T_{\mu}^{\mu}\right)^{2}} .
$$

This root- $T \bar{T}$ operator shares some of the nice properties of $T \bar{T}$:
(1) it is universal because it is constructed from the stress tensor;
(2) it preserves symmetries like integrability in many examples; and
(3) it may be solvable, as evidenced by a candidate flow equation for the cylinder spectrum.

Root- $T \bar{T}$ is singled out as the unique such marginal deformation which forms a two-parameter commuting family with $T \bar{T}$.

Future directions.

There is much more to do. Here are a few questions:
(1) Can the root- $T \bar{T}$ deformation be defined directly at the quantum level, and if so, what are its properties?

- As a toy example, one can dimensionally reduce to $(0+1)$-dimensions. See [García, Sánchez-Isidro '22] and upcoming work 2306.XXXXX.
(2) There are interesting analogies between stress tensor flows for $2 d$ PCM-like or scalar theories and 4d Abelian gauge theories. Can these be pushed further? What about non-Abelian gauge theories?
(3) What is the interplay between root- $T \bar{T}$ and supersymmetry? Can root- $T \bar{T}$ be formulated in superspace like the usual $T \bar{T}$?

Thank you for your aT \bar{T} ention!

