Protein-based optical sensors for bioimaging applications

Takuya TERAI Department of Chemistry, School of Science, The University of Tokyo

Bio(medical) imaging

https://rsscience.com/scale-of-biology-cell-size/: Cell, 2008, 132, 487-498; Lab Animal, 52, s247–257 (2023); https://www.melbourneradiology.com.au/diagnostic-imaging/mri-scan-brain/

Fri 17:44

Three components for bioimaging

https://www.olympus-lifescience.com/ja/microscopes/inverted/ix83/; A Graduate Course in NMR Spectroscopy (Springer); Biology Imaging core website at Washington University at Saint Louis

Discovery and application of GFP

In 2008, the Nobel prize in Chemistry was awarded to the three scientists for "the discovery and development of the green fluorescent protein, GFP"

Martin Chalfie © The Nobel Foundation. Photo: U. Montan

Roger Y. Tsien

et with green flash as viewed from a California lab

av-Ram Alice T

frey Baird, Larry Gros

i Wang, Xiaokun S

A palette of

fluorescent

proteins

Fluorescent jerry fish (Aequorea victoria)

C. elegans GFP

expressing

Science, 263, 802 (1994)

https://www.nobelprize.org/prizes/chemistry/2008/; Nature 440, 280 (2006); Angew. Chem. Int. Ed. 2009, 48, 5612; https://global.canon/ja/technology/kids/mystery/m 01 08.html

Fluorescent sensors for bioimaging

Fluorescent probe (biosensor, indicator)

A molecule (synthetic, protein, or others) that reacts with the analyte and changes its fluorescence properties (intensity, wavelength).

<u>Ca²⁺ imaging in cells/organisms</u> B/G/R-GECO1

NIR-GECO1

Near infrared (NIR) Ca²⁺ sensors

mIFP

Fluorophore

- Ubiquitous in mammalian tissues
- An intermediate in heme catabolism

Development of NIR-GECO1/2

Nat. Methods, **2019**, 19, 171 (NIR-GECO1); *PLoS Biol.*, **2020**, 18, e3000965 (NIR-GECO2)

Development of NIR-GECO3

Optoacoustic imaging of Ca²⁺

For optoacoustic imaging, the sensor should be non-fluorescent but change its absorbance, in response to the target. We are derivatizing NIR-GECO for such purpose, in collaboration with the Razansky lab.

https://en.wikipedia.org/wiki/Photoacoustic_imaging; https://www.razanskylab.org/

Chemigenetic sensors

Chemigenetic = chemical compound + genetically encoded protein

Chemigenetic K⁺ sensor

Grimm, J. B., et al, Nat. Methods, 2017, 14, 987-994.

Performance of the sensor

<i>In vitro</i> data (JF ₆₃₅)	Halo-Kbp4.2	HaloTag only
K _d (mM)	35.9±5.4	
ΔF/F _{0max}	16.39	-0.02
Quantum Yield [K ⁺ (100 mM)/K ⁺ (-)]	0.72/0.52	0.63/0.64

JF₆₃₅ - HTL

HeLa cell imaging

(digitonin permeabilized)

Timecourse of cell fluorescence

After directed evolution and protein engineering, the sensor showed >15 –fold fluorescence change in response to K⁺, and it worked nicely in the cytosol of cells.

Summary

- In bio(medical) imaging, we often need molecular sensors (wetware).
- Fluorescent sensors based on proteins are useful tools to visualize targets in living cells or experimental animals.
- Directed evolution is a powerful technique to develop highperformance sensors.
- Chemigenetic approach is promising to create new interesting sensors.

Other recent work in our lab

Acknowledgements

ETHZ-UTokyo Strategic Partnership

National Institutes of Health

Human Frontier Science Program

Collaborators: Daniel Razansky (ETHZ/UZH), Pen Zou (Peking University), and others