

Precision Experiments to Explore the Universe

Toshinori Mori International Center for Elementary Particle Physics The University of Tokyo

Ootani Sakemi Mibe Mori

Ootani Sakemi Mibe Mori

Ootani Sakemi Mibe Mori

How do we explore the Universe?

How do we explore the Universe? **BIG BANG!!**

3

How do we explore the Universe? **BIG BANG!!**

The Universe started as a hot, dense soup of ENERGY.

A charged particle is a "magnet" i.e. it has magnetic dipole moment

The Nature Law is symmetric about time direction.

A charged particle is a "magnet" i.e. it has magnetic dipole moment A charged particle cannot have electric dipole moment

A charged particle is a "magnet" i.e. it has magnetic dipole moment A charged particle cannot have electric dipole moment

The Nature Law is symmetric about time direction.

The Nature Law is symmetric about particle & anti-particle.

A charged particle is a "magnet" i.e. it has magnetic dipole moment electric dipole moment

The group is using the high intensity proton accelerator at **PSI**, which produces large amounts of pions, muons and ultracold neutrons.

Experiments are performed in international collaborations of 10-50 people.

We improve beams and measure fundamental properties of subatomic particles, such as the

size of the proton or the electric dipole of the neutron.

EDM of Neutron (Kirch)

To find the tiny electric dipole moment of the neutron, a large magnetically silent environment is needed.

The ETH group built the active magnetic compensation coil system (black cabling) and, together with PSI, the large passively magnetically-shielded room (white cube). n2EDM will improve the sensitivity by more than a factor 10.

< 1.8 x 10⁻²⁶ ecm

T/CP

Β

Ε

Electric Dipole Moment (EDM) Search

EDM of Electron (Sakemi)

- EDM of the electron ~ understand the fundamental symmetry (CP violation)
- Electron EDM ~ enhanced with the heavy element (Francium ~ \times 800) by relativistic effect
- Artificial crystal of the Fr (Optical lattice) = Quantum sensor to measure the EDM with 10⁻³⁰ ecm
- Combine the accelerator (Fr production) and quantum electronics (Fr cooling) techniques

Status of the EDM project at UTokyo/RIKEN

Atomic interferometer with optical lattice for the EDM with 10-30 ecm sensitivity

J-PARC muon g-2/EDM experiment

J-PARC muon g-2/EDM experiment

Standard Model

g-2 EDM Model Electric Dipole Anomalous White magnetic Moment Paper (2020)moment Under scrutiny by lattice QCD, e⁺e⁻ J-PARC is the only experiment J-PARC (projection) data to check FNAL/BNL results. 17.5 18 18.5 19 19.5 20 21.5 *q*-2 : 450 ppb muon *q*-2 $a_{\rm m} \times 10^9$ - 1165900 **EDM** : 1.5 E-19 ecm J-PARC ML also: Magnetic Moment of Muon Muon beam µ+(4 MeV) Cooling 25 meV 4 MeV Acceleration Storage 210 MeV Aiming for data taking from 2028 (80 keV)

Elementary Particles

Elementary Particles

To measure the charge radii of the light nuclei (p, d, ³He, ⁴He) with unprecedented precision, we pioneered laser spectroscopy of muonic atoms.

Presently, we are building a new custom laser system to measure magnetic properties of the proton using muonic hydrogen.

r_p=0.84087(39) fm

