

Scientific Writing, Publication, and Communication

Dr. Kate Harris School of Science, UTokyo

Doctoral Education in Japan

Forefront Physics and Mathematics Program to Drive Transformation

- Exploits the strengths of Japanese graduate education
 - High level of basic education
 - Excellent problem-solving skills within existing fields
- Encourages interaction across disciplines and borders
 - · Secondary supervisor from a different research field
 - 4PM Seminar, International Research Experience
- Provides training for academic and non-academic careers
 - Diversity and Ethics Training
 - Scientific Writing, Publication, and Communication
 - AI and Quantum Computing
 - Awareness of societal and industrial issues
- Maximizes students' career potential
 - International Career Seminar
 - Recommendation letter writing workshops for faculty

Education based on individual labs

Education by the whole program

A 5-year integrated Masters-Doctoral program with stipend for students in Physics, Maths, Applied Physics, Chemistry, Astronomy, Earth and Planetary Sciences. Selected for MEXT funding (WISE Program, 2019-2025)

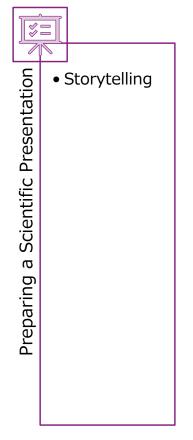
Scientific Writing, Publication, and Communication

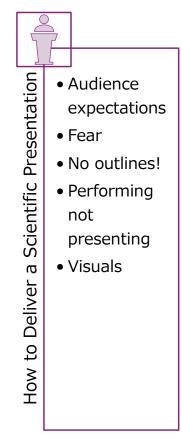
Oral Presentation

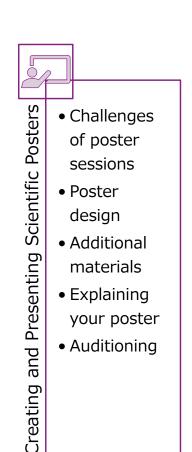
Manuscript Writing and Publication

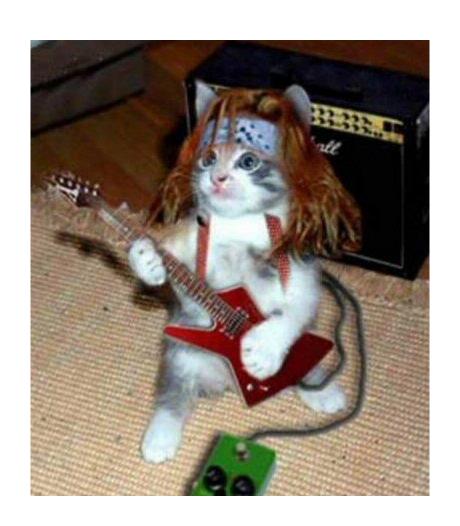
Public Communication

Everything we wish we had known back when we were graduate students...






Oral Communication



"I was surprised and impressed by your presentation style. I used to think that we should do presentations calmly. However, I learned that it was very effective to act like a show to attract people and help them understand the content."

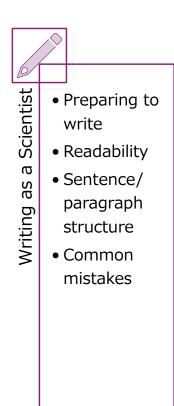
My goal for this course is to teach you to be the rock stars

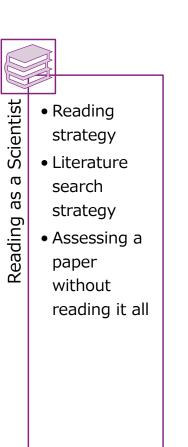
of the international science world!

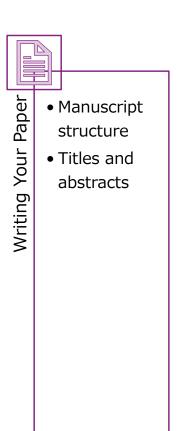
Coffee breaks are usually the best time to talk with new people at meetings

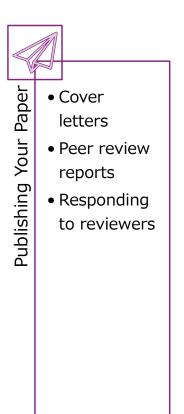
Why are they so good for this?

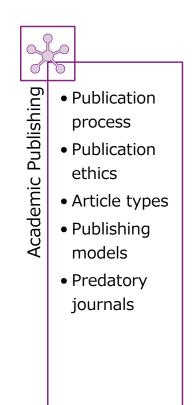
- 1. Free coffee and food usually puts people in a good mood.
- 2. The last few talks will provide easy conversation starters.
- 3. People <u>expect</u> to chat during these breaks.
- 4. You can easily move from person to person while getting more coffee and snacks.
- 5. Not too long... if things get awkward, the next session will start soon enough.

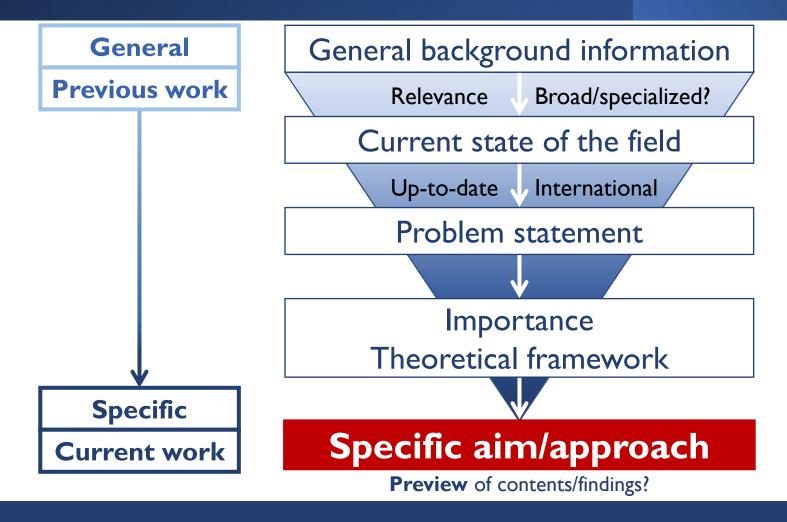



Thriller Video Outline

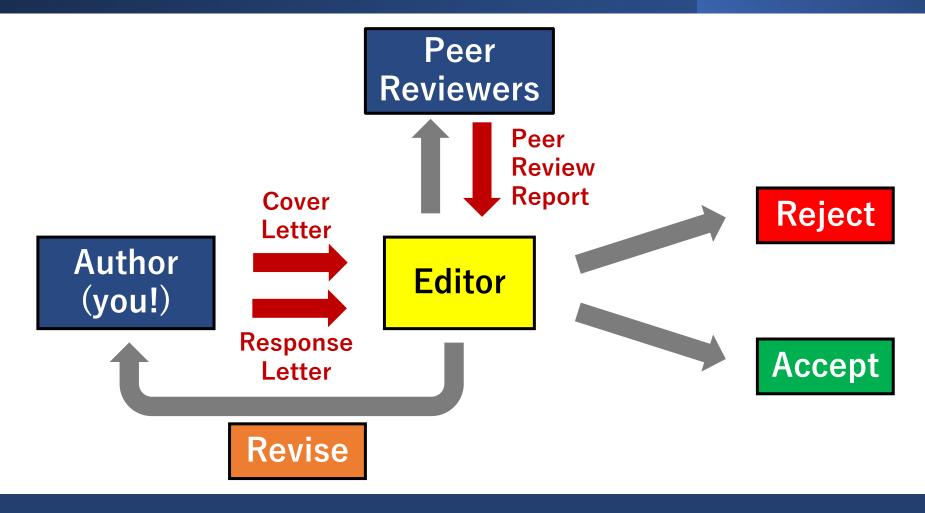

- Scary movie; Michael turns into a cat monster!
- Scene in the theater \rightarrow cat monster is not real
- · Leave theater, walk down street; singing
- Zombies come out of graveyard, they are real!
- Zombie dance → Michael is now a zombie too!
- Woman runs to creepy house, saved (?) by Michael




Manuscript Writing and Publication


"All of your lectures were extremely helpful to me because I am right in the middle of writing my very first manuscript as a first author. All of the lecture contents were so relevant to what I am working on right now, and I'm very thankful that I had the opportunity to learn from you. Thank you so much!"

Use simply constructed sentences


Nanoporous Co₃Mo/Cu **electrodes** with intermetallic Co₃Mo nanoparticles seamlessly integrated on the surface of a nanoporous copper skeleton via spontaneous phase separation during a chemical dealloying process **exhibited** negligible onset overpotential.

Intermetallic Co₃Mo nanoparticles were seamlessly integrated on the surface of a nanoporous copper skeleton. This was achieved via spontaneous phase separation during a chemical dealloying process. The resulting nanoporous Co₃Mo/Cu electrodes exhibited negligible onset overpotential.

The Introduction

What happens at a journal?

Public Communication

Engagement **Public**

Why engage with the public?

- Communication models
- Your audiences
- Find your key message
- Considerate communication
- Opportunities for engagement
- Storytelling

Social Media

- Why use social media?
- Social media best practice
- Science memes
- Micro-blog your paper
- Tweeting at conferences
- Graphic abstracts

News Media

- Why use the news?
- Trust in the media
- How the media works
- How to get your research into the news
- Interviews with journalists
- What happens if you are awarded the Nobel Prize?

Half-Life Your Message

• 60 seconds

30 seconds

• 15 seconds

08 seconds

Pair challenge

With a partner...

- 1. Rock-Paper-Scissors
- 2. Winner attempts to half-life their message.
- 3. Partner helps by timing them (onscreen/phone/ watch).
- 4. You might be asked to share the final message afterwards!

How to use Twitter at conferences

- Use the conference hashtag, #FoPM2023
- Tweet about a talk, summarize (text and graphics), share a picture
- Share what you learned
- Invite others to your talk with a picture summary of your talk, location, and time...add links

A news story is complete if it has these things

WHO – who did the research?

WHAT – what was the most important thing discovered?

WHEN – when did the study come out?

WHERE – where was the study published?

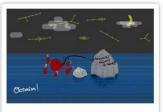
HOW – how did the researchers find the result?

WHY – why was the research carried out?

Essay Project

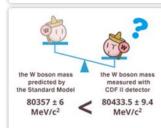
Experience the collaborative process of academic publishing

- Develop skills in:
 - Describing research results and their significance
 - Communicating with non-specialists (non-scientists)
 - Critical reading and reviewing
- Not a test of English language ability

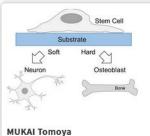


Your aim

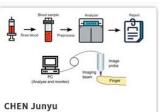
By writing about a published discovery in the basic sciences that has changed (or has the potential to change) science and/or society beyond the original field of research, can you inspire high-school students to consider a career in the sciences?



Essay Project


AOYAMA Tenma

The algebra with beautiful symmetry "Octonion"



KARAYAMA Kiri

The anomaly of the mass of the W boson will lead to a new world in physics

A great approach for

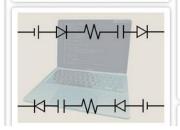
Needleless Blood Count

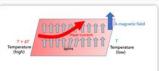
HORIE Kohki

KOBAYASHI Tsubasa

Mysteries of Life

Protein Synthesis Solves the

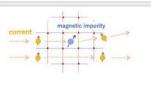

Novel Cell-Friendly Microscopy


CHITOSE Akifumi Asymmetry from which we are

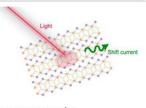
KAWASUMI Kotaro

Will analogue black hole systems reveal quantum gravity?

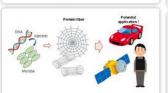
ESAKI Nanse

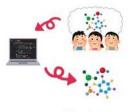

Can magnon be a platform for new technologies and the new topological physics?

HAYASHI Kota


Sleep better, live better: science could be of help

MOCHIDA Jun


Mysterious relationship between magnetic impurities and superconductivity


FUJIWARA Kosuke

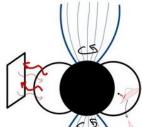
Shift Current as a New Solar Power Generation System

INOUE Shuhei

Protein Synthesis with Various Microbial Gene Sequence to Develop Unknown Functional Materials

MATSUMOTO Akinori

Automatic creation of new materials


FUNAHASHI Ikuchi

Tiny dust is a quiet gift from the

GU Ziying


Gravitational waves may reshape our daily lives!

Black holes as an energy source

KAWAI Chikara

Neutrino astronomy reveals the nature of the universe

LI Hongchao

The Charm of Magic-Angle Twisted Multi-layer Graphene

NISHIMURA Shunsuke

JEONG Hyun

Presentation Practice

4PM Seminar (once a month at 4pm)

- All FoPM students
- One guest speaker (30 minutes)
- Four FoPM student presentations (5 minutes each)
- Peer review of each others' presentations
- Small group discussions

1st FoPM International Symposium (6–8 February 2023)

- All FoPM students
- Thirteen invited speakers
- Oral presentations from all FoPM Doctoral students
- Poster presentations from all FoPM Masters students

Questions?

Aoi Eguchi (D3)

Taku Yonemoto (D3)

Ayaka Matsushita (D1)

Mirai Fukase (D1)

Thank you so much to all of you for teaching this course! I absolutely enjoyed every single class and I will always find them useful. I have saved all of the lecture slides and will be referring to them in my future research career. Thank you again!