UPDATE ON INTERFEROMETRIC OTF IMAGING WITH MEERKAT

- SKA Cosmology SWG meeting 2023 -

$\frac{Kristóf\ Rozgonyi^1,\ M.\ G.\ Santos^{2,3},\ K.\ Grainge^4,\ O.\ Smirnov^5,\ J.\ Mohr^1,}{the\ MeerKLASS}\ and\ DMeerKAT\ collaborations$

¹Faculty of Physics, Ludwig-Maximilians-Universität
²Department of Physics and Astronomy, University of the Western Cape
³South African Radio Astronomy Observatory (SARAO)
⁴Jodrell Bank Centre for Astrophysics, The University of Manchester
⁵Department of Physics & Electronics, Rhodes University

January 18, 2023

Motivation & OTF interferometry

- Commensal intensity mapping (IM) and interferometric imaging would dramatically increase data acquisition efficiency
- On-the-fly (OTF) interferometry is possible with MeerKLASS (Santos et al. 2017) scanning observations
- Increased survey speed, providing continuum, spectral-line, polarisation maps (+time-domain data)
- 'Smearing' of primary beam (PB) introduces errors at a % level (Mooley et al. 2019, Rozgonyi et al. in prep.), and can be corrected for

pointing centre movement phase centres

- s again for your contribution to the SKA meeting! 11:58
 - OTF mode is currently only available on the VLA (*Mooley et al. 2019*): VLASS survey (*Lacy et al. 2020*) & open-time calls, but no commensal IM

Update on interferometric OTF imaging with MeerKAT

Delay setup for asynchronous OTF scans

- No dedicated OTF observing mode on MeerKAT
- We 'simply' switched on the correlator during MeerKLASS pilot observations, with no geometric delays applied
- Syinhesis imaging is possible by phase-rotating the visibilities from the delay to the pointing centre
- ▶ The estimated phase and amplitude errors introduced are at a % level

Asynchronous OTF with MeerKAT

Example MeerKLASS asynchronous OTF scans

- No dedicated OTF observing mode on MeerKAT
- We 'simply' switched on the correlator during MeerKLASS pilot observations, with no geometric delays applied
- Syinhesis imaging is possible by phase-rotating the visibilities from the delay to the pointing centre
- The estimated phase and amplitude errors introduced are at a % level

Example MeerKLASS asynchronous OTF scans

- No dedicated OTF observing mode on MeerKAT
- We 'simply' switched on the correlator during MeerKLASS pilot observations, with no geometric delays applied
- Syinhesis imaging is possible by phase-rotating the visibilities from the delay to the pointing centre
- ▶ The estimated phase and amplitude errors introduced are at a % level

Plans for MeerKAT OTF mode

- We are working with the MeerKAT engineering & commissioning team to support interferometric OTF observations
- ► The current correlator setup can not update the delay centre faster than ~5.5s ⇒ post correlation phase rotation is needed
- ▶ We can set the correlator to be fixed in RA-Dec rather than in Az-El

Possible correlator modes for MeerKAT OTF: fixed delay centre in Az–El (left) and in Ra–Dec (right) (credit: MeerKAT engineering & commissioning team)

Post-correlation phase rotation

s again for your contribution to the SKA

- We developed an automated pipeline to apply the phase rotation to asynchronous OTF observations (*Rozgonyi et al. in prep.*)
- The pipeline is scalable and uses the Snakemake workflow manager
- We are in the final step of validation and deploynment on ilifu using containerised (singularity) backend

Update on interferometric OTF imaging with MeerKAT

LMU LUDWIG-MAXIMILIANS-UNIVERSITÄT

Multi-component top-level wrapper (currently not automated)

- Only a single round of flagging of the raw visibility data (tricolour)
- Phase rotation (our custom pipeline)
- "Standard" calibration & snapshot imaging of each OTF snapshot, with a single iteration of phase-only, in-field, self-calibration (caracal)
- ▶ Mosaicking, PB correction (montage) and source-finding (pybdsf)

We found that we should improve on each component of our current pipeline

&

We need to combine all steps into a single, scalable, automated pipeline

Pilot observations

Example L-band OTF snapshot

L-band: 4K channeland 2s time resolution with 5'/s scanning speed. Only primary (flux-scale) calibrator and no secondary calibrator(s)

 <u>UHF-band</u>: 4K channel- and 2s time resolution with 7'/s scanning speed.
<u>Secondary</u> calibrator(s) observed.

Pilot observations

Example UHF-band OTF snapshot

L-band: 4K channeland 2s time resolution with 5'/s scanning speed. Only primary (flux-scale) calibrator and no secondary calibrator(s)

 <u>UHF-band</u>: 4K channel- and 2s time resolution with 7'/s scanning speed.
<u>Secondary</u> calibrator(s) observed.

Flagging & noise diodes

- ► We have residual RFI after our initial flagging
- ► We can see the effect of noise diodes firing across all baselines ⇒ we will possibly flag the corresponding snapshots

Example waterfall plots from our L-band data with flags

Mosaicking

- We use a small mosaic (L-band, ~ 2 deg² from 5 OTF snapshots) to develop & validate our source-finding pipeline
- We need to use custom MontagePy scripts to deal with the synthesised beam
- We made some initial testing using DDFacet to improve our wide-field imaging

Mosaicking

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- We use a small mosaic (L-band, ~ 2 deg² from 5 OTF snapshots) to develop & validate our source-finding pipeline
- We need to use custom MontagePy scripts to deal with the synthesised beam
- We made some initial testing using DDFacet to improve our wide-field imaging

Synthesized beam variation

Individual, average and (rotated) maximum synthesized beams for the example mosaic (credit. A. Basu)

 The position angle of the synthesized beam varies little between OTF snapshots for a simgle scan

- We should use the (projected) 'maximum' synthesised beam rather than the average beam
- We need to look at more scans and scans from both rising and setting scans, to determine if this approach is feasible

Source-finding

- All our 'quick-and-dirty' test results show excellent agreement with NVSS source positions, but some offset (and significant scatter) in flux densities
- ▶ We need to improve our spectral resolution for multy-frequency imaging

Peak flux (left) and position (right) OTF - NVSS pair-wise comparison (credit G. Gurkan)

- All our 'quick-and-dirty' test results show excellent agreement with NVSS source positions, but some offset (and significant scatter) in flux densities
- ▶ We need to improve our spectral resolution for multy-frequency imaging

Peak flux (left) and position (right) OTF - NVSS pair-wise comparison (credit G. Gurkan)

Conclusions

- We propose commensal IM and interferometry
- Solid understanding of the fundamentals & conducted the first (asynchronous) OTF observations with MeerKAT
- Estimated uniqe errors are at a few % level
- Plans for a dedicated MeerKAT OTF mode
- Science-quality results are expected from our updated pipeline

