MeerKAT HI intensity mapping overview

Mário G. Santos, University of the Western Cape

SKA Cosmology meeting January 19, 2023

UNIVERSITY of the WESTERN CAPE

TRO

National Research Foundation

Back to basics: SKA1-MID (and MeerKAT) as an intensity mapping "machine"

- Interferometer: baselines not small enough to probe BAO scales and above
- Use each dish in "single observation mode"
- Save interferometer data for other science/calibration
- Only way to really go after the unexplored very large scales (specially in combination with LSST)
- Papers: arXiv:1501.03989; arXiv:1405.1452; arXiv: 1509.07562; arXiv: 1811.02743
- Science drive: competitive constraints on BAO/RSDs. Ultra large scale measurements/non-Gaussianity with multiple tracers

SKA1-MID (~200 dishes by 2023)

0

The near future: an SKA cosmology survey precursor with MeerKAT

- MeerKLASS: MeerKAT Large Area Synoptic Survey: http://arxiv.org/abs/1709.06099
- <u>Aim: Cosmology (HI intensity mapping and continuum) but</u> commensal with lots of other science
- Focus on sky patches with multi-wavelength data for crosscorrelation (DES, 4MOST, etc)
- L-band: 900-1670 MHz (z<0.58) or UHF band: 580 MHz-1015 MHz (0.40 < z < 1.45)
- Boundaries: > 4,000 deg², < 4,000 hours (total)
- Use on-the-fly scanning in order to use the interferometer data

https://github.com/meerklass

A large sky survey with MeerKAT

Mário G. Santos^{*},^{*a,b*} Philip Bull,^{*c,d*} Stefano Camera,^{*e*} Song Chen,^{*a*} José Fonseca,^{*a*} Ian Heywood,^f Matt Hilton,^g Matt Jarvis,^{a,f} Gyula I. G. Józsa^{b,h,l}, Kenda Knowles,^g Lerothodi Leeuw,^j Roy Maartens,^{a,k} Eliab Malefahlo,^a Kim McAlpine,^a Kavilan Moodley,^g Prina Patel,^{a,b} Alkistis Pourtsidou,^k Matthew Prescott,^a Kristine Spekkens,¹ Russ Taylor,^{a,m} Amadeus Witzemann^a and Imogen Whittam^a ^aDepartment of Physics & Astronomy, University of Western Cape, Cape Town 7535, South Africa ^bSKA SA, The Park, Park Road, Cape Town 7405, South Africa ^cCalifornia Institute of Technology, Pasadena, CA 91125, USA ^d Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA ^eJodrell Bank Centre for Astrophysics, The University of Manchester, Manchester M13 9PL, UK ^f Department of Physics, Oxford University, Oxford OX1 3PU, UK ⁸Astrophysics & Cosmology Research Unit, Univ. of KwaZulu-Natal, Durban 4041, South Africa ^hRARG, RATT, Rhodes University, Grahamstown, 6140, South Africa ⁱArgelander-Institut für Astronomie, Auf dem Hügel 71, D-53121 Bonn, Germany ^jSchool of Interdisciplinary Research & Graduate Studies, UNISA, Pretoria 0003, South Africa ^kInstitute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK ¹Department of Physics, Royal Military College of Canada, Kingston, ON K7K 7B4, Canada ^mDepartment of Astronomy, University of Cape Town, Cape Town 7701, South Africa

Driving objectives

- Detection of Baryon Acoustic Oscillations (BAO) using HI
- Measure the Hubble rate at low z
- Measure redshift space distortions (to constrain modified gravity theories)
- Cross-correlations with galaxy surveys
- Constraints of primordial non-Gaussianity by measuring large scale correlations

 $S_{\text{area}} = 4000 \text{ sq. degrees}$

Forecasts: UHF (1000 hours)

Current status

- correlation with galaxy surveys
- detection of the HI power spectrum
- Data taken and partially calibrated
- SDSS/DESI
- (see Kristof talk)

 1st open time call: ~ 15 hours over WiggleZ 11h field (after some flagging). L-band. Fully processed. Aim was to test technique and maybe detect the power spectrum in cross-

2nd open time call: ~ 80 hours. L-band. First calibrated cubes available. Aim is a direct

Director Discretionary Time (DDT): ~ 12 hours over WiggleZ 11h field using UHF band.

• 3rd open time call: Approved ~ 130 hours using UHF over two fields covering ~ 500 deg² of

Ongoing tests for on-the-fly mode so we can use the interferometer data at the same time

Pilot survey (see Wang et al. arxiv:2011.13789)

- \sim 10.5 hours (data taken in 2019)
- ~ 60 dishes used (~ 630 hours combined)
- ~ 200 deg² over the WiggleZ 11h field
- Band: 900 MHz 1700 MHz (z < 0.5) \bullet

- Resolution: 2 sec/0.2 MHz
- Scans at constant elevation (> 40 deg)
- Speed: 5 arcmin/sec
- ~ 200 sec per line, 1.5 hours per scan (each block $\sim 1.2TB$)

MeerKAT 1/f noise in one slide

 \bullet

Noise is correlated in time —> can bias result and increase noise level - need fast scanning to probe relevant angular scales within the time scales of the 1/f noise

SVD cleaning reduces 1/f noise but need to be careful with signal loss \bullet

OK, 2 slides...

Mel Irfan et al., in prep

- Satellites are a big concern, in p from the beam sidelobes
- RFI free regions in L band: 0 < z < 0.09 and 0.32 < z < 0.46
- Several rounds of RFI cleaning were applied

• Satellites are a big concern, in particular with single dish data and in particular

RFI flagging: % data kept in L band

Primary beam frequency effects on foreground cleaning

MeerKAT beam size (FWHM) versus frequency

Effect on foreground cleaning: line of sight power spectrum

Matshawule, Spinelli, Santos, arxiv:2011.10815

Calibration

- Observe a calibrator before and after each scan (left) \bullet
- Noise diode injection every 20 sec during scan (right) \bullet

per-dish \overline{T}_{sky} maps at 1023 MHz

Final maps

- Full data reduction pipeline: Wang et. al, Arxiv:2011.13789 \bullet
- Sky map follows the galactic synchrotron \bullet
- We recover the Galactic HI with high accuracy

Foreground cleaned maps

Detection of the cross-correlation power spectrum with WiggleZ galaxies

Cunnington, Li, et al. 2022

Transfer function / signal loss

- Signal loss due to foreground cleaning affects all scales but mostly small k_par
- Transfer function crucial to unbias the power spectrum estimator
- Calculated through signal injection
- Need to improve calibration to reduce foreground cleaning!

Steve Cunnington

Foreground removal methods?

lisabella Carucci

Next steps

- Processing 40 observation blocks from 2021 data (~ 60 hours on target)
- Some goals:
 - Get the auto-power spectrum
 - Cross-correlations with photometric survey \bullet

Jingying Wang

Plan/thoughts

- signal, BAO and RSDs measurements and large scale probes beyond the equality peak
- data with 64 dishes
- Lots of data available! We need more people to work on improving the pipeline and doing more tests. \bullet
- Crucial to have a more automatic pipeline for flagging (RFI, bad dishes, etc) and calibration
- Improve mapmaking (include beam, etc)
- Improve calibration (self cal, gain models...)
- Polarisation maps
- Foreground cleaning
- . . .

H intensity mapping is allowing MeerKAT to do cosmology. With more data, it can deliver first detections of the

Current tests with MeerKAT data show no major issues - we have an end to end pipeline producing calibrated

Plan is to continue accumulating more data in the next 4-6 years (with another ~300 hours already in 2023)