

COMAP SKAO Science Working Group Meeting, Manchester 2023

Stuart Harper, University of Manchester, January 19 2023

COMAP Collaboration **37 Members across 11 Universities**

Caltech

Kieran Cleary (PI) Morgan Catha-Garrett **Delaney Dunne Rick Hobbs** Junhan Kim James Lamb Timothy Pearson Anthony Readhead Bade Uzgil David Woody

UiO Universitetet i Oslo

Ingunn Wehus Jowita Borowska Hans Kristian Eriksen Håvard Tveit Ihle Jonas Lunde Marta Silva Nils-Ole Stutzer Duncan Watts

Richard Bond Dongwoo Chung Norman Murray George Stein

Charles Lawrence Tzu-Ching Chang Todd Gaier Joseph Lazio Liju Philip

Brandon Hensley

Hamsa Padmanabhan

Patrick Breysse

Clive Dickinson Stuart Harper **Thomas Rennie**

Andrew Harris

UNIVERSITY OF MLAMI Joshua Gundersen

Stanford

Sarah Church Risa Wechsler

Li et al. 2016 : 1503.08833

30

COMAP **Some Motivation**

Sun et al. 2019 arXiv: 1907.02999

4

 k_{\perp}^{\max} Bernal & Kovetz 2022: arxiv.org/abs/2206.15377

 10^{1}

 10^{2}

- 26 34 GHz frequency coverage
- 4096 channels with ~ 2 MHz channel bandwidth
- 4.5' beam FWHM at 30 GHz
- 19 forward-facing feeds (pixels) in a hexagonal lattice arrangement
- Intensity only, no polarisation information

- Already ruling out several CO models after 1 year of observing (arxiv:2111.05927)
- S/N of 9 to 17 in CO auto-power spectrum after 5 years.
- HETDEX cross-spectrum S/N~7 after 3 years; S/N~19 in 5 years

		4	5
		_	
	-		
	_		
·			
		_	
		_	
		_	
	_		
		-	
		_	
		-	
	_		
		_	
		_	
	-		
		_	
		_	
I	I		
	Т		

- Overview: 2111.05927
- Instrument: 2111.05928
- Data Processing: 2111.05929
- Results: 2111.05930
- Forecasts: 2111.05931
- Galactic Survey: 2111.05932
- EoR: 2111.05933

20MAP Early Sciences IV. Power Spectrum Methodology and Result

COMAP Early Science: I-VII

$P_{CO}(k) = -2.7 \pm 1.7 \times 10^4 \mu K^2 Mpc^3$

arXiv:2111.05930 lhle et al.

kĈ(k) [μK² Mpc²]

Several temporal and frequency filters

Credit: J. S. Lunde

arXiv:2111.05929 Foss et al.

- Standing Waves? Turn Around Effect? High
- Gain fluctuations or 1/f Low
- Atmosphere and Weather Low
- **Ground spillover Low**
- Astronomical Foregrounds Low
- **Beam sidelobes ?**

- Standing Waves? Turn Around Effect? High
- Gain fluctuations or 1/f Low
- **Atmosphere and Weather Low**
- **Ground spillover Low**
- **Astronomical Foregrounds Low**
- **Beam sidelobes ?**

Easily removed -> Correlated in Frequency

- Standing Waves? Turn Around Effect? High
- Gain fluctuations or 1/f Low
- **Atmosphere and Weather Low**
- **Ground spillover Low**
- **Astronomical Foregrounds Low**
- **Beam sidelobes ?**

Not smooth in frequency difficult to remove

Credit: J. S. Lunde

Credit: J. S. Lunde

Feed: 11

Credit: N Stutzer

- COMAP is a CO line intensity mapping experiment probing cold molecular gas at z=3and z=6 in the future.
- We are fully funded to complete the pathfinder experiment for 2 more years, and have proposals in for the 15GHz expansion.
- The first year of data we reached the expected noise level, but now we are going deeper new systematics are appearing that we are still working to understand.

