

Continuum precursor surveys

Catherine Hale and Dominik Schwarz

Radio Continuum Surveys

LOFAR

Covers low radio frequencies across two observing bands:

- Low Band Antennas (10-90 MHz)
- High Band Antennas (110-240 MHz)

Dishes across Netherlands and Europe. At HBA resolution is:

- 6" with Dutch stations only
- 0.3" including international

LOFAR Surveys Key Science Programme

runs a coordinated suite of surveys: LoTSS (150 MHz); LoLSS wide (54 MHz), LoDeSS (25 MHz), WEAVE-LOFAR (complementary programme with WEAVE)

Summary of LOFAR Surveys

Ongoing LOFAR Surveys – Wide Area, 144 MHz

LOFAR Two-metre Sky Survey (LoTSS)

Shimwell et al. 2019, 2022

DR2:

- •4.4 million sources (current largest radio catalogue)
- •6" resolution, ~80 uJy/beam rms
- •5600 sq deg in two regions:
 - $\circ 1457$ sq deg. Centred on 1h field
 - ${\circ}4178$ sq. deg centered on 13h field
- •Will eventually cover all extragalactic Northern sky
- •90% complete above 0.8 mJy/beam peak-brightness
- •95 uJy/beam in Stokes V, less sensitive in Q and U

Ongoing LOFAR Surveys – Deep Fields

LOFAR Two-metre Sky Survey (LoTSS) Deep Fields

DR1: Tasse et al. 2021, Sabater et al. 2021

DR1:

- Three deep fields at 144 MHz and 6"
- Boötes, Lockman, Elais N1
- ~30 uJy/beam rms
- Cross-match to Multi-wavelength sources: Kondapally+ 2021 – 25 sq deg cross matched area, 80,000 sources
- Photometric redshifts, Duncan et al. 2021

DR2:

- 3 Deep fields + North Ecliptic Pole (NEP)
- ~35 sq deg multi-wavelength coverage
- ~15 uJy/beam rms

Credit: Sabater, Best

Ongoing LOFAR Surveys – High resolution

Recent advances in **wide field VLBI** imaging with **LOFAR**: Sweijen+ 2022

7.4 sq deg image of the Lockman Hole field

0.3 arcsec resolution is achieved with international LOFAR stations

8hr LOFAR observation:

- 6" = 80-100 uJy/beam
- 0.3" = 25 uJy/beam

Ongoing LOFAR Surveys – Lowest Frequencies

Lofar LBA Sky Survey (LoLSS)

PR: de Gasperin+ 2022:

• 54 MHz, 47" resolution, 5uJy/beam

• 740 sq deg

- Future observations (DR1 submitted, Blue):
 - 15" resolution, 1uJy/beam including direction dependent calibration
 - Green and Yellow are already observed
 - Red will be observed in 2023

LOFAR 2.0

JWST TDF (HBA, targeted IMG)

LOFAR will undergo a **major upgrade to LOFAR2.0** (roll-out 2024-2025):

- Increased LBA sensitivity (2x more antennas)
- Increased angular resolution (0.2 arcsec)
- More robust against RFI (will improve sensitivity)
- More simultaneous bandwidth
- All Dutch stations on a single clock (reduces impact of ionosphere)
- Integration of NenuFAR

Currently Expression of Interests have been collected with e.g.

- HBA high resolution matching Euclid extragalactic fields
- LBA wide area of all Northern Sky
- Several deep fields

MeerKAT

64 Offset Gregorian dishes

Based in **Karoo Desert** in South Africa

Several Large Survey projects:

LADUMA, MALS, MeerKAT Fornax Survey, MHONGOOSE and **MIGHTEE** (extragalactic)

MeerTime, ThunderKAT, TRAPUM (Transients and Pulsars)

MIGHTEE

Image credit: I Heywood

Low resolution:

- 9 arcsec
- Maximize sensitivity
- BUT Confusion noise limited

High resolution:

- 5 arcsec
- Maximize resolution
- Not Confusion noise limited
- A factor of 2 fewer sources

4, 500 sources

10, 000 sources

MIGHTEE CONTINUUM (Early Science images, Heywood et al., MNRAS, 2022)

XMM-LSS 37 h / 3.5 deg²

COSMOS 19.5 h / 1.6 deg²

Ultra Deep Pointing in CDFS

Same area as Early Science COSMOS

Same **resolution** as High resolution Early science COSMOS

CDFS-Deep is **~4 x smaller rms** (~7-8 uJy/beam COSMOS, ~1.5-2 uJy beam CDFS-Deep)

CDFS-Deep has **~5x the number of sources** (~4500 COSMOS, ~23000 CDFS-Deep)

MALS

- Observations of HI and OH Absorption Lines
- Use bright radio sources to select pointings to observe
- Continuum images produced as well
- Gives larger area coverage across the sky

17

36 dishes with 12 m diameter
Uses Phased Array Feed Technology
Has ~30 sq deg field of view
Several Large survey projects:

DINGO, **EMU**, FLASH (extragalactic) GASKAP OH, GASKAP HI (galactic) POSSUM (Polarisation) CRAFT, VAST (Transients)

Observatory led project: **RACS**

Credit: CSIRO

RACS (McConnell+ 2020)

Observatory led project to do **rapid** survey of the sky using ASKAP

15 min observations across **903 tiles** across the sky **to +40deg** in declination.

Catalogue released in Hale+ 2021 of **25**" common resolution contiguous catalogue to +30deg in declination

Observations at other frequencies (~1.3 GHz and ~1.7 GHz) in progress/taken to be released in updated catalogues

Polarisation information also available (Thomson+ in prep)

 μ ly beam⁻¹

Survey	Frequency	Bandwidth	Resolution	Sky coverage	Sensitivity	Polarization	N _{sources}
	(MHz)	(MHz)	(arcsec)	(sq deg)	(mJy/beam)		$(\times 10^{6})$
VLSSr	73.8	3.12	75	30,793	100	Ι	0.93
GLEAM	87, 118, 154,	30.72	120	$27,\!691$	6 - 10	I,Q,U,V	0.33
	185, 215						
TGSS	150	16.7	25	36,900	2 - 5	Ι	0.62
$RACS^1$	887.5	288	15	36,656	~ 0.25	$_{\rm I,Q,U,V}$	4
	1295.5						
	1655.5						
$RACS^2$	887.5	288	15 - 25	34,240	0.2 - 0.4	Ι	2.8
SUMSS	843	3	45	10,300	1.5	\mathbf{RC}	0.2
+MGPS-2							
NVSS	1346, 1435	42	45	33,800	0.45	I,Q,U	2
VLASS	3000	2000	2.5	33,885	0.07	I,Q,U	5.3

¹RACS full survey capability.

²RACS first data release.

EMU

Pilot Observations released in Norris+ 2021 270 sq. deg overlapping with the **Dark Energy Survey** ASKAP has **now started** the full survey observations Aim is large sky survey (2π sr, eventually 3π sr) at ~15" to ~20-30 uJy/beam at 940 MHz

Over 3π sr expect ~43 million sources with ~80% SFGs

Low frequency array in Western **Australia**

4096 of these "spider" antennas

GLEAM:

- Observations of sky to max declination of +30 deg
- 70-230 MHz
- Spectral index measurement
- ~100" resolution
- **6-10** mJy/beam

GLEAM-X

GLEAM: -> GLEAM-X

- Observations of sky to max declination of +30 deg
- 70-230 MHz
- Spectral index measurements
- ~ ~100" resolution -> 2' 45" resolution
- 6-10 mJy/beam -> ~1.3 mJy/beam

Figure 3. 90 sq. deg. around the Vela supernova remnant at 139–170 MHz. The left panel shows a GLEAM mosaic at 2/6 resolution; the middle panel shows a GLEAM-X mosaic at 1/3 resolution; the right panel shows a joint deconvolution of the two datasets yielding the same high resolution, and also the sensitivity to structures on 10′–5° scales.

-> ~1500 sq deg in Pilot

Radio Continuum Surveys

