

SKA Cosmology SWG meeting 2023

Analysis of HI 21-cm images to probe the Epoch of Reionization using Largest Cluster Statistics (LCS)

By Saswata Dasgupta

Collaborators: Satadru Bag, Aadarsh Pathak, Samit Kumar Pal, Suman Majumdar, Abhirup Datta, Sohini Dutta, Mohd Kamran, Rajesh Mondal, Prakash Sarkar

Contents

- Brief on CD-EoR 21 cm signal
- Motivation
- Overview on Image analysis and LCS
- LCS as a tool to analyse 21 cm signal
- Summary of previous work
- Current work
- Future plans
- References

Cosmic Dawn and Epoch of Reionization

• What (rather, when) is it?

• Why are they important to study?

Credit: NASA

21-cm signal to probe CD and EoR

- What is the HI 21 cm emission?
- How can it help?
- What are the potential challenges?

Credit: NASA

Motivation

- 1. Tomographic imaging
- 2. Source properties
- 3. IGM properties
- 4. Tracking the entire Reionization

Experiments that are being done

- Murchison Widefield Array (MWA)
- Hydrogen Epoch of Reionization Experiment (HERA)
- Low Frequency Array (LOFAR)
- Atacama Large Millimeter/submillimeter Array (ALMA)
- Square Kilometer Array (SKA) *

1.

https://www.skatelescope.org/wp-content/uploads/2013/07/P2140244.j pg 2. ALMA -ESO

- 3. <u>https://www.astron.nl/telescopes/lofar/</u>
- 4. https://www.atnf.csiro.au/projects/ska/index.html

* upcoming

Primary work with 21cm image analysis

AIM:

To distinguish between the major

Reionization scenarios

Pathak+Dasgupta et al., 2022,

DOI: 10.1088/1475-7516/2022/11/027

Methodology

1. Percolation Transition - LCS

 $LCS = \frac{\text{volume of the largest ionized region}}{\text{total volume of all the ionized regions}}$.

Pathak+Dasgupta et al., 2022, DOI: 10.1088/1475-7516/2022/11/027

Methodology

- 2. Shapefinders Minkowski functionals
- Surface Area (S)
- Volume (V)
- Integrated Mean Curvature (C)
- Euler characteristic (χ)

(R₁, R₂ are principal radii of curvature)

$S = \sum_{i=1}^{N_T} S_i$
$V = \sum_{i=1}^{N_T} V_i, V_i = \frac{1}{3} S_i(\mathbf{\hat{n}}_i.\mathbf{P}_i)$
$C = \frac{1}{2} \oint \left(\frac{1}{R_1} + \frac{1}{R_2}\right) dS$
$\chi = \frac{1}{2\pi} \oint \frac{1}{R_1 R_2} dS$

Tools used

- SURFGEN2
 - Thickness : T=3V/S
 - \circ Breadth : B=S/C
 - Length : L=C/(4 π)
- Morphology of the region
 - Planarity : P = (B-T)/(B+T)
 - \circ Filamentarity : F=(L-B)/(L+B)

Pathak+Dasgupta et al., 2022, DOI: 10.1088/1475-7516/2022/11/027

Results from Pathak+Dasgupta et al., 2022

Results from Pathak+Dasgupta et al., 2022

Reionization Scenarios	Critical \bar{x}_{HI}	FF _C	Planarity	Filamentarity
Fiducial	0.75	0.095	0.162	0.998
Clumping	0.81	0.063	0.837	0.922
UIB dominated	0.31	0.543	0.201	0.999
SXR dominated	0.50	0.318	0.126	0.984
UV+SXR+UIB	0.60	0.226	0.147	0.995
PL 3.0	0.75	0.095	0.872	0.997
			•	

Moving towards the mean subtracted field

Analysis on the threshold

Variation of threshold with different parameters:

Dasgupta et al., 2022, in prep

Testing with low-resolution fields

Pathak+Dasgupta et al., 2022, DOI: 10.1088/1475-7516/2022/11/027

Testing with low-resolution fields

Moving towards a more realistic scenario

Мрс

All maps are shown for the first slice of a HI cube of Z = 7.480 (XHI = 0.38) for the Fiducial model

Dasgupta et al., 2022., in prep

Choosing a proper threshold - gradient descent

Effect of Noise only

Effect of smoothing only

Effect of Noise and smoothing combined

Dasgupta et al., 2022., in prep

Going to an even more realistic case ...

Testing LCS on SKA1-low like maps

Input Parameters:

Parameter	Value
Field of view (FoV)	4°
Number of array elements	296
Maximum baseline	$\sim 2000 \mathrm{m}$
Synthesized beam	~ 2.5
Polarization	Stokes I
Observation Time	30 minutes
No. of snapshots	15
Integration time per snapshot	2 minutes
Phase Center(J2000)	RA, DEC= 5 h, -30°

Dasgupta et al., 2022., in prep

Image obtained from OSKAR

 $\mathrm{X}_{\mathrm{HI}}=0.2$

Original simulated image

Image obtained from SKA pipeline

Artefacts observed

HI_Map_z_7.859_oskar_simulation.fits-raster

Original simulated image

Image obtained from SKA pipeline ²⁵

Effects of artefacts in LCS

Mitigation of the artefacts using Multiscale deconvolution

Original simulated image

Maps after Briggs weighing

Maps after Briggs weighing

Original simulated image

Image obtained from SKA pipeline

Results after using Briggs weighting scheme

Searching for a better threshold-finding algorithm

Dasgupta et al., 2022., in prep

Future plans

- Searching for a better threshold-finding algorithm
- Incorporate the effects of Noise, Foregrounds and Ionosphere using OSKAR pipenine and validating robustness of LCS
- Compare different telescope effects and check validity of LCS-like analyses on the observational maps

Publications & Conferences

- 1. Contributed as an author in Pathak et al., 2022. It is published in the Journal of Cosmology and Astroparticle Physics, DOI: 10.1088/1475-7516/2022/11/027
- 2. Talk at SKA EoR-Cosmic Dawn Science Team Meeting: Data Challenges in the SKA Era, Scuola Normale Superiore, Piazza dei Cavalieri 7, 27/09/2022
- Presented a talk at the workshop on 21-cm Cosmology in the Square Kilometre Array Era, Indian Statistical Institute Kolkata, 1/11/2022
- 4. Conference paper published in the URSI-RCRS 2022, IIT Indore
- 5. Talk at Indian Association for General Relativity and Gravitation (IAGRG), IISER Kolkata, 1/12/2022

References

- 1. Garrelt Mellema et al., Reionization and the Cosmic Dawn with the Square Kilometre Array, 2013
- 2. Bag et al., Studying the morphology of HI isodensity surfaces during reionization using Shapefinders and percolation analysis, 2019
- 3. Pathak et al., Distinguishing reionization models using the largest cluster statistics of the 21-cm maps, 2022
- 4. Bag et al., The Shape and Size distribution of HII Regions near the percolation transition, 2018
- 5. Furlanetto et al., Cosmology at Low Frequencies: The 21 cm Transition and the High-Redshift Universe, 2006
- 6. Giri et al., Optimal identification of HII regions during reionization in 21-cm observations, 2018