Fast Generation of 21cm Emission Maps for Intensity Mapping

Pascal Hitz and ETHZ Cosmology Group[†] SKA Cosmology SWG Meeting 2023 18.01.2023

[†] Alexandre Refregier, Devin Crichton, Marta Spinelli, Pascale Berner, Jennifer Studer

Credit: SARAO, Heywood et al. (2022) / J.C. Muñoz-Mateos

Overview

- Fast and large volume simulations of neutral hydrogen (HI) distribution
- Test instrument simulation and analysis pipeline to measure the HI emission

Current Setting of DM Simulations

- 500 Mpc/h box size
- 2048³ simulation particles

 $\rightarrow 20-30\%$ HI mass missing

- Lightcone settings:
 - − Frequency range: 700 800 MHz \leftrightarrow Redshift 0.77 1.03
 - Half sky
- Euler Cluster of ETHZ (CPU) with MPI parallelization

• \geq 10 particles per halo $\leftrightarrow \geq$ 1.27 × 10¹⁰ M_☉/h

- 1032 cores over 39 nodes
- 2.75 TB RAM, 332 CPU h runtime

ETH zürich

Halo Model for Cosmological HI

HI-halo mass relation fitted to observations:

$$M_{\rm HI}(M,z) = \alpha f_{\rm H,c} M \left(\frac{M}{10^{11} h^{-1} M_{\odot}}\right)^{\beta} \exp\left[-\left(\frac{v_{\rm c,0}}{v_{\rm c}(M,z)}\right)^{3}\right]$$

Padmanabhan et al. 2017

Dark Matter Neutral Hydrogen

- More massive halos contain more HI
- But: Many more small halos than large ones
- ➔ Important not to neglect small halos.

Relative Loss of Total HI Mass

ETH zürich

Brightness Temperature Maps

ETH zürich

Instrument Simulation and Analysis Pipeline

Analysis Method: *m-mode* Formalism

Recovered Map

ETH zürich

T:

 B_{ij} ^T:

n_{ij}:

HI Angular Power Spectrum

Summary

- Simulation pipeline of HI maps for intensity mapping
- Apply it to HIRAX and SKA/MeerKAT
- Future developments:
 - Increasing resolution
 - Extend theoretical predictions
 - Vary HI-Halo mass relation
 - Consider foregrounds, noise and RSD

Hitz et al. (in prep.)